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Abstract: This paper presents an improved version of compressed objective genetic algorithm to solve problems with 
a large number of objectives. The improved compressed objective genetic algorithm (COGA-II) employs a 
rank assignment for the screening of non-dominated solutions that best approximate the Pareto front from 
vast numbers of available non-dominated solutions. Since the winning non-dominated solutions are 
heuristically determined from the survival competition, the procedure is referred to as a winning-score based 
ranking mechanism. In COGA-II, an m-objective vector is transformed to only one criterion, the winning 
score of which assignment is improved from that of the previous version, COGA. COGA-II is subsequently 
benchmarked against a non-dominated sorting genetic algorithm II (NSGA-II) and an improved strength 
Pareto genetic algorithm (SPEA-II), in seven scalable DTLZ benchmark problems. The results reveal that 
for the closeness to the true Pareto front COGA-II is much better than NSGA-II, and SPEA-II. For diversity 
of solutions, the diversity of the solutions by COGA-II is comparable to that of SPEA-II, while NSGA-II 
has poor diversity. COGA-II can also prevent solutions diverging from true Pareto solutions that occur on 
NSGA-II and SPEA-II for problems with more than 4 objectives. Thus, it can be concluded that COGA-II is 
suitable for solving an optimization problem with a large number of objectives. 

1 INTRODUCTION 

In multi-objective optimization, an increase in the 
number of conflicting objectives significantly raises 
the difficulty level in multi-objective optimization 
problems (Deb et al., 2005). The total number of 
non-dominated solutions inevitably explodes owing 
to the way that a non-dominated solution is defined. 
When two candidate solutions are compared, a 
solution a does not dominate another solution b 
unless all objectives from a satisfy the domination 
condition. With a large number of objectives, the 
chance that two solutions cannot dominate one 
another is unsurprisingly high. Since a genetic 

algorithm is only capable of reporting a finite set of 
solutions, a large number of possible non-dominated 
solutions have to be screened for a good 
approximation of Pareto front (Pierro et al., 2007, 
Purshouse and Fleming, 2007) 

This investigation also focuses on the screening 
procedure that assigns “preference” levels to non-
dominated solutions in view that the higher the 
preference level of non-dominated solutions, the 
better the Pareto front approximation. A 
compressed-objective genetic algorithm (COGA) is 
an MOEA that successfully integrates this procedure 
into the multi-objective search framework 
(Maneeratana et al., 2006). The introduction of two 
conflicting preference objectives during the 
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competition between non-dominated solutions in 
COGA transforms a three-or-more-objective 
optimization problem into a two-objective problem. 

This investigation also focuses on the screening 
procedure that assigns “preference” levels to non-
dominated solutions in view that the higher the 
preference level of non-dominated solutions, the 
better the Pareto front approximation. A 
compressed-objective genetic algorithm (COGA) is 
an MOEA that successfully integrates this procedure 
into the multi-objective search framework 
(Maneeratana et al., 2006). The introduction of two 
conflicting preference objectives during the 
competition between non-dominated solutions in 
COGA transforms a three-or-more-objective 
optimization problem into a two-objective problem. 

Here, a similar screening approach is introduced. 
Instead of two conflicting preference objectives, 
only one preference objective, a winning score, is 
implemented. The winning score directly influences 
the rank and hence survival chance of a solution. 
With only one preference objective, the problem 
representation transformation is simpler than that in 
COGA. New MOEA with the winning score based 
ranking mechanism is thus proposed: an improved 
compressed-objective genetic algorithm (COGA-II). 
COGA-II involves the assignment of preference 
levels to non-dominated solutions for selection of 
winning solutions that best describe the Pareto fronts 
in problems with a large number of objectives. It is 
benchmarked against the non-dominated sorting 
genetic algorithm II, NSGA-II (Deb et al., 2002) and 
the improved strength Pareto evolutionary 
algorithm, SPEA-II (Zitzler et al., 2002). The chosen 
test suites are DTLZ1-7 (Deb et al., 2005) with three 
to six objectives. The organization of this paper is as 
follows. In section 2, the proposed algorithm, 
COGA-II is described. In section 3, the performance 
evaluation criteria, covering an existing measure for 
closeness to the Pareto front (Zitzler et al., 2000) and 
a modified index for solution distribution, are 
explained. Next, the results from benchmark trials 
against NSGA-II, and SPEA-II are compared in 
section 4 with the conclusions in section 5. 

2 IMPROVED 
COMPRESSED-OBJECTIVE 
GENETIC ALGORITHM 

Optimization problems usually arise when limited 
resources are available for existing demands. If 
multiple conflicting objectives are required in the 

problem formulation, the problem is multi-objective. 
Various techniques have been proposed for solving 
these multi-objective problems. Among these, the 
genetic algorithm has been established as one of the 
most widely used methods for multi-objective 
optimization (Li and Zhang 2006, Igel et al. 2007, 
Zhou et al. 2007). Due to the parallel search nature 
of the algorithm, the approximation of multiple 
optimal solutions – the Pareto optimal solutions, 
comprised of non-dominated individuals – can be 
effectively executed. The performance of the 
algorithm always degrades as the search space or 
problem size gets bigger. An increase in the number 
of conflicting objectives has also significantly raised 
the difficulty level (Deb et al., 2005). Thus, the non-
dominated solutions may deviate from the true 
Pareto front; the coverage of the Pareto front by the 
solutions generated may be affected.  

A number of strategies have been successfully 
integrated into genetic algorithms to solve these 
problems, including a direct modification of 
selection pressure (Fonseca and Fleming, 1993), 
(Srinivas and Deb, 1994) and elitism (Zitzler and 
Thiele, 1999), (Keerativuttitumrong et al., 2002). 
Although they have been proven to significantly 
improve the search performance of genetic 
algorithms, virtually all reported results deal with 
only few objectives. In reality, the possibility that a 
candidate solution is not dominated always increases 
with objective numbers, leading to an explosion in 
the total number of non-dominated solutions. This 
difficulty stems from the way that a non-dominated 
solution is defined. By domination definition, a 
candidate solution x is dominated by another 
solution y if and only if (a) all objectives from y are 
either better than or equal to the corresponding 
objectives from x and (b) at least one objective from 
y is better than the corresponding objective from x. 
Hence, if one single objective from y does not 
satisfy the conditions, y would not dominate x. In a 
problem with a large number of objectives, the 
chance that two solutions cannot dominate one 
another is inevitably high. A genetic algorithm must 
be able to pick out a well chosen solution set from a 
vast number of non-dominated solutions in order to 
successfully approximate the Pareto front. 

In order to properly approximate such Pareto 
fronts, a number of non-dominated solutions must be 
excluded from the search target. One possible 
technique is to assign different preference levels to 
non-dominated solutions under consideration. It is 
hypothesized that a set containing highly preferred 
solutions would reflect a close approximation of the 
true Pareto front. The original compressed-objective 
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genetic algorithm (COGA) (Maneeratana et al., 
2006) employed two conflicting criteria in the 
preference assignment. This can be viewed as a 
transformation from an m-objective problem to a 
two-objective problem during the survival 
competition between two non-dominated solutions. 
This thesis will present the improved version of 
compressed-objective genetic algorithm. The 
improved compressed objective genetic algorithm 
(COGA-II) is quite different from the original 
COGA in which three-or-more objectives is 
transformed to only one preference objective during 
the survival competition of two non-dominated 
solutions. The preference objectives of the COGA 
are winning score and vicinity index, in the other 
hand, the COGA-II has only one preference 
objective, winning score. Although the COGA-II 
employs winning score as the COGA, its winning 
score assignment is not the same as that of the 
original algorithm. The winning score assignment of 
and the main procedure of the COGA-II will be 
described in the following topics. 

2.1 Winning Score Assignment 

The winning score is heuristically calculated from 
the numbers of superior and inferior objectives 
between a pair of two non-dominated individuals. 
Let supij, injij and eqij be the number of objectives in 
the individual i which are superior to the 
corresponding objectives in the individual j, the 
number of objectives in i which are inferior to that in 
j, and the number of objectives in i which are equal 
to that in j, respectively. For an objective k in an m-
objective problem, ρijk is defined as 
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for any individual pairs i and j. The manner at 
which ρijk deviates from one depends on the ratio 
between the numbers of superior and inferior 
objectives during each solution comparison. This 
reflects the dependency and correlation among 
objectives of interest.  

Next, the summation of ρijk for the objective k 
over all possible individual pairs is given by 
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where N is the total number of non-dominated 
individuals. The winning score of the individual i in 
a non-dominated individual set or WSi is given by 
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The qijk is a competitive score. qijk = 1 if the 
objective k of the individual i is superior to that of 
the individual j but qijk = −1 if the objective k of i is 
inferior to that of j. Obviously, qijk = 0 if the 
objective k from both individuals is equal. The wij is 
a weighted sum of competitive scores from all 
objectives. For any individual pair i and j, wji = −wij, 
wii = 0 and −1 < wij < 1. This leads to −N < WSi < N. 
It is noted that the winning score assignment is not 
an objectives weighted sum method such as Soylu 
and Köksala (2010), Zhang and Li (2007). The 
assignment is used for only non-dominated 
solutions. 

It is required that an individual with a high 
winning score must be close to the true Pareto front. 
This requirement is satisfied if the relationship 
between the winning score and the distance from a 
non-dominated individual to the true Pareto front in 
the objective space can be described by a decreasing 
function. This relationship can be identified using 
the following multi-objective problem scenario. 
Consider a multi-objective minimization problem in 
which the i-th objective or fi equals to the decision 
variable xi where xi ∈ [0,1]. This problem has only 
one true optimal solution with all objectives equal to 
zero. First, a random solution is generated and 
placed in an arc-hive. Another random solution is 
then generated and compared with the archival 
solution. The archive is appended if the new solution 
is neither dominated by nor a duplicate of the 
existing archival solution. At the same time, if the 
new solution dominates the archival solution, the 
dominated solution will be expunged from the 
archive. The process of creating random solutions 
and archive updating is repeated until the archive is 
full. 

Figure 1 displays the relationship between the 
winning score of each solution and its distance to the 
true optimal solution for problems with a different 
number of objectives. The archive size is set to 200 
while the illustrated problems contain 3–6, 8, 10, 15 
and 20 objectives. In Figure 1, the relationship can 
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be described by a decreasing function especially 
when the number of objectives is large.  

Table 1 shows the average of percent correct 
from comparison of all pairs of 200 non-dominated 
solutions, of which the number of possible solution 
pairs is equal to C(200,2) = (200!)/(198!2!) = 
19,900, from 30 runs. For any solution pair 
comparison, the comparison by winning score is 
correct if the solution with a higher winning score is 
closer to the true Pareto solution than the other. The 
data in Table 1 show that winning score can 
accurately identify different levels of the non-
dominated solution with more than 78% correctness 
of comparison and its effectiveness is increased 
when the number of objectives increases. Hence, the 
winning score can be used to estimate the quality of 
a solution in a non-dominated solution set. 

3 objectives 4 objectives 5 objectives 6 objectives

8 objectives 10 objectives 15 objectives 20 objectives

Figure 1: Relationship between the winning score 
(horizontal axis) and the distance from the true optimal 
solution (vertical axis). 

Table 1: Average of Percent Correct by Winning Score 
Comparison of Various Numbers of Objectives. 

No. of 
Objectives 3 Obj 4 Obj 5 Obj 6 Obj 

% Correct by 
Winning Scores 78.08% 80.71% 85.60% 87.69% 

No. of 
Objectives 8 Obj 10 Obj 15 Obj 20 Obj 

% Correct by 
Winning Scores 89.82% 90.85% 91.55% 91.54% 

2.2 Rank Assignment 

With the use of the winning score, a rank value can 
be assigned to an individual in COGA-II as follows. 

1. Evaluate the winning score of each individual in 
the non-dominated individual set. 

2. Find extreme individuals among N non-
dominated individuals. The number of extreme 
individuals is equal to E, which does not exceed 
2m (two individuals with the minimum and 
maximum values of each objective). 

3. Sort E extreme non-dominated individuals in 
descending order of the winning score. The firstly 
sorted individual is assigned rank 1. The secondly 
sorted individual is assigned rank 2 and so forth. 
Therefore, the lowest rank of extreme individuals 
is E. In the same way, N − E non-extreme non-
dominated individuals are also sorted in 
descending order of the winning scores. However, 
the ranks of these non-dominated individuals vary 
from E + 1 to N. This rank assignment guarantees 
that a rank of an extreme individual is always 
higher than that of a non-extreme individual. 

4. Assign a rank to each dominated individual. The 
rank of a dominated individual is given by N plus 
the number of its dominators. The addend N 
ensures that the rank of a non-dominated 
individual is higher than that of a dominated 
individual. 

2.3 Main Procedure 

The main algorithm for COGA-II is as follows. 

1. Generate an initial population P0 and an empty 
archive A0. Initialize the generation counter t = 0. 

2. Merge the population Pt and the archival 
population At together to form the merged 
population Rt. Then assign ranks to individuals in 
Rt. 

3. Put all N non-dominated individuals from Rt. into 
the archive At+1. If N is larger than the archive 
size Q, truncate the non-dominated individual set 
using the operator described in the next sub-
section. On the other hand, if N < Q then Q − N 
dominated individuals with the least number of 
their dominators are filled to the archive At+1. 

4. Perform binary tournament selection with 
replacement on archival individuals in order to 
fill the mating pool with special attention to both 
the rank and the summation of distances between 
an individual i or SDTi in the archive and all 
individuals in the current mating pool.  
At the beginning, SDTi is set to zero. In the first 
selection iteration, two individuals from the 
archive are randomly picked; the individual with 
higher rank will be selected. Otherwise, if their 
ranks are equal, one individual is selected at 
random. After the selection, SDTi of any 
remaining individual i in the archive is updated 
by adding its current value with the distance 
between the individual i and the selected 
individual. In the next selection iteration, the 
winning individual is also determined from the 
rank. However, if the ranks of two competing 
individuals are equal, the individual with more 
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SDT is selected. Subsequently, SDTi of an 
individual i in the archive is again updated. The 
binary tournament selection is then repeated until 
the mating pool is fulfilled. 

5. Apply crossover and mutation operations within 
the mating pool. Then place the offspring into the 
population Pt+1 and increase the generation 
counter by one (t ← t + 1). 

6. Go back to step 2 until the termination condition 
is satisfied. Report the final archival individuals 
as the output solution set. 
A truncation operator for maintaining individuals 
in the archive is introduced next. 

2.4 Truncation 

Only the winning score assignment may does not 
guarantee diversity of solutions. The truncation is 
therefore used to maintain the diversity of an archive 
of any generation. With the use of the truncation 
operator, Q non-dominated individuals are extracted 
from N available individuals and placed into the 
archive At+1. The truncation operation is as follows 
1. Find extreme individuals among N non-

dominated individuals. The number of extreme 
individuals is equal to E, which does not exceed 
2m. If there is only one individual with the 
minimum/maximum value of objective k, this is 
the extreme individual. In contrast, if there are 
multiple individuals with the minimum/maximum 
value of objective k, an individual is chosen at 
random to be the extreme individual. 

2. Place all E extreme individuals in the archive. Set 
the number of archival individuals L = E and 
remaining individuals R = N − E. Then, calculate 
the Euclidean distance di

RL between the individual 
i in R and its nearest neighbor in L. If there are 
two-or-more individuals in L that have the same 
objective vector as that of the individual j in R, 
dj

RL is set by 

mcd j
RL
j )1( −−=  (5)

3. Select Q − L individuals with the highest values 
of di

RL from R. Then, move the candidate with the 
highest winning score among these Q − L selected 
individuals to the archive. If there are more than 
one individual with the highest winning score, the 
chosen candidate is the one with the highest value 
of di

RL. 
4. Increase the counter for the number of archival 

individuals (L ← L + 1) and decrease the counter 
for the number of remaining individuals (R ← R – 
1). Then, update di

RL for the remaining individual i. 

5. Go back to step 3 until the archive is fulfilled. 

3 PERFORMANCE EVALUATION 
CRITERIA 

Good non-dominated solutions should be close to 
the true Pareto front and uniformly distributed along 
the front. From many available performance metrics 
for MOEAs evaluation (Deb and Jain 2003), two 
performance metrics are used here: the average 
distance between the non-dominated solutions to the 
true Pareto optimal solutions, or M1 metric (Zitzler 
et al., 2002) and a newly proposed clustering index 
CI for the description of solution distribution. 

The clustering index CI is a diversity metric 
which indicates the distribution of non-dominated 
solutions on a hyper-surface. The proposed CI 
differs from the grid diversity metric (Deb and Jain, 
2002) such that the calculation of CI does not 
require a grid division of each objective, at which 
the suitable number of divided grids is difficult to 
identify. 

For a non-dominated solution set A of size Q, CI 
of A is evaluated from a derived non-dominated 
solution set A' of size Q' where Q' >> Q. The 
evaluation of CI from A is as follows from which the 
range of CI is between 0 and 1 where a higher CI 
value indicates a better solution distribution. The CI 
evaluation is as follows. 
1. Copy all solutions in set A to the derived solution 

set A'. 
2. Randomly select the first parent p1 and parent p2 

from A and A' respectively. 
3. Perform crossover and mutation operations on 

both parents to obtain two children c1 and c2. 
Then, calculate objectives of both children. 

4. Check whether each child neither dominates nor 
is dominated by any solutions in A. If both 
children do not satisfy this condition, go back to 
step 3. If only one child satisfies this condition, 
put it in A'; if both children satisfy the condition, 
randomly pick a child and put it in A'. 

5. Update the number of members in A'. If A' is not 
completely filled, go back to step 2. Otherwise, 
go to step 7. 

6. Divide Q' solutions in A' into Q groups by a 
clustering method [4]. Then, find the number of 
groups G that contains the first Q solutions, 
which  are  identical  to  solutions in A. CI of A is  
equal to G/Q. 
In this study, an acceptable value for Q', which 

should be large as possible, is determined 
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empirically from all bench-mark problems and is 
subsequently set at 4,000. 

Figure 2: An example of CI evaluation of non-dominated 
solutions from the three-objective DTLZ2. 

The demonstration of CI calculation is given in 
the following example in Figure 2. Let A contain 20 
non-dominated solutions which are represented by 
black circles of a three-objective DTLZ2 problem as 
shown in the figure. After the derivation of A' with 
1,000 non-dominated solutions, solution clusters are 
created. Each cluster is illustrated in the figure using 
a unique marker. CI is equal to the number of 
clusters containing solutions from A, 16, divided by 
the total number of solutions in A, which is equal to 
20. Thus, CI of A is equal to 0.80. 

4 RESULTS AND DISCUSSIONS 

COGA-II was compared against NSGA-II and 
SPEA-II by the benchmark problems DTLZ1-7 with 
3-6 objectives. The parameter setting is shown in 
Table 2. The average (Avg.) and standard deviation 
(SD) of M1 and CI are shown in Table 3 to Table 10. 
From Table 3 to Table 10, COGA-II outperforms 
NSGA-II and SPEA-II in terms of M1. This 
performance superiority is clearer with larger 
numbers of objectives. In addition, the M1 
performance of NSGA-II and SPEA-II is very close 
to one another in the three-objective DTLZ1, 
DTLZ2, DTLZ4 and DTLZ7 problems. However, 
NSGA-II is better than SPEA-II once the number of 
objectives increases. From the CI values, the 
performance of COGA-II and SPEA-II is quite 
similar. In contrast, the performance of NSGA-II is 
significantly worse than that of them.  

Table 2: Parameter setting for NSGA-II, SPEA-II, and 
COGA-II. 

Parameter Setting and Values 

Test Problems DTLZ1-7 (Deb et al, 2005) 
with |xm| = 10  

Number of Objectives 3-6 

Chromosome coding Real-value chromosome 

Crossover method SBX crossover (Deb, 2001) 
with probability = 1.0 

Mutation method 

Variable-wise polynomial 
mutation (Deb, 2001) with 
probability = 1/number of 
decision variables. 

Population size 100 

Archive size (except NSGA-II) 100 

Number of generations 800 

Number of repeated runs 30 

Table 3: Summary of M1 of DTLZ1-7 with 3 objectives. 

Problem NSGA-II SPEA-II COGA-II 

DTLZ1 
Avg 0.0184 0.0197 0.0099 
SD 0.0494 0.0392 0.0300 

DTLZ2 
Avg 0.0090 0.0089 0.0033 
SD 0.0018 0.0014 0.0006 

DTLZ3 
Avg 0.0102 0.0324 0.0079 
SD 0.0133 0.0521 0.0115 

DTLZ4 
Avg 0.0088 0.0094 0.0026 
SD 0.0015 0.0018 0.0008 

DTLZ5 
Avg 0.0012 0.0010 0.0004 
SD 0.0003 0.0003 0.0001 

DTLZ6 
Avg 0.0641 0.1269 0.0369 
SD 0.0168 0.0331 0.0097 

DTLZ7 
Avg 0.0163 0.0162 0.0069 
SD 0.0034 0.0026 0.0014 

The number displayed in boldface is the best 
result while the underlined number is the second 
best result. 

Table 4: Summary of M1 of DTLZ1-7 with 4 objectives. 

Problem NSGA-II SPEA-II COGA-II 

DTLZ1 Avg 228.41 343.97 3.3139 
SD 105.49 56.344 4.8817 

DTLZ2 Avg 0.0395 0.0687 0.0054 
SD 0.0120 0.0201 0.0015 

DTLZ3 Avg 351.18 316.23 15.454 
SD 59.885 49.012 10.236 

DTLZ4 Avg 0.0416 0.1200 0.0043 
SD 0.0204 0.0276 0.0018 

DTLZ5 Avg 1.5054 1.5696 1.4583 
SD 0.0643 0.0627 0.0751 

DTLZ6 Avg 10.166 7.2514 4.6022 
SD 0.6209 0.4098 0.4689 

DTLZ7 Avg 0.1076 0.1082 0.0306 
SD 0.0093 0.0136 0.0047 
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Table 5: Summary of M1 of DTLZ1-7 with 5 objectives. 

Problem NSGA-II SPEA-II COGA-II 

DTLZ1 
Avg 836.17 956.50 28.118 
SD 89.932 68.417 24.311 

DTLZ2 
Avg 0.4600 1.3523 0.0108 
SD 0.0987 0.1092 0.0034 

DTLZ3 
Avg 843.19 1024.7 254.63 
SD 96.118 88.152 68.619 

DTLZ4 
Avg 1.2253 1.5949 0.0054 
SD 0.2204 0.0742 0.0017 

DTLZ5 
Avg 2.2099 2.3259 2.1381 
SD 0.0863 0.1088 0.0593 

DTLZ6 
Avg 14.370 15.287 6.5050 
SD 0.2809 0.1743 0.3127 

DTLZ7 
Avg 0.2236 0.3917 0.0652 
SD 0.0328 0.0590 0.0078 

Table 6: Summary of M1 of DTLZ1-7 with 6 objectives. 

Problem NSGA-II SPEA-II COGA-II 

DTLZ1 Avg 1114.0 1230.98 161.84 
SD 62.783 23.460 78.768 

DTLZ2 Avg 1.6093 2.2346 0.0237 
SD 0.1630 0.0308 0.0079 

DTLZ3 Avg 1223.3 1674.4 482.55 
SD 74.211 64.004 57.373 

DTLZ4 Avg 1.9653 2.2703 0.0088 
SD 0.0834 0.0268 0.0045 

DTLZ5 Avg 3.2738 4.5426 2.5996 
SD 0.2849 0.1072 0.0794 

DTLZ6 Avg 19.451 20.362 10.495 
SD 0.3376 0.2201 0.4016 

DTLZ7 Avg 0.4441 0.9042 0.0836 
SD 0.0664 0.1348 0.0127 

Table 7: Summary of CI of DTLZ1-7 with 3 objectives. 

Problem NSGA-II SPEA-II COGA-II 

DTLZ1 
Avg 0.5467 0.8420 0.8080 
SD 0.0411 0.0816 0.0551 

DTLZ2 
Avg 0.5880 0.8967 0.8440 
SD 0.0322 0.0234 0.0304 

DTLZ3 
Avg 0.5573 0.7673 0.7900 
SD 0.0264 0.0571 0.0574 

DTLZ4 
Avg 0.6153 0.8847 0.8473 
SD 0.0229 0.0249 0.0277 

DTLZ5 
Avg 0.7940 0.9200 0.8900 
SD 0.0267 0.0174 0.0217 

DTLZ6 
Avg 0.6533 0.7833 0.8360 
SD 0.0416 0.1088 0.0251 

DTLZ7 
Avg 0.5633 0.8340 0.8180 
SD 0.0282 0.0243 0.0307 

 

 

Table 8: Summary of CI of DTLZ1-7 with 4 objectives. 

Problem NSGA-II SPEA-II COGA-II 

DTLZ1 
Avg 0.4053 0.7253 0.7847 
SD 0.0588 0.0226 0.0646 

DTLZ2 
Avg 0.5213 0.8253 0.8220 
SD 0.0352 0.0326 0.0250 

DTLZ3 
Avg 0.4720 0.7427 0.7800 
SD 0.0509 0.0314 0.0638 

DTLZ4 
Avg 0.5513 0.7973 0.8067 
SD 0.0415 0.0289 0.0192 

DTLZ5 
Avg 0.5007 0.7693 0.7913 
SD 0.0284 0.0291 0.0252 

DTLZ6 
Avg 0.4980 0.7880 0.7587 
SD 0.0300 0.0307 0.0249 

DTLZ7 
Avg 0.5400 0.8187 0.7747 
SD 0.0270 0.0270 0.0344 

Table 9: Summary of CI of DTLZ1-7 with 5 objectives. 

Problem NSGA-II SPEA-II COGA-II 

DTLZ1 
Avg 0.4700 0.7400 0.7353 
SD 0.0358 0.0507 0.0557 

DTLZ2 
Avg 0.4367 0.7780 0.8327 
SD 0.0358 0.0351 0.0272 

DTLZ3 
Avg 0.4527 0.6813 0.7033 
SD 0.0427 0.0310 0.0976 

DTLZ4 
Avg 0.4827 0.7867 0.8153 
SD 0.0282 0.0270 0.0219 

DTLZ5 
Avg 0.4740 0.7620 0.7613 
SD 0.0321 0.0313 0.0292 

DTLZ6 
Avg 0.5053 0.8880 0.7607 
SD 0.0323 0.0175 0.0227 

DTLZ7 
Avg 0.5033 0.7793 0.7413 
SD 0.0209 0.0347 0.0373 

Table 10: Summary of CI of DTLZ1-7 with 6 objectives. 

Problem NSGA-II SPEA-II COGA-II 

DTLZ1 
Avg 0.4740 0.8353 0.7627 
SD 0.0478 0.0358 0.0432 

DTLZ2 
Avg 0.4653 0.8653 0.8320 
SD 0.0426 0.0213 0.0316 

DTLZ3 
Avg 0.4413 0.8047 0.7420 
SD 0.0240 0.0371 0.0448 

DTLZ4 
Avg 0.5077 0.8120 0.8147 
SD 0.0233 0.0263 0.0273 

DTLZ5 
Avg 0.4340 0.8420 0.8113 
SD 0.0228 0.0167 0.0326 

DTLZ6 
Avg 0.4973 0.8653 0.7593 
SD 0.0221 0.0265 0.0353 

DTLZ7 
Avg 0.5157 0.7620 0.7727 
SD 0.0327 0.0291 0.0307 
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Figure 3 shows uniformity of solutions from a 
run of DTLZ4 with 3 objectives from all algorithms. 
Obviously, SPEA-II and COGA-II yeild more 
diversity of solutions than NSGA-II. Figure 3 also 
shows that solutions from COGA-II are quit well 
uniform distribution.  

  
(a) NSGA-II, CI 

= 0.60 
(a) SPEA-II, CI = 

0.88 
(c) COGA-II, CI 

= 0.87 

Figure 3: Examples of solutions from a run of DTLZ4 
with 3 objectives of (a) NSGA-II, (b) SPEA-II, and 
(c) COGA-II. 

Graphs of average M1 versus number of function 
evaluations from all 30 runs from two selected 
problems – DTLZ2 and DTLZ6 are shown in Figure 
4 and Figure 5, respectively. All algorithms can 
search solutions that are close to the true Pareto front 
for the problems with 3 objectives with a close 
convergence rate. However for the problems with 4 
objectives, COGA-II clearly can search for solutions 
with a better convergence rate. The performance of 
COGA-II very obviously improves the NSGA-II and 
SPEA-II when graphs of average M1 versus number 
of function evaluations of the problems with 5-6 
objectives are considered. Surprisingly, solutions 
searched by NSGA-II and SPEA-II diverged from 
the true Pareto front for the DTLZ2 with 6 
objectives and DTLZ6 with 5 and 6 objectives if the 
number of function evaluations is increased.  
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(a) DTLZ2 – 3 Objectives 
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(b) DTLZ2 – 4 Objectives 
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(c) DTLZ2 – 3 Objectives 
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(d) DTLZ2 – 3 Objectives

Figure 4: Graphs of M1 vs. Number of Function 
Evaluations of DTLZ2 with 3-6 objecitves. 

Therefore solutions obtained by the algorithms 
are worse than solutions in the initial population. 
This shows that Pareto domination alone is not 
enough to solve problems with a large number of 
objectives. 
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(a) DTLZ6 – 3 Objectives 
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(b) DTLZ6 – 4 Objectives 
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(c) DTLZ6 – 5 Objectives
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(d) DTLZ6 – 6 Objectives

Figure 5: Graphs of M1 vs. Number of Function 
Evaluations of DTLZ2 with 3-6 objecitves. 

5 CONCLUSIONS 

This paper presents COGA-II which integrates 
preference notion into the process of non-dominated 
solution screening for Pareto front approximation in 
multi-objective problems with large number of 
objectives. A criterion for selecting a winner from 
the competition for survival between two non-
dominated solutions is thus defined. The proposed 
ranking technique is referred to as a winning score 
based ranking mechanism. The effectiveness of 
COGA-II has been compared in benchmark trials 
against those of NSGA-II and SPEA-II with multi-
objective DTLZ test problems. The performance 
evaluation criteria are an average distance between 
the non-dominated solutions and the true Pareto 
front (M1) [0] and a new clustering index (CI) for 
solution distribution description. In overall, the 
results indicate COGA-II are superior to NSGA-II 
and SPEA-II in terms of the M1 index while the 
solution distribution is comparable to that of SPEA-
II. COGA-II can also prevent solutions diverge from 
true Pareto solution that occur on NSGA-II and 
SPEA-II for problems with 5-6 objectives. Thus it 
can conclude that COGA-II is suitable for solving an 
optimization problem with large number of 
objectives. 
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