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Abstract: Weightless Artificial Neural Networks have proved to be a promising paradigm for classification tasks. This 
work introduces the WANN-Tagger, which makes use of weightless artificial neural networks for labelling 
Portuguese sentences, tagging each of its terms with its respective part-of-speech. A first experimental 
evaluation using the CETENFolha corpus indicates the usefulness of this paradigm and shows that it 
outperforms traditional feedforward neural networks in both accuracy and training time, and also that it is 
competitive in accuracy with the Hidden Markov Model in some cases. Additionally, WANN-Tagger shows 
itself capable of incrementally learning new tagged sentences during runtime. 

1 INTRODUCTION 

In many fields in which there are text mining and 
information extraction tasks, many steps must be 
taken in order to acquire the main information from 
some text. The first of these steps is part-of-speech 
tagging, which consists of obtaining the grammatical 
tags of words in a sentence. 

This paper presents the WANN-Tagger, a 
Weightless Artificial Neural Network (WANN) 
model that makes use of the WiSARD (Wilkie, 
Stonham and Aleksander’s Recognition Device) 
architecture and its advantages (Alexander et al., 
1984) in order to create a tagger that is both faster 
and more accurate than traditional connectionist 
models and is also capable of learning almost 
instantly new tagged sentences during runtime. 

In the next section some basic concepts are 
introduced and background knowledge for the 
subsequent sections provided. So, in Section 2, the 
concepts of weightless artificial neural networks, the 
WiSARD model and the DRASiW (an important 
WiSARD generalization) are discussed. Some 
related works are also described in this section. In 
Section 3 the specification of the WANN-Tagger is 

presented and its application to POS tagging 
explained together with the discussion of the main 
changes to the original WiSARD model for it to 
perform POS tagging. An experimental framework 
is presented in Section 4, which explains how to use 
CETENFolha corpus (Linguateca, 2009) to train the 
WANN-Tagger, compares it with a feedforward 
neural network and with a Hidden Markov Model, 
and discusses the experimental results. Section 5 
offers some conclusions on the effectiveness of 
WANN-Tagger.  

2 BASIC CONCEPTS 

2.1 Weightless Artificial Neural 
Networks and the WiSARD Model 

Weightless Artificial Neural Networks (WANNs) 
are a set of artificial neural network models in which 
there is no synaptic weight balancing during its 
training phase. The main idea behind a WANN is 
that the knowledge is not strictly in the synapses. 
There is a large variety of WANNs, for instance: 
WiSARD (Alexander et al., 1984); Sparse 
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Distributed Memory (Kanerva, 1988); Probabilistic 
Logic Nodes (Alexander and Kan, 1987); Goal 
Seeking Neuron (Carvalho Filho et al., 1991); 
Generalizing Random Access Memory (Alexander, 
1990); General Neural Unit (Alexander and Morton, 
1991).  

In this paper, the pioneering WiSARD (Wilkie, 
Stonham and Aleksander’s Recognition Device) 
model (Alexander et al., 1984) is used. It employs a 
set of N RAM-discriminators (see Figure 1), where 
N is the number of existent classes, to determine 
which class a pattern belongs to. Each RAM-
discriminator consists of a set of X Boolean RAMs, 
or Boolean neurons, with n input bits each, and a 
summation device Σ (see Figure 2). Each RAM-
discriminator (or simply discriminator) receives nX 
inputs that are pseudo-randomly obtained from the 
input retina, the binary vector (see Figure 2) used in 
both training and recognition phases of the WiSARD 
model. The summation device integrates all X 
Boolean RAM outputs and is activated during the 
recognition phase.  

2.1.1 Training Phase 

In order to train a target discriminator, one must set 
all of its memory locations to “0” and then, for each 
dataset entry, a “1” should be written in the memory 
locations addressed by the given input pattern. 
Unlike other artificial neural network models based 
on synaptic weights, the training phase of a given 
discriminator ends after all the input entries 
belonging to the corresponding training set are 
presented just once, not requiring recursive iterations 
to achieve convergence.  

2.1.2 Recognition Phase 

Once all discriminators are trained, one can present 
an unseen input pattern to all discriminators. Each 
discriminator will produce a response r to that given 
input, so that the discriminator presenting the 
highest response indicates that such target input 
pattern belongs to the corresponding class with 
confidence d (see Figure 1), which is usually defined 
as the difference between the two best discriminator 
responses produced. The performance of WiSARD 
strongly depends on n. WiSARD generalisation 
capability grows inversely with n. 

2.2 DRASiW 

When one trains a large dataset, usually there are 
ties, i.e., different discriminators producing the same 
(highest) responses during the recognition phase. In 

order to avoid this saturation effect (also named 
overfitting), DRASiW (Soares et al., 1998), an 
extension to the WiSARD model, is provided with 
the ability of producing pattern examples, or 
prototypes, derived from learned categories, what 
was proved helpful in such disambiguation process 
(Grieco et al., 2010). 

 
Figure 1: A 10 RAM-discriminator architecture (from 
(Grieco et al., 2010)). 

 
Figure 2: The retina and a RAM-discriminator (from 
(Grieco et al., 2010)). 

 
Figure 3: Training samples and the respective mental 
image. 

A very simple modification to the WiSARD 
training process is needed in order to have DRASiW 
disambiguating discriminator responses. When an 
input pattern is presented, RAM locations addressed 
by the input pattern are incremented by 1, instead of 
simply storing a “1” at those memory locations. This 
makes RAM locations that are more accessed during 
the training step have higher values than the ones 
that are less accessed. 
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The change above allows WiSARD model to 
build “mental images” that are no longer black (“1”) 
and white (“0”), but “greyscale” (see Figure 3). To 
retrieve a “black and white mental image” one must, 
at the end of the training step, assume value “1” in 
the memory locations that have values higher or 
equal to a luminance threshold l and assume value 
“0” in the other memory locations. Having l = 0 as 
an initial condition, one can iteratively increase l 
upon detecting ties between discriminator responses, 
until l reaches a value meaning that just a single 
winner discriminator exists (Grieco et al., 2010). 

2.3 Related Works 

Most part-of-speech (POS) taggers are implemented 
using probabilistic and statistical frameworks, e.g. 
Hidden Markov Models (Rabiner, 1989) 
(Villavicencio et al., 1995), Maximum Entropy 
Markov Models (McCallum et al., 2000) and 
Conditional Random Fields (Lafferty et al., 2001). 
These approaches, although discovering parts-of-
speech with high accuracy, lack cognitive 
background and do not represent how human beings 
deduce the parts-of-speech of a sentence. 

Other approaches include rule based taggers, 
such as the Constraint Grammar approach (Karlsson 
et al., 1995), in which the tags are obtained based on 
which word is being tagged and other constraints. 
And there are yet other ones, like transformation 
based learning (TBL) taggers (Brill, 1995) and 
neural taggers (Schmid, 1994) (Marques and Lopes, 
1996). The former works as the rule based taggers, 
but the rules are automatically induced from the 
data, like some HMM taggers. The latter makes use 
of artificial neural networks, mainly feedforward 
ones. 

3 WANN-TAGGER 

3.1 General Architecture 

The WANN-Tagger is a part-of-speech tagger that 
makes use of the WiSARD model in order to tag 
sentences in Portuguese. Words are represented as a 
probability vector with values p(tagi|word) when the 
word is relevant to the corpus, i.e., appears in at least 
0.5% of the corpus, and are represented as p(tagi|word 
suffix) otherwise. 

Besides the probability of a word having a 
particular tag, the WANN-Tagger also takes into 
account the context in which the word is presented. In 
order to consider it, the WANN-Tagger employs a 

context window possessing b words before and a 
words after the current one plus the current word 
itself. Thus, the WANN-Tagger input is composed of 
a+b+1 words, i.e. a+b+1 vectors with N probabilities 
each. When there are less than b words before the 
current word or less than a words after it, then the 
probability vectors corresponding to the spaces of the 
context window lacking words have ‘0’ in such 
positions.  

The WANN-Tagger, as a Boolean neural 
network, does not support the use of floating points as 
inputs. In order to use the probability vectors one 
must discretize them. In this discretization process, 
probabilities are encoded as Boolean vectors 
according to the following condition: given two 
distinct probabilities, the one with higher value will 
be encoded as a Boolean vector with more 1's than the 
other. 

WANN-Tagger has a large variety of classes, 
which are listed in its tagset. As mentioned in the 
previous section, ties can often happen during the 
classification step when a WiSARD model that has a 
large training set is used. In order to avoid ties, the 
WANN-Tagger extensively uses the DRASiW 
mechanism to find the best value of the luminance 
threshold l that prevents such ties. 

In (Grieco et al., 2010) it is stated that these ties 
can be avoided by gradually increasing the luminance 
threshold. However, when one uses a large variety of 
classes, this can take too much time until no tie can be 
found. To avoid this time spending, a “binary search” 
luminance threshold adjustment is used, which 
consists of an iterative process containing the 
following statements: 

 if it is the first iteration of the “binary search” 
luminance threshold adjustment one must set a 
minimum threshold to the number of times the 
most accessed RAM-discriminator was 
accessed; test the WANN-Tagger using l = 1, 
i.e., if an entry in the memory location is 
greater or equal to “1”, then assume value “1” 
in this memory location, otherwise assume 
value “0”; check which discriminator produced 
the highest response and call this value V; 

 if there were ties in the previous iteration and 
the greatest value was V, then set the maximum 
threshold to the arithmetic mean of the 
minimum threshold and the former maximum 
threshold and test the WANN-Tagger with the 
recently adjusted maximum threshold as l; 

 if the greatest result in the previous iteration was 
less than V, then set the minimum threshold to 
the arithmetic mean of the former minimum 
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threshold and the maximum threshold and test 
the WANN-Tagger with the recently adjusted 
minimum threshold as l. 

Repeat this process until having a result in which 
the greatest value is V and there is no tie. 

3.2 Architecture for Portuguese 

WANN-Tagger has been implemented to be tested 
in Portuguese, so that its capability of tagging 
accurately a highly inflected and somewhat free 
word order language would be guaranteed.  

Several experiments have been done to discover 
which WANN-Tagger parameter values that 
maximize its accuracy. They employ a dataset 
containing 2000 sentences randomly extracted from 
CETENFolha corpus (Linguateca, 2009) and several 
distinct context windows, probability discretization 
degrees and number of inputs in each of the RAMs 
of the RAM-discriminators. 

The results show that the context window 
W = (1,1) is the one which the WANN-Tagger 
obtains the best accuracy with, and that the best 
probability discretization degree is d = 8 and the best 
number of inputs in each of the RAMs of the RAM-
discriminators is n = 16. Any context window larger 
than W = (1,1) or values for d and n greater than the 
ones obtained in the experiments imply in the 
WANN-Tagger becoming overfitted. 

4 METHODOLOGY AND 
EXPERIMENTS 

4.1 Dataset 

In order to test the WANN-Tagger, different 
samples from the CETENFolha corpus (Linguateca, 
2009) have been used. These samples were created 
by extracting random sentences from the corpus. 
This extraction has consisted in dividing the corpus 
in N parts with the same amount of sentences, and 
extracting one random sentence from each part. The 
amounts of sentences in these samples are 
logarithmically gradual. 

The tagset used in this paper is a simplified 
version of CETENFolha corpus one, as shown in 
Table 1. This simplified version was created because 
CETENFolha corpus tagset, PALAVRAS (Bick, 
2000), contains very meticulous tags, in which even 
gender and number (or finiteness, person, tense and 
mood in the case of a verb) are shown. 
 

Table 1: The tagset used in the experiments. 

Tag Description Tag Description 
PROP Proper Noun ADV Adverb 

N Noun PRP Preposition 

PERS 
Personal 
Pronoun KC 

Coordinate 
Conjunction 

POSS 
Possessive 
Pronoun KS 

Subordinate 
Conjunction 

DET Determiner NUM Numeral 
ADJ Adjective IN Interjection 

V Verb PT Punctuation 
SPEC Specifier   

4.2 Experiments 

To prove the effectiveness of the WANN-Tagger, it 
has been compared with (i) a feedforward neural 
network trained via Backpropagation, and (ii) with a 
Hidden Markov Model (HMM). 

The feedforward neural network uses the 
architecture presented in (Schmid, 1994). Like in 
WANN-Tagger the probabilities of a word (or a 
suffix) possess a particular tag are obtained by using 
their relative frequencies in the corpus. The epoch 
size is equal to the amount of sentences of each 
sample used in the experiments. Its learning rate is 
constant and equal to 0.001. The halting criteria 
consist in either the convergence of the training, or 
reaching 1000 epochs. 

Several experiments have been done and their 
results showed that the context window that best fits 
with the feedforward neural network model is W = 
(1, 1), i.e., one word before the current one and one 
after it and that the amount of nodes in the hidden 
layer that produces the best accuracy is n = 14. The 
two experiments mentioned above imply that the 
feedforward model which presented the best 
accuracy rates was 45-14-15. 

The Hidden Markov Model used is the one 
presented in LingPipe (Alias-i, 2009), a Java library 
suite for natural language processing. It was set to 
use Laplace smoothing and thus causing it to 
estimate the part-of-speech of words that it does not 
possess in its vocabulary, based only on their 
contexts. To test the accuracy of all the models 10-
fold cross-validation was used. 

4.3 Results and Discussion 

By testing these three models it is notable that the 
WANN-Tagger is considerably better than 
feedforward neural network in both accuracy and 
training time and that it is not as good as the Hidden 
Markov Model in accuracy rate but, unlike it, its 
accuracy rate standard deviation is very small and 
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thus more reliable. HMM can achieve accuracy rates 
of 94%, but varying from 65% to 100%, showing 
that it can be outperformed by the WANN-Tagger in 
some cases, as can be seen in Figure 4. The training 
time of the HMM, however, always outperforms the 
one of the WANN-Tagger as it is shown in Figure 5. 

 
Figure 4: Accuracy rate. The horizontal axis represents the 
number of sentences in the sample, the vertical represents 
the accuracy achieved by the model. Each curve indicates 
the mean accuracy and its 95% confidence interval. 

One can note, however, that HMM performed 
better than the other two models because it employs 
heuristics that are used by neither the WANN-
Tagger nor the feedforward neural network. HMM, 
through the forward-backward algorithm (also 
known as Baum-Welch algorithm) (Baum, 1972), a 
special case of the Expectation-Maximization or EM 
algorithm (Dempster et al., 1977), is able to obtain 
the best Markov model that maximizes the 
probability of  a POS sequence given a sequence of 
words. This algorithm allows HMM to know the 
whole clause, whereas both WANN-Tagger and the 
feedforward neural network model only know the 
part of the clause within the context window. 

One may also note that for each word in a 
sentence the HMM must read two entries only, the 
word and the tag (already stored in memory), which 
was the tag of the previous word. On the other hand, 
the WANN-Tagger has a context window which 
contains three words. It is clear that for each word in 
a sentence the tagger must discretize a number of 
elements equal to three times the number of classes, 
in this case 15. The feedforward neural network, 
however, does not have a discretization process. The 
main reason why it is outperformed in training time 
by both HMM and WANN-Tagger is due to the 
training convergence nature. 

It is important to perceive that as WANN-Tagger  

makes use of WiSARD it does not require recursive 
iterations to achieve convergence and therefore, 
unlike feedforward neural networks, when it 
receives a new tagged sentence to be trained it does 
not need to retrain itself, it only needs to increment 
the values in the memory locations addressed by this 
input pattern. As it is only training one sentence its 
training time is almost zero, as can be seen in Figure 
5, making it capable of learning new tagged 
sentences during runtime. 

 
Figure 5: Time spent during experiments. The horizontal 
axis represents the number of sentences in the sample, the 
vertical represents the time spent in seconds in each fold. 
Each curve indicates the mean time spent and its 95% 
confidence interval. 

In addition, it is worth noticing that Portuguese, 
as a highly inflected language, has a flexible word 
order in its sentences. This word order flexibility is 
responsible for the accuracy rates presented in 
Figure 4, being a little lower than the ones obtained 
in papers that use less inflected languages, such as 
English (Schmid 1994). 

Tests with a corpus written in English, the 
Brown Corpus (Francis and Kučera, 1982), have 
also been done and the results show that WANN-
Tagger performs almost as well as when it is trained 
with CETENFolha. WANN-Tagger performance 
achieves 79.56% when using the same configuration 
used for Portuguese. It is worth noting that Brown 
Corpus uses far more tags than it was used for 
Portuguese. If WANN-Tagger had the same amount 
of tags its accuracy would possibly be greater. 

5 CONCLUSIONS 

A  weightless  artificial  neural  network  model for 
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tagging Portuguese language sentences was 
introduced in this paper. The model showed itself as 
an alternative to feedforward neural network part-of-
speech taggers as the former is faster and had better 
accuracy rate than the latter. WANN-Tagger also 
showed that its accuracy rate is as high as of Hidden 
Markov Models in some cases. However, the 
WANN-Tagger does not show itself as being 
competitive in training time with the Hidden Markov 
Model, as it needs a context window and a large 
number of inputs for each of its RAMs. 

In order to make this model more competitive 
with the Hidden Markov Model, the possibility of 
adding Markov information to the WANN-Tagger 
inputs, for instance the tag obtained during the 
tagging phase of the previous word, will be left for 
future work. This way, the model would be able to 
know more information about the whole sentence and 
not only about a small part of it that is within the 
context window. 

In addition, it is worth noting that WANN-Tagger 
performed well with both a free and a fixed word 
order language and showed itself as a good model to 
be used when training is required during runtime.  
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