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Abstract: In this contribution, we will extend results relating to representability of a fuzzy function using a crisp function.
And additionally, we show for which functions there exist fuzzy function of a specific form. Our notion of
fuzzy function has a graded character. More precisely, any fuzzy relation has a property of being a fuzzy
function that is expressed by a truth degree. And it consists of two natural properties: extensionality and
functionality. We will also provide a separate study of these two properties.

1 INTRODUCTION

Historically, fuzzy functions took many forms by
their definition and they live contemporaneously with
their applications. As an example, we put here two
mostly known interpretations of this notion: 1’st – it is
any mapping that assign a fuzzy set to a fuzzy set, see
e.g., (Novák et al., 1999); 2’nd – it is a fuzzy relation
specified by various properties (see e.g., (Demirci,
1999a; Demirci, 2001; Demirci and Recasens, 2004)),
which gave rise to notions such as partial, perfect,
strong fuzzy function etc.

In this work, we will turn our attention to the
second class of the interpretation, i.e., we will ex-
plore fuzzy relations that meet some special require-
ments. Wide overview together with applications can
be found in the following exemplary sources (Kla-
wonn, 2000; Demirci, 2001; Bělohlávek, 2002). As
noted in (Demirci, 2000), not all notions of the fuzzy
function do coincide with the classical notions for
crisp functions. In this paper, we will try to avoid
this problem and all the subsequent definitions will
be consistent with the classical notions whenever ap-
plied on crisp input. As a basis for our work we will
take Demirci’s definition of fuzzy function (Demirci,
2001) adjusted to our framework.

Our framework and methodology stems from
(Běhounek and Cintula, 2006) and it can be charac-
terized by the following items:

1. We will work inside a specific fuzzy logic.

2. Fuzzy sets (relations) will be handled as objects
in formal language defined by a formula without

direct interpretation using truth values (over some
chosen structure).

3. Statements about the objects of the interest will be
in the form of graded theorems, which means that
instead of the usual statement of the problem

If ⊢ ϕ then ⊢ ψ – Classical theorem (1)

we search for more informative and general form
(not equivalent) of this statement

⊢ ϕn→ ψ – Graded theorem. (2)

Practically, we analyze how many times we need
to incorporate an antecedentϕ to prove the con-
sequentψ and we code the result into the degree
n.

Graded theorems may become very difficult for
non-experienced reader therefore, each section will
be equipped by paragraphs that translate the most
important formulae. Translation will be given first
into the language of models for some special theories
and second into the special language that mathemati-
cians can use whenever they work over some “fuzzy
logic”1. Those who prefer formal notation may skip
these parts of the text and concentrate only on the
technical aspects of the addressed problems.

The subsequently proposed reading of the graded
theorem will be completely analogous to the classi-
cal case (using classical mathematical logic (CML))

1The notion Fuzzy logic does not represent here a wide
range of applications as it is usual in engineers papers, but
it denotes formal logics (of specified order and type) having
syntax and semantics.
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and we will distinguish between them using a special
typeface. For the classical two-valued logic we will
reserve the following typeface:

Language of CML Reading
ϕ⇒ ψ If ϕ thenψ
ϕ⇔ ψ ϕ iff ψ (if and only if)
ϕ∧ψ ϕ andψ
ϕ∨ψ ϕ or ψ

And for the chosen fuzzy logic, we set

Language of FL Reading
ϕ→ ψ IF ϕ THEN ψ
ϕ↔ ψ ϕ IFF ψ
ϕ∧ψ ϕ AND ψ
ϕ∨ψ ϕ OR ψ
ϕ&ψ ϕ and ψ
ϕ⊕ψ ϕ or ψ

Indeed, meta-language that we are using when speak-
ing about provable formulae over some fuzzy logic is
the formal language of classical mathematical logic
(obviously by the fact that a given formula is either
provable or not). Hence, using the completeness of
the used background logic, we can carefully rein-
terpret known results proved in an algebraic setting
onto syntactical level and we obtain classical theorem.
And further, we can try it for graded theorems.

The main difference between readings of a classi-
cal theorem and a graded theorem is as follows. Hav-
ing a classical theorem, we use language of classical
logic to read propositions that include provable for-
mulae. And in the case of graded theorem, we read
directly a formula using the generalized language. We
can say:

“We write classically, but we think in grades.”

As an example of classical theorem (1), we can
assume thatϕ can be interpreted as “relation is exten-
sional” andψ as “relation is Lipschitz continuous”. In
this case, we can read (1) as

“If a relation is extensional then it is Lipschitz
continuous.”

Here, the given relation must be extensional to the de-
gree 1 to deduce that it is Lipschitz continuous to the
same degree. It can be shown that there is also graded
theorem (2) withn= 1 for this statement that can be
read in the analogous way

“I F a relation is extensionalTHEN it is Lipschitz
continuous.”

In this case, we have incorporated also additional hid-
den grades for both properties. Hence, a relation is
Lipschitz continuous (e.g. to the degreeb) as much as
it is extensional (to the degreea such thata≤ b).

The paper will be organized in the following way:

- First we introduce our logical framework, basic no-
tions and overview related results.

- The following two sections will be devoted to the
notions of extensionality and functionality, re-
spectively.

- And finally, Section 4 will provide a deep insight
into the “theory” of fuzzy functions.

2 LOGICAL FRAMEWORK

Let us work in the framework of fuzzy class the-
ory (FCT) (Běhounek and Cintula, 2005), which is a
schematic extension of a background logic (that con-
tain crisp equality= and Baaz-delta∆) by axiom of
comprehension and extensionality axiom. Provability
in FCT will be denoted simply by the same shortcut
in front of⊢ or it will be explicitly written. The back-
ground logic may be various (so that completeness
theorem is valid for FCT) due to our actual require-
ments. In our case, the weakest background logic
will be a many-sorted first order involutive monoidal
t-norm based logic (IMTL) and we will deal only with
this logic throughout the whole text.

The languageJ consists of the following set of
basic connectives(& ,→,∧), involutive negation2 ¬.
The quantifier∀, truth constants⊤,⊥ and variables of
the specific sorts.

Standardly, we introduce the following connec-
tives and quantifier:

x∨y≡d f ((x→ y)→ y)∧ ((y→ x)→ x), (3)

x⊕ y≡d f ¬(¬x&¬y), (4)

x↔ y≡d f (x→ y)&(y→ x), (5)

(∃x)ϕ≡d f ¬(∀x)¬ϕ. (6)

IMTL extends MTL by the following schemata of
axioms:

(INV) ¬¬ϕ→ ϕ.
Let us summarize properties of MTL and its vari-

ous extensions.

Proposition 1 . IMTL proves

ϕ↔¬¬ϕ, (7)

(ϕ→ ψ)↔ (¬ψ→¬ϕ). (8)

Interpretation of the connectives is given by the
corresponding operations{∗,→∗,∧L ,∨L ,∼}, and

2Mostly, ¬ is reserved for residual negation and∼ is
usual symbol for involutive negation. In this paper, we work
only with involutive negation, hence, there is no danger of
confusion between these two various notations.
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the constant⊥ is interpreted as 0, which together form
an IMTL-algebra denoted byL .

An L -structure for the languageJ is of the form

M = 〈(Xi) f or si ,(rP)P−predicate,(mc)c−constant〉,

i = 1,2, . . . ,n, where eachXi is non-empty set of ob-
jects,rP is anL-fuzzy relation of the respective type
andmc belongs toDi provided thatc is of the typesi .

2.1 Basic Notions

Let F,≈1,≈2 be predicates of the type
(s1,s2),(s1,s1),(s2,s2), respectively, i.e. their are in-
terpreted asF⊂

∼
X1×X2,≈1≈1≈1⊂∼

X1×X1,≈2≈2≈2⊂∼
X2×X2;

0 be a constant denoting an atomic individual of the
domain of discourse. For the better orientation, we
will use the same terminology on the syntax as well
as on the semantical level. Moreover, we will omit
the specification of sorts, whenever it will be clear
from the concept.

Moreover, letR,Sare fuzzy relations or fuzzy sets
of the same type and ¯x includes all free variables of
R,S then we define the following properties:

• Reflexivity:

ReflR≡d f (∀x)Rxx

• Symmetry:

SymR≡d f (∀x,y)(Rxy→Ryx)

• Transitivity:

TransR≡d f (∀x,y,z)[(Rxy&Ryz)→ Rxz]

• Similarity:

SimR≡d f ReflR&SymR&TransR

• Subsethood:

R⊆ S≡d f (∀x,y)(R(x,y)→ S(x,y))

• Strong set-similarity:

R∼= S≡d f (∀x,y)(R(x,y)↔ S(x,y))

• Set-similarity:

R≈ S≡d f (R⊆ S)&(S⊆ R)

• Totality:
TotR≡d f (∀x∃y)Rxy

• Surjectivity:

SurR≡d f (∀y∃x)Rxy

• Injectivity:

Inj≈1
R≡d f (∀x,x

′)[(∃y)(Rxy&Rx′y)→ (x≈1 x′)]

Moreover, the following set operations can be intro-
duced:

A∪B=d f {x | (x∈ A)⊕ (x∈ B)} strong union
A∩B=d f {x | (x∈ A)&(x∈ B)} strong intersec.
A⊔B=d f {x | (x∈ A)∨ (x∈ B)} union
A⊓B=d f {x | (x∈ A)∧ (x∈ B)} intersection

We will additionally deal with relational compo-
sitions defined using a class notation. A systematic
study can be find in (Bělohlávek, 2002). We will use
three basic relational compositions.

• sup-T composition:

R◦S=d f {xy | (∃z)(Rxz&Szy)}

• BK-subproduct:

R⊳S=d f {xy | (∀z)(Rxz→ Szy)}

• BK-superproduct:

R⊲S=d f {xy | (∀z)(Rxz← Szy)}

3 EXTENSIONALITY AND ITS
PROPERTIES

The extensionality is one of the most important prop-
erties of fuzzy relations that are used in fuzzy control.
Indeed, only such relations are considered for approx-
imation by fuzzy rules, see (Hájek, 1998; Daňková,
2007). It is defined by the following formula:

Ext≈1,2 F ≡d f (∀x,x
′,y,y′)

[(x≈1 x′)&(y≈2 y′)&F(x,y)→ F(x′,y′)].

Using≈1(2) we capture a relationship between ele-
ments of the input (output) space. When assuming
two concrete individuals, the requirement says the
following: closer are the individuals{a,b,c,d} then
more equivalent are the degrees to which the proposi-
tion fires for these individuals, we can read it symbol-
ically as

“I F a∈U(b)≈1 and c∈U(d)≈2 and F(a,c)

THEN F(b,d)” ,

where
U(x)≈ =d f {y | x≈ y}

expresses a neighbourhood of the elementx.

3.1 Extensionality of Set Operations
and Relational Compositions

Let us summarize properties relating to extensional-
ity.

ICFC 2010 - International Conference on Fuzzy Computation
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Proposition 2 . FCTproves

Ext≈1,2 F&Ext≈1,2 E→ Ext≈2
1,2
(F ∩E), (9)

Ext≈1,2 F&Ext≈1,2 E→ Ext≈2
1,2
(F ∪E), (10)

Ext≈1,2 F ∧Ext≈1,2 E→ Ext≈1,2(F ⊓E), (11)

Ext≈1,2(F ⊔E)→ Ext≈1,2 F ∨Ext≈1,2 E. (12)

Readings of the above results:
(9) – “IF F and E are extensionalTHEN their strong
intersection is extensional.”
(10) – “IF F and E are extensionalTHEN their strong
union is extensional.”
(11) – “IF F AND E are extensionalTHEN their inter-
section is extensional.”
(12) – “IF the union of F and E is extensionalTHEN F
is extensionalOR E is extensional.”

In the following, the extensionality of superset and
similar set is studied.

Proposition 3 . FCTproves

(F ⊆ E)2→ [Ext≈1,2 F → Ext≈1,2 E], (13)

(F ≈ E)2→ [Ext≈1,2 F ↔ Ext≈1,2 E]. (14)

Readings of the results:
(13) – “IF F is a subset of E (we need this requirement
twice) and F is extensionalTHEN E is extensional.”
(14) – “IF F and E are similar sets (we need this re-
quirement twice)THEN F is extensionalIFF E is ex-
tensional.”

The above formulae together with properties of
the relational compositions produces a long list of
consequences.

Corollary 1 . Let

C1 ≡d f (E1⊆ E2)
2,

C2 ≡d f (F1⊆ F2)
2,

C3 ≡d f (E1≈ E2)
2,

C4 ≡d f (F1≈ F2)
2.

ThenFCTproves

C1→[Ext≈1,2(F ◦E2)→ Ext≈1,2(F ◦E1)],

C1→[Ext≈1,2(F ⊳E1)→ Ext≈1,2(F ⊳E2)],

C1→[Ext≈1,2(F ⊲E2)→ Ext≈1,2(F ⊲E1)],

C2→[Ext≈1,2(F2⊳E)→ Ext≈1,2(F1⊳E)],

C2→[Ext≈1,2(F1⊲E)→ Ext≈1,2(F2⊲E)],

C3→[Ext≈1,2(F ◦E2)↔ Ext≈1,2(F ◦E1)],

C3→[Ext≈1,2(F ⊳E2)↔ Ext≈1,2(F ⊳E1)],

C3→[Ext≈1,2(F ⊲E1)↔ Ext≈1,2(F ⊲E2)],

C4→[Ext≈1,2(F2⊳E)↔ Ext≈1,2(F1⊳E)],

C4→[Ext≈1,2(F1⊲E)↔ Ext≈1,2(F2⊲E)],

Intersection:

Ext≈1,2

(( ⋂

F∈A

F
)

◦E
)

→ Ext≈1,2

( ⋂

F∈A

(F ◦E)
)

,

Ext≈1,2

( ⋃

F∈A

(F ⊳E)
)

→ Ext≈1,2

(( ⋂

F∈A

F
)

⊳E
)

,

Ext≈1,2

( ⋃

E∈A

(F ⊳E)
)

→ Ext≈1,2

(

F ⊳
⋃

E∈A

E
)

.

Union:

Ext≈1,2

(( ⋃

F∈A

F
)

◦E
)

↔ Ext≈1,2

( ⋃

F∈A

(F ◦E)
)

,

Ext≈1,2

( ⋂

F∈A

(F ⊳E)
)

↔ Ext≈1,2

(( ⋃

F∈A

F
)

⊳E
)

,

Ext≈1,2

( ⋂

E∈A

(F ⊳E)
)

↔ Ext≈1,2

(

F ⊳
⋂

E∈A

E
)

.

3.2 Duality between Extensionality and
1-Lipschitz Continuity

The duality between pseudo-metrics and similari-
ties based on the additive generator of a t-norm has
been used to prove the duality between extensional-
ity (on the model where & is interpreted as continu-
ous archimedean t-norm) and Lipschitz continuity in
the induced pseudo-metric space (Mesiar and Novák,
1999) (later in (Perfilieva, 2004)). Below, we provide
a graded form of the result from (Daňková, 2010).

By the above observations, the mutual inversion
between extensionality and Lipschitz continuity ob-
viously follows.

Theorem 1 . Let

Lipschitzd,d′ F ≡d f (∀x̄, ȳ)[d(F(x̄),F(ȳ))→ d′(x̄, ȳ)],

and moreover, Define

d′(x̄, ȳ) =d f ¬(x1 ≈1 y1)⊕¬(x2≈2 y2), (15)

d(x,y) = ¬(x↔ y). (16)

ThenFCTproves

Ext≈1,2 F ↔ Lipschitzd,d′ F.

Reading of the result:

“F is extensional w.r.t.≈1,2 IFF

F is Lipschitz continuous w.r.t.d,d′ .”

Whenever≈1,2 are not similarities, we should
not speak about an analogy with Lipschitz continu-
ity. There, we obtain only one pseudo-metric dual
to equivalence, i.e.d, and a correct interpretation of
Lipschitzd,d′ F can be expressed as a domination of
pseudo-metricd applied on valuesF by relationd′.
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4 FUNCTIONALITY AND ITS
PROPERTIES

In this section, we will introduce a property of fuzzy
relation called functionality that is a direct generaliza-
tion of the related crisp notion.

Let the functionality property be given by the
following formula (semantic version in (Demirci,
1999b)):

Func≈1,2 F ≡d f (∀x,x
′,y,y′)

[(x≈1 x′)&F(x,y)&F(x′,y′)→ (y≈2 y′)]. (17)

It is not an obvious generalization of the classical def-
inition of functionality axiom:

If F(x,y) andF(x,y′) theny= y′,

represented by

F(x,y)&F(x,y′)→ y= y′,

wheneverF is crisp. The classical functionality can
be tested on fuzzy relations as well and it can be ex-
pressed within the fuzzy logic using Baaz-delta∆ as
follows:

∆F(x,y)& ∆F(x,y′)→ y= y′,

thus for crisp relations, the form of functionality ax-
iom does not differ from its origin.

The most natural generalization stands in remov-
ing all crisp constrains toF and the equality, which is
now replaced by an equivalence relation determining
which elements are indistinguishable on the universe
of discourse

F(x,y)&F(x,y′)→ y≈2 y′, (18)

and it seems that we are done at that point. However,
taking closer look at the above formula, we uncover
the hidden crisp equality there relating to the variable
x. Since we work in the setting where≈1 possesses
what is distinguishable on the input space, therefore
we should incorporate this fact by modifying left side
of the implication in the functionality formula

x≈1 x′&F(x,y)&F(x′,y′)→ y≈2 y′.

Observe that when assuming reflexivity of≈1, we
have (18) as the special instance of the above formula
and so of the formula defining Func≈1,2 F .

Example 1 . Duality between extensionality and
Let L = 〈[0,1],⊗,⇒,∨,∧,0,1〉 be the standard
Łukasiewicz algebra,

x∼ y= (x⇔ y)3 = (x⇔ y)⊗ (x⇔ y)⊗ (x⇔ y).

The following is the example of a relation that is
functional to the degree1 w.r.t. =,=: F1(x,y) =
{0.5/sin(x)}.

Considering similarity relation∼, we find out that

1. F2(x,y) = y∼ sin(x) is functional to the degree 1
w.r.t.∼,∼.

2. F3(x,y) = y∼ f (x), where

f (x) =

{

1.7x2, x∈ [0,0.5];
cos(0.9x)−0.5, otherwise.

is functional to the degree 1 w.r.t.=,∼.
3. F4(x,y) = F2 ∨ F3 is functional to the degree 0

w.r.t.∼,∼. Take x= x′ = 1 and y= 0.1, y′ = 0.8
then F(x,y)⊗F(x′,y′) = 1, but y∼ y′ = 0.

Figure 1: Functional relationF2 w.r.t.∼,∼.

Figure 2: Functional relationF3 w.r.t.∼,∼.

Figure 3: Non-functional relationF4 w.r.t.∼,∼.

4.1 Functionality of Set Operations and
Relational Compositions

Let us summarize properties relating to functionality.
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Proposition 4 . FCTproves

Func≈1,2 F&Func≈2,3 S→ Func≈1,3(F ◦S), (19)

Func≈1,2 F&Func≈1,2 S→ Func≈2
1,2
(F ∩S), (20)

Func≈1,2 F ∧Func≈1,2 S→ Func≈1,2(F ⊓S), (21)

Func≈1,2(F ⊔S)→ Func≈1,2 F ∧Func≈1,2 S.
(22)

We can also introduce the following properties of
relations analogous to the classical notions.

Proposition 5 . FCTproves

(S⊆ F)2→ [Func≈1,2 F → Func≈1,2 S], (23)

(F ≈ S)2→ [Func≈1,2 F ↔ Func≈1,2 S]. (24)

Similarly as in the previous section, we may generate
a long list of corollaries for the relational composi-
tions.

Note that we have decided to omit the reading of
the above results because it is in a direct analogy with
reading of the results in Section 3.1.

5 FUZZY FUNCTIONS AND
THEIR RELATION TO CRISP
FUNCTIONS AND VICE-VERSA

When having crisp functions, we can always express
this special relational dependency byy= f (x), which
follows from the functionality property throughout
the compatibility property w.r.t.=,= defined by (25).
If we exchange= by ≈2, i.e. we assume that each
x is mapped to a neighbourhood off (x), which can
be represented using≈2 asy≈2 f (x). This relation is
the fuzzy functions w.r.t.=,≈2, provided that≈2 is
reflexive.

Let us first explore how does the relation be-
tween compatibility and functionality/extensionality
look like for a specially chosen relationFf (x,y) :=
y≈2 f (x).

Lemma 1 . Let us define

Comp≈1,≈2
f ≡d f

(∀x,y)(x≈1 y)→ ( f (x) ≈2 f (y)), (25)

Ff (x,y)≡d f y≈2 f (x), (26)

C≡d f Sym≈2
&(Trans≈2)

2. (27)

ThenFCTproves

Tot f → TotFf , (28)

C→[Comp≈1,≈2
f → Func≈1,≈2 Ff ], (29)

C→[Comp≈1,≈2
f → Ext≈1,≈2 Ff ], (30)

When defining fuzzy function (property Function
defined by (31) assigned to a relationF), it is usu-
ally assumed the extensionality and functionality to-
gether. Extensionality says that we can substitute
the original inputs (x,y) by the indistinguishable one
(x′,y′). The formula representing the functionality is
the exact analogy with the classical definition, where
we assume that the images of indistinguishable ele-
ments are indistinguishable. Relating to this interpre-
tation, we must still keep on mind that≈1,2 repre-
sent the granularity of the input (output) space, which
means that they are coarsest relations in our system
(∀R)(≈1(2)⊆ R) enabling us to distinguish elements
of the universe.

Theorem 2 . Let us define

Function≈1,2 F ≡d f Ext≈1,2 F ∧Func≈1,2 F, (31)

DefinitionF, f ≡d f

(∀x)[F(x, f (x))↔ (∃y)F(x,y)], (32)

Ff be defined by Ff (x,y) ≡d f y≈2 f (x), where f is
some unary functional symbol.

ThenFCTproves

C&Comp≈1,≈2
f → Function≈1,≈2 Ff , (33)

Tot f &DefinitionFf , fFf
→ ( fFf ≈ f ). (34)

Reading of the results:
(33) – “IF ≈2 is symmetric and transitive (we
need transitivity twice)and f is compatibleTHEN

y≈2 f (x) is fuzzy function.”
(34) – “IF f is compatibleand total and fFf is so that
for an arbitraryx : [ fFf (x) ≈2 f (x) IFF there exists
y : y≈2 f (x)] THEN fFf is similar to f .”

Now, let us address the reverse problem: consider
a fuzzy relationF and let us find a crisp functionfF
such that it is compatible with(≈1,≈2) and its exten-
sion to fuzzy relationFfF is similar toF.

Theorem 3 . Let D≡d f TotF&DefinitionF, fF .
ThenFCTproves

D&(TotF)&Func≈1,2 F →CompfF , (35)

D&Function≈1,2 F&Refl≈1 → (FfF ≈ F). (36)

Reading of the results:
(35) – “IF F is functional and total (we need totality
twice)and fF is so that for an arbitraryx : [F(x, fF (x)
IFF there existsy : F(x,y)] THEN fF is compatible
function.”
(36) – “IF F is a total fuzzy functionand fF is as
aboveand ≈1 is reflexiveTHEN FfF is similar toF.”

REPRESENTATION THEOREM FOR FUZZY FUNCTIONS - Graded Form

61



Let us recall the original representation theorem
(translated into our framework) to provide a compar-
ison with our graded variant. For the semantical ver-
sion see e.g. (Bělohlávek, 2002).

Theorem 4 . Let

FEqualR≡d f SimR&(∀x,y)[∆R(x,y)→ (x= y)],

T1 = {Sim≈1,FEqual≈2
,Comp≈1,≈2

f}

T2 = {Sim≈1,FEqual≈2
,TotF,Function≈1,2 F,

DefinitionF, fF},

T3 = {DefinitionFf , fFf
}∪T1.

Then

FCT∪T1 ⊢ Function≈1,2 Ff , (37)

FCT∪T2 ⊢ Comp≈1,2
fF . (38)

Moreover,

FCT∪T3 ⊢ fFf = f , (39)

FCT∪T2 ⊢ FfF = F. (40)

Reading of the above formulae:
(37) – “If ≈1 is a similarity and≈2 is a fuzzy equality
and f is compatible w.r.t.≈1,2 then Ff is the fuzzy
function.”
(39) – “If we additionally assume that
Ff (x, fFf (x)) =

∨
y∈YFf (x,y), for an arbitrary x,

then fFf is equal tof .”
(38)+(40) – “If ≈1 is a similarity and≈2 is a fuzzy
equality andF is a total fuzzy function thenfF
satisfying F(x, fF (x)) =

∨
y∈YF(x,y) is compatible

function and moreover,FfF andF are identical.”

We see that the readings do not differ significantly.
The main difference is in gradualness of the new re-
sults, which reflects also in similarity offFf andFfF
with their pre-images, respectively.

An intended class of applications of the intro-
duced theory of fuzzy functions is connected with
fuzzy rules, especially, the implicative fuzzy rules.
Originally, implicative fuzzy rules where introduced
as an approximation of fuzzy relations that are func-
tional (to the degree 1). In this case, we obtain an up-
per approximation of the original relation and more-
over, a precision of such approximation can be esti-
mated. But if we have at the disposal only partially
functional relation (to the degree 0< α < 1) then we
cannot expect that implicative rules will provide an
upper approximation. The graded approach gives at
least an estimation of a residua between the implica-
tive rules and the original relation. The following ex-
ample illustrates an approximation of partially func-
tional fuzzy relations using implicative rules.

Example 2 . Let us assume the standard Łukasiewicz
algebraLŁ as an interpretation for the connectives,
i.e.,LŁ = 〈[0,1],⊗,→⊗,∧,∨,∼〉, where

x⊗ y= max(0,x+ y−1),

x→⊗ y= max(1,1− x+ y),

x∧y= min(x,y),

x∨y= max(x,y),

∼ x= 1− x.
In this case, we have x↔⊗ y=max(0,1−|x−y|) and

x↔k
⊗ y= (x↔⊗ y) . . . (x↔⊗ y)

︸ ︷︷ ︸

k−times

= max(0,1− k|x− y|).
In (Mesiar and Nov́ak, 1999), it has been shown

that Lipschitz continuity of a function f: [0,1] 7→ [0,1]
w.r.t. the standard metric and with the Lipschitz con-
stant k is equivalent with compatibility of f w.r.t.
↔k
⊗,↔⊗ over Łukasiewicz algebra, i.e. the interpre-

tation of Comp↔k,↔ f over LŁ is equal to 1, we
write symbolically||Comp↔k,↔ f ||= 1. Formula (29)
says that||Comp↔k,↔ f || ≤ ||Func↔k,↔Ff ||. More-
over, it can be proved that if||Func↔k,↔Ff ||= 1 then
∀x,y∈ [0,1] :

Ff (x,y) ≤ Rulesf (x,y), where (41)

Rulesf (x,y) =
∧

c∈M

[(x↔k
⊗ c)→⊗ (y↔⊗ f (c))],

(42)

and M⊂ [0,1]. And even more
FCT⊢ Func↔k,↔Ff → (Ff ⊆ Rulesf ), (43)

which gives the following estimation:
||Func↔k,↔Ff || ≤ ||Ff ⊆ Rulesf ||. (44)

Let us fix k= 1. Then we obtain the following table of
degrees of compatibility for the specific functions:

f ||Comp↔,↔ f ||
sin(x) 1
sin(2x) 0.6576= e2
sin(3x) 0.4675= e3

Figures 4–6 depict the sample relations Ff , where f
is from the above table. Additionally, Figures 7–9
visualize implicative rules with 11 equidistantly dis-
tributed nodes M= {0,0.1, . . . ,0.9,1}.

From (44) and (29), we conclude that
Fsin(x)(x,y)≤ Rulessin(x)(x,y),

e2 ≤ min
(x,y)∈[0,1]2

Fsin(2x)(x,y)→⊗ Rulessin(2x)(x,y),

e3 ≤ min
(x,y)∈[0,1]2

Fsin(3x)(x,y)→⊗ Rulessin(3x)(x,y).

Figures 10 and 11 show residua of Fsin(ix) from
Rulessin(ix), where the visualized z-coordinate is set
to [ei ,1] for i = 2,3.
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Figure 4:Fsin(x).

Figure 5:Fsin(2x).

Figure 6:Fsin(3x).

Figure 7:Rulessin(x).

Figure 8:Rulessin(2x).

Figure 9:Rulessin(3x).

Figure 10:Fsin(2x)→⊗ Rulessin(2x).

Figure 11:Fsin(3x)→⊗ Rulessin(3x).
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6 CONCLUSIONS

In this contribution, we have generalized the well
known representation theorem for fuzzy function into
the graded form. The main advantage of our approach
is that it incorporates the whole scale for degrees of
truth, while in the original approach the results were
applied to properties valid in the degree 1. More-
over, evaluation of the degrees of the antecedents in
our graded theorems provides an additional informa-
tion about a “precision” of the consequent. E.g., if≈
is similarity relation then an evaluation ofD in (34)
estimates closeness offFf ≈ f , or in other words, a
distance (dual to≈) betweenfFf and f .

Hence, we have shown that graded theorems bring
a new light into the already well established theory of
fuzzy functions. And additionally, the logical frame-
work provides an unified approach to mathematics of
fuzzy logic that corresponds with the classical one
(also in the notational standards).
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