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Abstract: Extreme Learning Machine (ELM) is a neural network architecture in which hidden layer weights are ran-
domly chosen and output layer weights determined analytically. We interpret ELM as an approximation to
a network with infinite number of hidden units. The operationof the infinite network is captured by neural
network kernel (NNK). We compare ELM and NNK both as part of a kernel method and in neural network
context. Insights gained from this analysis lead us to strongly recommend model selection also on the variance
of ELM hidden layer weights, and not only on the number of hidden units, as is usually done with ELM. We
also discuss some properties of ELM, which may have been too strongly interpreted in previous works.

1 INTRODUCTION

Extreme Learning Machine (Huang et al., 2006)
(ELM) is a currently popular neural network architec-
ture based on random projections. It has one hidden
layer with random weights, and an output layer whose
weights are determined analytically. Both training
and prediction are fast compared with many other
nonlinear methods.

In this work we point out that ELM, although in-
troduced as a fast method for training a neural net-
work, is in some sense closer to a kernel method in its
operation. A fully trained neural network has learned
a mapping such that the weights contain information
about the training data. ELM uses a fixed mapping
from data to feature space. This is similar to a ker-
nel method, except that instead of some theoretically
derived kernel, the mapping ELM uses is random.
Therefore, the individual weights of the ELM hidden
layer have little meaning, and essential information
about the weights is captured by their variance.

This thought is met also in derivation of the neu-
ral network kernel (NNK) (Williams, 1998), which is
widely used in Gaussian process prediction. The net-
work in the derivation has infinite number of hidden
units, and when the weights are integrated out, the re-

sulting function is parameterized in terms of weight
variance.

We interpret ELM as an approximation to this in-
finite neural network. This leads us to study con-
nections between NNK and ELM from two opposite
points of view.

On the one hand, we can use ELM hidden layer
to compute a kernel, and use it in any kernel method.
This idea has been suggested for Support Vector Ma-
chines (SVM) in (Frénay and Verleysen, 2010), which
has been the main inspiration for our work. We try out
the same idea in Gaussian process classification.

On the other hand, we can use NNK to replace the
hidden layer computations in ELM. This is done by
first computing a similarity-based representation for
data points using NNK, and then deriving a possible
set of explicit feature space vectors by matrix decom-
position. This corresponds to using ELM with an in-
finite number of hidden units.

Our experiments show that the theoretically de-
rived NNK can replace ELM when ELM is used as
a kernel. NNK can also perform computations of
the ELM hidden layer, albeit at higher computational
cost. An infinite network performing equally well or
often better than ELM raises a question about mean-
ingfulness of choosing model complexity based on
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hidden units only, as is traditionally done with ELM.
We argue, and support the argument by experiments,
that the variance of hidden layer weights is an im-
portant tuning parameter of ELM. Model selection of
weight variance should therefore be considered.

We first present in Section 2 some tools (ELM,
NNK, data sets) which we will need in subsequent
sections. Section 3 discusses similarities and differ-
ences between fully trained neural networks, ELM,
and kernel methods, and reports the experiments with
ELM kernel and computing ELM hidden layer results
using NNK. Results of the experiments and properties
of ELM are commented in length in Section 4.

2 METHODS

2.1 Extreme Learning Machine (ELM)

The following, including Algorithm 1, is an abridged
and slightly modified version of ELM introduction in
(Miche et al., 2010).

The ELM algorithm was originally proposed
in (Huang et al., 2006) and it makes use of the Sin-
gle Layer Feedforward Neural Network (SLFN). The
main concept behind the ELM lies in the random
choice of the SLFN hidden layer weights and biases.
The output weights are determined analytically, thus
the network is obtained with very few steps and with
low computational cost.

Consider a set ofN distinct samples(xi,yi) with
xi ∈ R

d1 andyi ∈ R
d2; then, a SLFN withH hidden

units is modeled as the following sum

H

∑
i=1

βi f (wix j + bi), j ∈ [1,N], (1)

with f being the activation function,wi the input
weights,bi the biases andβi the output weights.

In the case where the SLFN perfectly approxi-
mates the data, the errors between the estimated out-
putsŷi and the actual outputsyi are zero and the rela-
tion is

H

∑
i=1

βi f (wix j + bi) = y j, j ∈ [1,N], (2)

which writes compactly asHβ = Y, with

H =







f (w1x1+ b1) · · · f (wH x1+ bH)
...

. . .
...

f (w1xN + b1) · · · f (wH xN + bH)






,

(3)
andβ = (βT

1 . . .β
T
H)

T andY = (yT
1 . . .y

T
N)

T .

Theorem 2.1 of (Huang et al., 2006) states that
with randomly initialized input weights and biases for
the SLFN, and under the condition that the activation
function is infinitely differentiable, then the hidden
layer output matrix can be determined and will pro-
vide an approximation of the target values as good as
wished (non-zero training error).

The way to calculate the output weightsβ from the
knowledge of the hidden layer output matrixH and
target values, is proposed with the use of a Moore-
Penrose generalized inverse of the matrixH, denoted
asH† (Rao and Mitra, 1972). Overall, the ELM algo-
rithm is summarized as Algorithm 1.

Algorithm 1 : ELM.

Given a training set(xi,yi),xi ∈ R
d1,yi ∈ R

d2, an ac-
tivation functionf : R 7→R and the number of hidden
nodesH.
1: - Randomly assign input weightswi and biases

bi, i ∈ [1,H];
2: - Calculate the hidden layer output matrixH;
3: - Calculate output weights matrixβ = H†Y.

Number of hidden units is an important parameter
for ELM, and should be chosen with care. The se-
lection can be done for example by cross-validation,
information criteria or starting with a large number
and pruning the network (Miche et al., 2010).

2.2 Neural Network Kernel

Neural network kernel is derived in (Williams, 1998)
by letting the number of hidden units go to infinity. A
Gaussian prior is set to hidden layer weights, which
are then integrated out. The only parameters remain-
ing after the integration are variances for weights.
This leads to an analytical expression for expected co-
variance between two feature space vectors,

kNN(xi,x j) =
2
π

sin−1 2x̃T
i Σx̃ j

√

(1+2x̃T
i Σx̃i)(1+2x̃T

j Σx̃ j)
.

(4)
Above, x̃i = [1 xi] is an augmented input vector and
Σ is a diagonal matrix with variances of inputs. In
this work all variances are assumed equal, for closer
correspondence with ELM.

NNK also arises as a special case of a more gen-
eral arc-cosine kernel (Cho and Saul, 2009). NNK is
not to be confused with tanh-kernel tanh((xi ·x j)+b),
which is often also called MLP kernel (from Multi-
Layer Perceptron).
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2.3 Data Sets and Experiments

We perform two experiments. In ”GP experiment”
ELM kernel is used in a Gaussian Process classi-
fier (Rasmussen and Williams, 2006). Results as
function of H are compared with results of neural
network kernel. In ”ELM experiment” ELM clas-
sification accuracy (as function of number of hid-
den units) is compared to accuracy got by replac-
ing ELM hidden layer with NNK. The latter variant
of ELM is from now on referred to as NNK-ELM.
The comparison is done for five different variances
(σ ∈ {0.1,0.325,0.55,0.775,1}).

The GP experiment is implemented by modifying
gpstuff toolbox1. Expectation propagation (Minka,
2001) is used for Gaussian process inference. The
ELM experiment uses the authors’ matlab implemen-
tation.

We use six data sets from UCI machine learning
repository (Asuncion and Newman, 2007). They are
described in Table 1. For representative results, the
data sets were chosen to have different sample sizes
and different dimensionalities.

Table 1: Data sets used in the experiments.

name # samples # dims data types
Arcene† 200 10000 cont.
US votes 435 16 bin.
WDBC 569 30 cont.
Pima 768 8 cont.
Tic Tac Toe 958 27 categ.
Internet ads 2359 1558 cont., bin.
† (Guyon et al., 2004)

For ELM experiment the data is scaled to range
[−1,1]. Each data set is divided into 10 parts. Nine
parts are used for training and one for testing, repeat-
ing this 10 times. This variation from data is shown in
figures. ELM results have another source of variation,
the random weights. This is handled by repeating the
runs 10 times, each time drawing random weights,
and averaging over results. Maximum number of hid-
den units for ELM experiment is 250, to make sure to
cover the sensible operating range of ELM (up toN
hidden units) for all data sets.

In the GP experiment, we are more interested in
ELM behavior as the function of hidden units than the
prediction accuracy. We therefore only consider vari-
ation from random weights, drawing 30 repetitions of
random weights. The data is split into train and test
sets (50 % / 50 %). Zero-mean unit-variance normal-
ization is used for the data.

1http://www.lce.hut.fi/research/mm/gpstuff/

ELM places few restrictions to the activation of
hidden units. In this work we use the error function
Erf(z) = 2/

√
π
∫ z

0 exp−t2, since it is the sigmoid used
in the derivation of NNK. For the same reason we use
Gaussian distribution for weights, instead of the more
usual uniform. ELM only requires the distribution to
be continuous.

3 ANALYSIS OF ELM

Essential property of a fully trained neural network is
its ability to learn features on data. Features extracted
by the network should be good for predicting the tar-
get variable of a classification/regression task.

In a network with one hidden and one output layer,
the hidden layer learns the features, while the out-
put layer learns a linear mapping. We can think
of this as first non-linearly mapping the data into a
feature space and then performing a linear regres-
sion/classification in that space.

ELM has no feature learning ability. It projects the
input data into whatever feature space the randomly
chosen weights happen to specify, and learns a lin-
ear mapping in that space. Parameters affecting the
feature space representation of a data point are type
and number of neurons, and the variance of hidden
layer weights. Training data can affect these parame-
ters through model selection, but not directly through
any training procedure.

This is similar to what a support vector machine
does. A feature space representation for a data point
is derived, using a kernel function with a few param-
eters, which are typically chosen by some model se-
lection routine. Features are not learned from data,
but dictated by the kernel. Weights for linear classi-
fication or regression are then learned in the feature
space. The biggest difference is that where ELM ex-
plicitly generates the feature space vectors, in SVM or
another kernel method only similarities between fea-
ture space vectors are used.

3.1 ELM Kernel

Authors of (Frénay and Verleysen, 2010) propose us-
ing ELM hidden layer to form a kernel to be used in
SVM classification. They define ELM kernel function
as

kELM(xi,x j) =
1
H

f (xi) · f (x j), (5)

that is, the data is fed trough the ELM hidden layer to
obtain the feature space vectors, and their covariance
is then computed and scaled by the number of hidden
units.
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When the number of hidden units grows, this ker-
nel matrix approaches that given by NNK. Figure 1
shows the approach, measured by Frobenius norm, as
function ofH. Especially for smallH the ELM kernel
varies due to random weights, but it clearly converges
towards NNK.
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Figure 1: ELM kernel(KELM) approaches neural network
kernel (KNN) in Frobenius norm when number of hidden
unit grows. Mean by black dots, 95% interval by shading.
Variation is caused by randomness in weights. WDBC data
set.

Results of GP experiment are shown in Fig-
ure 2. ELM kernel behavior in GP seems qualita-
tively similar to that observed in (Frénay and Verley-
sen, 2010) for SVM. The classification accuracy first
rises rapidly and then sets as a fixed level. Variation
due to random weights remains, but NNK result stays
inside the 95% interval of ELM.

3.2 NNK Replacing ELM Hidden Layer

3.2.1 Derivation

When using ELM, we only deal with vectorial data,
with data space vectors transformed into feature space
vectors by the hidden layer. Kernel methods rely on
pairwise data, where only similarities from any point
to all training points are considered. Kernel matrix
specifies the pairwise similarities. In order to use pair-
wise information from the NNK instead of ELM hid-
den layer, we must find a vectorial representation for
the data.

The idea of recovering points given their mutual
relationships is old (Young and Householder, 1938),
and is the basis of multidimensional scaling (Torg-
erson, 1952). Multidimensional scaling is used in
psychometry for handling results of pairwise compar-
isons, and more generally as a dimension reduction
method. When the data arises from real pairwise com-
parisons, like in psychometry, there is no guarantee
of structure of the similarity matrix. In our case, on
the contrary, the structure is known: NKK is derived
as covariance, and is therefore positive semidefinite
(PSD).

Any PSD matrix can be decomposed into a matrix
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Figure 2: GP classification accuracy when using ELM ker-
nel (black dots and shading) versus NKK accuracy (hori-
zontal line).

and its Hermitian conjugate

C = LL H . (6)

There are different methods for finding the factors
(Golub and Van Loan, 1996). Matlabcholcov im-
plements a method based on eigendecomposition. If
we takeC in (6) to be output of the NNK function
(4), thenL can be thought as one possible set of cor-
responding feature space vectors.

We useL to determine the output layer weights
the same way we usedH in ELM,

β = L†Y. (7)

The factorsL are unique only up to a unitary trans-
formation, but this is not a problem in ELM context,
as the linear fitting of output weights is able to adapt
to linear transformations.

With infinite number of hidden units, the feature
space is infinite-dimensional. Meanwhile, the data
we have available is finite, and then data points can
span at mostn-dimensional subspace. Thus the max-
imum size ofL is n× n; the number of columns can
be smaller if the data has linear dependencies.

If C is positive definite or close to it, a triangu-
lar L could be found using Cholesky decomposition,
leading to fast and stable matrix operations when find-
ing the output layer weights. As positive definiteness
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cannot be guaranteed, we use the more general de-
composition for PSD matrices in all cases.

The one remaining problem is the mapping of test
points to the feature space. In ELM, the test data is
simply fed through the hidden layer. In our case, the
hidden layer does not physically exist, and we must
base the calculations on similarities fom test points to
training point, as given by NNK (4). This means that
NNK output for test dataC∗ is covariance matrix of
the form

C∗ = LL H
∗ . (8)

We already know the pseudoinverse ofL . Therefore
L∗ is recovered from

L∗ = (L†C∗)
H = (L†LL H

∗ )
H , (9)

and the predictions for test targets are computed as

Y∗ = L∗β. (10)

3.2.2 ELM Experiment

NNK-ELM results are shown in 3, as function ofσ.
Results for two data sets are clearly affected by the
variance parameter, others are less sensitive.
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Figure 3: NNK-ELM results, mean and 95 % interval due
to data variation.

Predictions given by ordinary ELM are shown in
in Figure 4, and mean values for NNK-ELM predic-
tions are included for comparison. We notice that
when the variance is properly chosen, using NNK
gives equal or better results than ELM for most data
sets. Pima data set is an exception, ELM has some
predictive power whereas NNK-ELM performs al-
most at level of guessing.

We also notice that the choice of variance has a
marked effect on two and some effect on other data
sets, both for ordinary ELM and the NNK variant. In
the following section we will look at variance effects
in in more detail and discuss the reasons for impor-
tance of variance.

3.3 Variance of Weights

Importance of variance, or more often the range used
for uniform distribution, is regarded important in
ELM works (e.g. (Miche et al., 2010)). However,
it is not seen as a model parameter, but simply a con-
stant which must be suitably fixed to guarantee that
the sigmoid operation neither remains linear nor too
strongly saturates to±1.

Variance effects from Figure 4 are summarized in
Figures 5 and 6.

Figure 4 shows the mean predictions of ELM as
function of H. For TicTacToe and WDBC data sets
the predictions are clearly affected by the variance
parameter. For Internet ad data the overall effect of
bothH andσ is very small. In that scale, the small-
est variance nonetheless gives results clearly different
than larger values. Results for other data sets are not
very sensitive to the variance values that were tried.
For TicTacToe and Internet ads smaller variance gives
better predictions, for WDBC the biggest one. Clearly
no fixed sigma can be used for all data sets.

Variance also affects the uncertainty of ELM pre-
dictions, as witnessed by Figure 6, where the width
of smoothed 95 % intervals of predictions is shown.
WDBC data set exhibit the strongest effect, followed
by Pima data. All data sets show some effect of vari-
ance. Number of hidden units interacts with effects
of σ, but no general pattern appears. Also direction
of the effect remains unspecified; for four data sets
smallerσ gives larger uncertainty, but the opposite is
true for the rest.

When thinking about the mechanism by which the
variance parameter affects the results, differences be-
tween data sets are to be expected. Variance affects
model complexity, and obviously different models fit
different data sets. Variance and distribution of the
data together determine the magnitude of values seen
by the activation function. The operating point of the
sigmoidal activation determines the flexibility of the
model.

When weights are small, the sigmoid produces
a nearly linear mapping. Large weights result in
a highly non-linear mapping. This is illustrated in
Figure 7. One-dimensional data points, spread over
range [-1,1] (the x-axis), are given random weights
drawn from zero-mean Gaussian distribution and then
fed through an error function sigmoid, repeating this
10000 times. Mean output and 95 % interval are de-
picted. On average, the sigmoid produces a zero re-
sponse, but the distribution of responses is determined
by the variance used. Small variance means mostly
small weights, and linear operation. Large variance
produces many large weights, which increase the pro-
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Figure 4: ELM results (mean as black dots, 95 % interval as shading) for different values ofσ. Mean of NNK results
(horizontal (red) line) are shown for comparison.
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Figure 5: Effect of variance on mean of ELM predictions.
Darker shade indicates smaller variance.

portion of large responses by the network, allowing
nonlinear mappings.

Considering the effect of variance on complexity
of the model, we think that variance should undergo
model selection just as the number of hidden units
does.

4 DISCUSSION

4.1 On Properties of ELM

Authors of (Huang et al., 2006) promote ELM by
speed, dependence on a single tuning parameter,
small training error and good generalization perfor-
mance. These claims have often been repeated by
subsequent authors, but we have not come upon much
discussion of them. Here we present some comments
on these properties.

Training of a single ELM network is fast, provided
the number of hidden units is small.Speed of training
as the whole, however, depends also on the number of
training runs. Model selection may require consider-
able number of repetitions.

First factor to consider is the inherent randomness
of ELM results. If average performance of ELM is to
be assessed, any runs must be repeated several times,
adding to the computational burden.

Complexity of model selection is determined by
the number of tuning parameters, since all sensible
combinations should be considered.
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Figure 6: Effect of variance on width of the 95 % interval of
ELM predictions. Darker shade indicates smaller variance.
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Figure 7: Distributions of predictions of an error function
sigmoid for differentσ.

First parameter is the number of hidden units. The
only theoretically motivated upper limit for the num-
ber of hidden units to try isN (which is enough for
zero training error). At that limit, computing pseu-
doinverse corresponds to ordinary inversion of an
N ×N matrix, with a complexity ofO(N3). In prac-
tice, smaller upper limits are used.

Traditionally, somewhat arbitrary fixed values
have been used for weight variance, and model selec-
tion has only considered the number of hidden units.
Our results show that also the weight variance has a
noticeable effect on results, and should thus be con-
sidered a tuning parameter.

Generally,small training error and good general-
ization may be contradictory goals. ELM is proved
(Huang et al., 2006) to be able to reproduce the train-
ing data exactly if the number of hidden units equals
or exceeds the number of data points. This behavior,
though important in proving computational power of
ELM, is usually not desirable in modeling. A model
should generalize, not exactly memorize the training
data. This view is indirectly acknowledged in practi-
cal ELM work, where the number of hidden units is
much smaller thanN. This may prevent ELM network

from overfitting to the training data, a factor usually
not discussed in ELM literature.

Generalization ability of ELM is attributed to the
fact that computing output layer weights by pseudoin-
verse achieves a minimum norm solution. Generaliza-
tion ability of a neural network is in (Bartlett, 1998)
shown to relate to small norm of weights. However,
Bartlett’s work considers the neural network as whole,
not only the output layer. Although ELM minimizes
the norm of output layer weights, norm of the hidden
layer weights depends on the variance parameter, and
does not change in ELM training.

In the hidden layer, generalization ability is re-
lated to the operating point of hidden unit activations,
discussed in Section 3.3. A model with small hidden
layer weights is nearly linear, and generalizes well. A
highly non-linear model, produced by large weights,
is more prone to overfitting. Therefore, conclusions
about generalization ability of ELM should not be
based on the output weights only.

4.2 ELM as a Kernel

Use of ELM as a kernel, at least in a Gaussian pro-
cess classifier, is likely to remain a curiosity. Clas-
sification performance seems to steadily increase as
the number of hidden units grows, and, when consid-
ering the variation caused by ELM randomness, the
performance does not exceed that of NNK. When an
easy-to-compute, theoretically derived NNK function
is available, we see no reason to favor a heuristical
kernel, computation of which requires generating and
storing random numbers and an explicit nonlinear fea-
ture space mapping.

4.3 NNK as ELM Hidden Layer

We introduced NNK-ELM as a way for studying the
effect of infinite hidden units in ELM, but it can also
find its use as a practical method.

Computational complexity of NNK-ELM corre-
sponds to that ofN-hidden unit ELM. The matrix de-
composition required in NNK-ELM scales asO(N3).
ELM runs much faster than that, since the optimal
number of hidden units is usually much less thanN.
However, the optimal value is usually found by model
selection, necessitating several ELM runs. If the se-
lection procedure also considers large ELM networks,
choosing ELM over NNK-ELM does not necessar-
ily save time. Prediction, on the other hand, is much
faster with ELM, ifH ≪ N.

Furthermore, NNK-ELM has only one tuning pa-
rameter, the variance of hidden layer weights. Oppos-
ing the popular view, we argue that also ELM model
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selection should consider weight variance as parame-
ter. If the number of data points is reasonably small,
NNK-ELM can thus result in considerable time sav-
ings when doing model selection. A factor adding to
this is that, unlike ELM, NNK-ELM gives determin-
istic results, and only requires repetitions if variability
due to training data is considered.

NNK-ELM can also naturally deal with non-
standard data. NNK corresponds to an infinite net-
work with error function sigmoids in hidden units.
If a Gaussian kernel was used instead, the compu-
tation would imitate an infinite radial basis function
network. Dropping the neural network interpretation,
any positive semidefinite matrix can be used. This
leaves us with the idea of using a kernel for nonlin-
ear mapping, then returning to a vectorial represen-
tation of points, and applying a classical algorithm
(as opposed to an inner-product formulation of algo-
rithms needed for kernel methods). In the case of
NNK-ELM, the algorithm is a simple linear regres-
sion, but the same idea could be used with arbitrary al-
gorithms. This can serve as a way of applying classi-
cal, difficult-to-kernelize algorithms to non-standard
data (like graphs or strings), for which kernels are de-
fined.

4.4 Future Directions

When ELM is considered as an approximation of an
infinite network, it becomes obvious that the vari-
ance of hidden layer weights is more important than
the weights themselves. It should undergo rigorous
model selection, as any other parameter. Also lessons
already learned from other neural network architec-
tures, like the effect of weight variance on the oper-
ating point of sigmoids, should be kept in mind when
determining future directions for ELM development.

Questions about correct number and behavior of
hidden units in ELM remain open. If the hidden units
do not learn anything, what is their meaning in the
network? Do they have a role besides increasing the
variance of output?

If we fix the datax and draw weightswi (includ-
ing the bias) randomly and independently, then also
the hidden layer outputsai = f (wix) are independent
random variables. They are combined into model out-
put asb = ∑H

i=1 βiai.
Variance ofb is related to number and variance

of ai. This is seen by remembering that, for in-
dependent random variablesF andG, Var[F+G] =
Var[F] +Var[G]. The more hidden units we use, the
larger the variance of the model output.

Training of the output layer has opposite effect on
variance. Output weights are not random, so vari-

ance of the model outputb is related to that ofai
by rule Var[cF] = c2Var[F] (wherec is a constant).
That is, variance ofb is formed as a weighted sum of
variances ofai. The weightsβi’s are chosen to have
minimal norm. Although minimizing the norm does
not guarantee minimal variance, minimum norm esti-
mators partially minimize the variance as well (Rao,
1972). Therefore, choice of output weights tends to
cancel the variance-increasing effect of hidden units.

We have recognized the importance of variance,
yet the roles and interactions of weight variance, num-
ber of hidden units (increases variance) and determi-
nation of output weights (decreases variance) are not
clear, at least to the authors. If we are to understand
how and why ELM works, the role of variance needs
further study.
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