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Abstract: This paper presents a new technique for flexible path planning based on the deformation of a Bézier curve 
through a field of vectors. This new technique is called Bézier Shape Deformation (BSD). This deformation 
is computed with a constrained optimization method (Lagrange Multipliers Theorem). The main advantage 
of this method is how the solution is obtained. A linear system is solved to achieve the result. As a 
consequence, the deformed curve is computed in a few milliseconds where the linear system can be solved 
offline if the Bézier curve order is maintained constant during the movement of the robot. This method 
allows the use of these trajectories in dynamic environments where the computational cost is critical. This 
technique can be combined with any collision avoidance algorithm that produces a field of vectors. In 
particular, it is appropriate for artificial potential field methods. At the end of the paper, the presented 
methodology is combined with an artificial potential fields algorithm recently proposed, the Potential Field 
Projection method (PFP). This method is based on the combination of the classical Potential Fields method 
and the multi-rate Kalman filter estimation and takes into account the uncertainties on locations, the future 
trajectory of the robot and the obstacles and the multi-rate information supplied by sensors. As shown in the 
simulation results, flexible trajectories for collision avoidance are generated with smooth curves. 

1 INTRODUCTION 

A robot can be defined as a machine that should be 
able to collect information as well as to interact in a 
natural way with the surrounding environment. The 
key idea is how to obtain a proper trajectory that 
must be smooth and must interact with the 
environment in order to guarantee that the path is 
free of collisions in real-time. 

Collision avoidance is one of the main goals in 
the research carried out in industrial applications. In 
this sense, parametric curves are an option to 
represent these trajectories. The properties of 
parametric curves produce smooth paths. The most 
commonly used in robotics are B-Splines, see for 
instance (Connors and Elkaim, 2007), NURBS, 
(Alleoti and Caselli, 2005), RBC, (Montes et al., 
2008) and Bézier.  

The main difference between them is the 
complexity of their mathematical definition. While 
Bézier curves are the simplest ones, B-Splines or 
NURBS are more complex although they can more 
accurately represent objects in CAD programs. 

However, in mobile robotics real-time applications 
are required and, for this reason, more researchers 
work with Bézier curves. 

Moreover, (Nagatani et. al, 2001) used a path 
planning algorithm based on Bézier curves 
considering the minimum radius of curvature of 
vehicle. (Hwang et. al, 2003) presented a new 
interfacing method using a touchpad/screen to 
control a mobile robot, capable of real-time dynamic 
obstacle avoidance as well. They developed two 
algorithms: a significant points extraction algorithm 
for noisy input data and an on-line piecewise cubic 
Bézier curves trajectory generation algorithm for a 
mobile robot. (Skrjanc and Klancar, 2007) 
developed a new cooperative collision avoidance 
method for multiple nonholonomic robots with 
constraints and known start and goal velocities based 
on Bernstein-Bézier curves. The minimization 
problem used is an inequality optimization problem. 
The objective function minimizes the sum of all 
absolute maximal times subjected to the distances 
between the robots. (Choi et. al, 2008-2009) 
presented two path planning algorithms based on 
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Bézier curves for autonomous vehicles with 
waypoints and corridor constraints. In this paper a 
mathematical problem of constraint optimization is 
used. The cost function is the curvature of the Bézier 
curve to obtain resulting paths with larger radii of 
curvature. (Lizarraga and Elklaim, 2008) used 
Bézier curves for generating spatially deconflicted 
paths for multiple UAVs (unmanned aerial vehicles). 
The critical issue addressed is that of guaranteeing 
that all the paths lie inside a predefined airspace 
volume. Bézier curves represent a natural tool for 
meeting this requirement (convex hull’s property). 
The path generation problem is formulated as a 
constrained optimization problem over a finite 
optimization set and solved using standard 
MATLAB optimization tools. In this case, the cost 
function penalizes excessive lengths; the vehicles 
must use the shortest possible path. The constraint of 
the problem is the distance between the multiple 
vehicles, as the generated paths must have a 
minimum separation among them. The problem is 
non-linear and the solution is obtained by numerical 
techniques. 

Through these works we can conclude that an 
ideal solution is having a mathematical tool to obtain 
the deformation of the predefined trajectory, 
obtaining the modified curve in real time. In the 
literature, there is a similar research topic where all 
of the customary parametric curves are used, see 
(Meek et. al, 2003) for NURBS shape modification 
and (Fowler and Bartels, 1993) for B-Spline shape 
modification.  

In (Xu et. al, 2002) the Bézier shape 
modification by constrained optimization based on 
the discrete coefficient norm is discussed. The 
problem of parametric curves shape modification by 
constrained optimization was proposed recently. 
(Wu and Xia, 2005) developed a new technique to 
modify a Bézier curve by minimizing the changes of 
the shape. This result was used by (Montés et. al, 
2008) and it was improved and developed for Liquid 
Composite Moulding Processes. This is our previous 
work, defined as Bézier Shape Deformation (BSD). 
This method computes the modification of the shape 
defining a constraint optimization problem solved by 
the Lagrange Multipliers theorem. In this theorem a 
cost function is defined to minimize the distance 
between two curves and a set of constraints are used 
to obtain our aim. The principal constraint is how 
the modified curve passes through the “Target 
Point”. The rest of constraints are necessary to 
obtain a smooth curve, for example, continuity and 
derivability on the full curve.The advantage of this 
method  is  the  possibility  to  add as many different 

constraints as necessary to obtain the best solution.  
The current paper proposes a new path planning 

algorithm that has the ability to interact with the 
environment. This fact is able due to the 
combination of a proposed mathematical tool, called 
BSD, and an algorithm that gives repulsive forces. 
In the present work we use a very recent work in this 
field, (Mora et al., 2007). 

This paper is organized as follows: Section 2  
defines the Bézier curve and its useful properties for 
path planning. Section 3 develops the new technique 
called Bézier Shape Deformation (BSD). In Section 
4, simulation results are given. Finally, Section 5 
provides the conclusions and future work. 

2 DEFINITIONS AND 
PRELIMINARY NOTATION 

The Bézier curve of degree n, given (n+1) control 
points, iP , is defined to be 
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where t is a normalized time variable, 0≤ t/Tmax ≤1, 
and ( ),n iB t , are called the Bernstein polynomials or 
Bernstein Basis functions of degree n. 
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Bézier curves have useful properties for path 
planning because: always pass through the first and 
the last control points, lie within the convex hull of 
the control points, they are tangent to the vector of 
the difference P1-P0 at the start point and the vector 
of the difference Pn-Pn-1, they can be translated and 
rotated by performing these properties on the control 
points and in any case a smooth curve is guaranteed. 

The displacement of every control point is denoted 
as: [ ]nεεε "0= . The Bézier curve obtained 

modifying its controls points, ( )( )S tε α , is defined to 
be  
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3 BÉZIER SHAPE 
DEFORMATION IN MOBILE 
ROBOTS AND OBSTACLES. 

To deform a given Bézier curve, we only need to 
change the control points, and then it is necessary to 
compute the perturbation iε  of every control point. 
For that, a constraint optimization problem is 
proposed. Then, it is necessary to define a cost 
function to optimize and a set of constraints to 
obtain the desirable solution. 

The cost function to optimize is defined as 
follows; 

( )( ) ( ) ( )

( )∫ ∑

∫ ∑∫

⎟
⎠

⎞
⎜
⎝

⎛
⋅=

=⋅=−

=

=

1

0

2

0
,

1

0

2

20
,

1

0

2

2

min

minmin

dttB

dttBdtttS

n

i
ini

n

i
ini

ε

εαα

ε

εεε  
(4)

This function minimizes the changes of the shape 
minimizing the distance between both curves (see 
Figure 1). 

 
Figure 1: The deformation of a Bézier curve. 

A Bézier curve constructed using a large number 
of control points is numerically unstable (Skrjanc 
and Klancar, 2007). For this undesirable property it 
is necessary to concatenate two or more Bézier 
curves of second order to represent the full trajectory 
joining the initial and final positions of the mobile 
robot. The order of the Bézier curve must not be 
third or higher because it produces a loop or a cusp 
depending of the geometrical location of the control 
points.  
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Our goal is to develop a navigation algorithm 
that satisfies a set of constraints: 
1.-The modified Bézier curve ( )( )α tεS  passes 
through the target point T. Thus, the curve satisfies 
the following constraint:  
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2.-To maintain the derivative property of the curve, 
derivative restrictions in the start and end points of 
the resulting concatenated curve are imposed to the 
constrained optimization method,  
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3.- Continuity has to be imposed in the joined points 
of the concatenated curves, 
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The evaluation of these equations is, 
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4.- Derivability is also required, 
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The Lagrange multipliers theorem is applied to solve 
the constrained optimization problem. The 
constraints are added to the cost function resulting in 
the Lagrange function defined as, 
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The cost function is: 

( ) ( ) dttBg
k

l

n

i
in

l
i l

2

2

1

0 1 0
,1 ∫∑ ∑

= =

= ε  (13)

The constraints are included in the Lagrange 
function as follows, 
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This function depends on these variables, 
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The number of the constraints depends on the 
number of the concatenated Bézier curves,  
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The problem is solved making zero the partial 
derivatives of the Lagrange function, 
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In this way, a system of linear equations is obtained, 

⋅ =A X b  

The characteristics of this system are: 

1.- The variable vector is a column vector, 
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2.- The independent vector is a column vector too, 
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The terms of bT are defined as, 
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3.- The matrix of the system is defined in (26). It is a 
square matrix defined as a block matrix. Every block 
is defined as a part of the cost function or the 
constraints. This form allows adding new blocks that 
belong to other constraints.  
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The solution of this system is obtained as, 

bAX 1−=  (27)

The most important advantage of the proposed 
method is that the solution is not an approximation. 
It is an accurate solution. Another important thing is 

its low computational cost. The deformation of the 
initial robot path can be done in real time because 
the problem to solve is linear and the inverse matrix 
A-1 can be computed in advance. 

In Figure 2 it is shown a numerical result of the 
BSD algorithm. The modified trajectory is computed 
in 0.23 ms in a Pentium IV 2.4 Ghz. 

 

 
Figure 2: Numerical Result of the BSD with ten Bézier 
curves of second order. 

4 SIMULATION RESULTS 

The technique explained above has been evaluated 
through a predictive path planning method described 
in (Mora et. al, 2007) and (Mora and Tornero, 2007), 
the Potential Field Projection method (PFP). This 
method is based on the combination of the classical 
Potential Fields method (Khatib, 1986) and the 
multi-rate Kalman filter estimation (Tornero et. al., 
1999), (Pizá, 2003) and takes into account the 
uncertainties on locations, the future trajectory of the 
robot and the obstacles and the multi-rate 
information supplied by sensors.  

Dynamic models of moving objects are essential 
in the estimation procedure. In this case, particle 
kinematic models, described in (Mora et. al, 2007), 
have been used for the robot and the obstacles.  

Predicted future positions and uncertainties are 
obtained from the prediction equations of the multi-
rate Kalman filter (28) for every object in the 
environment, where x̂ ∈ℜn is the state estimation 
vector, A∈ℜnxn, B∈ℜnxm and C∈ℜpxn are the state 
space matrices for linear systems, P∈ℜnxn is the 
error estimation variance matrix, K∈ℜnxp is the 
Kalman gain and Q∈ℜnxn and R ∈ℜpxn are, 
respectively, the process noise and the measurement 
noise covariance matrices. 
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The delta function Δ modifies the expression of 
the Kalman gain indicating the presence (unit Δ 
matrix) or the absence (zero Δ matrix) of 
measurements in one particular estimation instant. 
Predicted future positions are derived imposing zero 
Δ matrices for future instants, as measurements are 
not available. 

Regarding to the robot, the sequence of predicted 
positions is considered as the Start points, Si, of the 
reference trajectory for the Bézier Shape 
Deformation method explained above. Every Start 
point is located in each second order Bézier curve. 
Regarding to the obstacles, their future trajectories 
and associated uncertainties are considering as 
restricted areas for path planning. 

These predicted trajectories are used in the 
generation of the potential field U(q,i)=Uatt(q,i)+ 
Urep(q,i), defined in (Mora et. al., 2007) even in the 
instants of time without measurements of the 
environment (i>0). 

The potential field generates a force in every 
prediction instant i, F(q,i)=-∇U(q,i), that modifies 
the initial prediction depending on the location of 
the goal and the future trajectories of the obstacles. 
In fact, these set of forces are transformed into 
displacements taking into account a particle dynamic 
model. These displacements are the Target points, 
Ti, defining the necessary vector, v, for the BSD. 

With the BSD algorithm we are able to compute 
a new Bézier curve in real-time that modifies the 
preliminary predicted trajectory. This new curve 
guarantees the smoothness and the continuity. 

A simulation application has been implemented 
in Matlab in order to demonstrate the statements 
above. Figure 3 represents a 2D four-sided scenario 
with six mobile obstacles and a mobile robot. The 
uncertainty ellipses associated to each predicted 
position within the prediction horizon are also 
depicted for the robot (in red) and the obstacles (in 
pink). Initially, the robot and the obstacles follow 
linear trajectories (given by the kinematic model) 
going from side to side of the environment. 

When the obstacles come close to the robot, it 
starts a smooth avoiding manoeuvre, based on the 
Bézier Shape Deformation method, which modifies 
its initial trajectory and guides the robot to the goal 
without collision. In Figure 3a the robot is following 
a straight line trajectory when a future collision is 
detected. The initial trajectory is modified in real-
time using the BSD method and the resulting 
trajectory is shown in Figure 3b and Figure 3c. 
Finally, Figure 3d shows another avoidance 
manoeuvre the modified trajectory. 

5 CONCLUSIONS AND FUTURE 
WORK 

This paper presents a new technique, called Bézier 
Shape Deformation (BSD), for a flexible path 
planning based on the deformation of a Bézier curve 
through vectors. These parametric curves represent 
in a proper way an optimized path satisfying a set of 
constraints at the same time. The main advantage of 
this method is the solution obtained; it is an accurate 
solution of a linear system and the computational 
cost is low. It computes a new trajectory in real-time 
avoiding the obstacles in the environment. These 
obstacles generate repulsive forces; these vectors are 
introduced in the BSD algorithm. The method used 
to solve it is the Lagrange theorem. The simulation 
results show the successful resulting trajectory. 

 
   a)        b)          c)      d) 

Figure 3: Simulation application - A robot follows a straight line avoiding the mobile obstacles using the BSD method.
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Future work lines are: the problem definition can 
add as many constraints as necessary. The matrix is 
defined with blocks, and it implies only to change or 
to include a new block in the matrix. It is important 
to work with the curvature or the total length of the 
path because in a vehicle robot there is a maximum 
curvature that the vehicle can follow and the path 
length affects the total travel time. Both functions 
could be including in the definition problem as a 
cost function or as a constraint. 

Finally, another future research is how to extend 
it to 3D space. In this way, the trajectory of an UAV 
or a robot arm could be simulated. 
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