
 

INVESTIGATING REPLACEMENT STRATEGIES FOR THE 
ADAPTIVE DISSORTATIVE MATING GENETIC ALGORITHM 

Carlos M. Fernandes, Juan Julián Merelo 
Department of Computers’ Architecture, University of Granada, Granada, Spain 

Agostinho C. Rosa 
Department of Electrotechnics, Technical University of Lisbon, Lisbon, Portugal 

Keywords: Genetic algorithms, Dissortative mating, Dynamic optimization problems.  

Abstract: This paper investigates the effects of modifying the Adaptive Dissortative Mating Genetic Algorithm 
(ADMGA) replacement strategy on the performance of the algorithm in dynamic problems. ADMGA is a 
variation of the standard GA with a mating restriction based on the genotypic similarity of the individuals. 
Dissimilar individuals mate more often than expected by chance and, as a result, genetic diversity 
throughout the run is maintained at a higher level. ADMGA was previously tested in dynamic optimization 
problems with promising results: the algorithm shows to outperform standard GAs and state-of-the-art 
approaches on several problems and dynamics. However, the performance of the algorithm degrades when 
the frequency of changes increases. Due to the premises under which ADMGA was tested, it has been 
argued that the replacement strategy that emerges from the algorithm’s dissortative mating strategy may be 
harming the performance in such situations. This study proposes alternative replacement schemes with the 
objective of improving ADMGA’s performance on fast changing environments (without damaging the 
performance on slower ones). The strategies maintain the simplicity of the algorithm, i.e., the parameter set 
is not increased. The replacement schemes were tested in dynamic environments based on stationary 
functions with different characteristics, showing to improve standard ADMGA’s performance in fast 
dynamic problems.  

1 INTRODUCTION 

In the last two decades, Evolutionary Algorithms 
have been successfully applied in industrial 
problems, especially those with non-linearities and 
multiple objectives. However, real-world problems 
often have dynamic components that lead to 
(predictable or unpredictable) variations of the 
fitness function, i.e., the problem is defined by a 
time-varying fitness function. 

A problem is said to be dynamic when there is a 
change in the fitness function, problem instance or 
restrictions, thus making the optimum change as 
well. In each period of optimization, the fitness 
function is deterministic, but when changes occur, 
solutions already found may be no longer valid and 
the process must engage in a new search effort. 
Evolutionary Algorithms’ (EAs) self-adaptive 
characteristics make them promising candidates to 

solve this type of problems.  
Nowadays, these research efforts on evolutionary 

dynamic optimization are being mainly directed 
towards diversity maintenance techniques and 
memory schemes. There are other possible 
approaches, like reacting to changes (Cobb, 1990) 
when they occur, or using multi-populations (Branke 
et al., 2000), or even tackle the change with a new 
randomly generated population, but the performance 
of such kind of approaches is strongly dependent on 
the intensity of the changes — they perform better 
when changes affect a small percentage of the 
genotype’s variables — and, usually, require that the 
changes are easy to detect. Moreover, even if the 
change is easy to detect, it is hard to decide whether 
it is better to restart the population or continue the 
search with the same population after a shift in the 
environment. Thus, it is sometimes better to have an 
algorithm that is capable of continuously adapting 
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the solution to a changing environment — for 
instance, by reusing the information gained in the 
past via a memory. For a description of a possible 
set of categories to classify evolutionary approaches 
to dynamic problems, please refer to (Branke, 2001). 

Memory schemes (Goldberg & Smith, 1987; 
Ramsey & Grefenstette, 1998) may be very effective 
in some situations, and overcome some of the 
aforementioned difficulties but their utility is 
believed to be restricted to a certain type of 
dynamics — in general, memory is particularly 
useful when the dynamics of change is circular, i.e., 
the shape of the fitness landscape repeats from time 
to time. In addition, they require a considerable 
tuning effort and some parts of their design and 
implementation may be not trivial (Branke, 1999). 

Diversity maintenance techniques (Grefenstette, 
1992; Yang, 2008; Tinós & Yang, 2007; Fernandes 
et al., 2008c) usually slow down the convergence of 
the algorithm during the stationary periods, a 
characteristic that may harm the performance when 
the changes in the fitness function are separated by 
short periods of time (high frequency of changes). 
However, these approaches do not require, in 
general, any knowledge about the problem and 
neither its dynamics nor its performance is reported 
to be highly dependent on a specific configuration of 
the problem.  

A possible approach for designing diversity 
maintenance EAs for dynamic optimization is using 
mating restrictions based on the genotypes. 
Dissortative mating, for instance, which refers to 
mating strategies in which dissimilar individuals 
mate more often than expected by chance, may be 
inserted into to an EA and slow down the diversity 
loss. There are several EAs in the literature with 
such type of mating strategies. One of them is the 
Adaptive Dissortative Mating Genetic Algorithm 
(ADMGA), proposed by Fernandes and Rosa 
(2008a) and applied to dynamic optimization with 
promising results in (Fernandes & Rosa, 2008b; 
Fernandes, 2009). However, it has been observed 
that its performance degrades when the frequency of 
changes increases. One of the possible explanations 
for this behavior resides in the replacement strategy 
and the premises under which it is tested: since 
changes are assumed to be hard to detect, the 
algorithm reevaluates every solution that remains in 
the population after one generation (Please note that 
this is the worst case scenario; in many applications 
the changes may be detected with less computational 
effort).  

This problem arises because ADMGA’s 
population replacement procedure is a population-

wide elitist strategy (Thierens, 1999): parents and 
children compete and live in the same population. It 
has been shown (Fernandes, 2009) that if every old 
solution is reevaluated, then the average ratio 
between ADMGA’s new individuals and function 
evaluations, in each generation, is approximately ½. 
In addition, since the replacement strategy is elitist, 
it tends to reduce diversity. This may be slowing 
down ADMGA and the effect is much more 
pronounced with high frequency of changes because 
there are fewer evaluations them. 

This paper addresses this issue by proposing 
alternative replacement strategies that introduce 
diversity in the ADMGA’s parents’ subpopulation. 
Three different schemes are proposed: one in which 
the parents that remain in the population are first 
mutated and then reevaluated: Replacement Strategy 
2 (RS 2); another one that replaces the parents by 
mutated copies of the best individuals (RS 3); 
finally, a third scheme that is inspired by the 
Random Immigrants Genetic Algorithm (RIGA) 
(Grefenstette, 1992) and replaces the parents that 
remain in the population by randomly generated 
solutions (RS 4). The three strategies are tested in 
several dynamic problems designed with a dynamic 
problem generator (Yang, 2003). The results are 
compared to those attained by the standard 
ADMGA, here also described as Replacement 
Strategy 1 (RS 1). Then, the best strategy is 
compared with a standard Generational Genetic 
Algorithm (GGA) and with a recently proposed 
evolutionary approach for dynamic optimization, 
called Elitism-based Immigrants Genetic Algorithm 
(EIGA) (Yang, 2008). The results demonstrate that 
the best strategy (RS 2) is clearly capable of 
outperforming standard ADMGA on fast 
environments, without degrading its performance 
when the frequency is lower. The new algorithm 
increases the frequency value below which ADMGA 
is better than or equivalent to GGA and EIGA. 
Statistical tests are provided. 

The paper is structured as follows. The following 
section briefly describes the most relevant 
dissortative mating strategies found in literature. 
Section 3 describes ADMGA and introduces the new 
replacement strategies. Section 4 describes the 
experimental setup and Section 5 presents and 
discusses the results. Finally, Section 6 concludes 
the paper and outlines future lines of research. 

2 PREVIOUS WORK 

By considering merely the quality of the solutions 
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represented by the chromosomes when selecting 
individuals for mating purposes, the traditional GAs 
emulate what, in nature, is called random mating 
(Russel, 1998), i.e., mating chance is independent of 
genotypic or phenotypic distance between 
individuals. However, random mating is not the sole 
mechanism of sexual reproduction observed in 
nature. Outbreeding, assortative mating and 
dissortative mating (Russel, 1998) are all non-
random strategies frequently found in the behavior 
of natural species. These schemes have different 
effects on the genetic diversity of the population. 
Take for instance dissortative mating, which is 
known to increase the diversity of a population 
(Russel, 1998). Assortative mating, on the other 
hand, restricts mating between dissimilar individuals 
and leads to diversity loss. 

Therefore, dissortartive mating naturally came 
out in EAs’ research field as an inspiration for 
dealing with the problem of genetic diversity and 
premature convergence. A well-known GA with a 
dissortative mating strategy is the CHC (Eschelman, 
1991). CHC uses no mutation in the classical sense 
of the concept, but instead it increases the mutation 
probability when the best fitness does not change 
after a certain number of generations. A 
reproduction restriction assures that selected pairs of 
chromosomes will reproduce unless their Hamming 
Distance is above a certain threshold, that is, the 
algorithm restricts crossover between similar 
individuals. Another possible way of inserting 
assortative or dissortative mating into a GA is 
described in (Fernandes & Rosa, 2001). The 
negative Assortative Mating GA (nAMGA) selects, 
in each recombination event, one parent, by any 
method. Then, it selects a pool of  individuals — 
the size of the pool controls the intensity of mating 
restriction — and computes the Hamming distance 
between those chromosomes and the first parent. 
The individual less similar to the first parent is 
selected for recombination. Although nAMGA’s 
results are interesting, the size of the pool is critical 
to its performance and hard to tune.  

Ochoa et al. (2005) carried out an idea related 
with nAMGA in a dynamic optimization framework. 
Assortative and dissortative GAs are used to solve a 
dynamic knapsack problem. The results show that 
dissortative mating is more able to track solutions, 
while a standard GA often fails to track them. The 
assortative GA is the worst algorithm in the test set. 
The authors also discuss the optimal mutation 
probability for different strategies, concluding that 
the optimal value increases when the strategy goes 
from dissortative to assortative. In this line of work, 

there is also a study by Ochoa et al. (2006) on the 
error threshold of replication in GAs with different 
mating strategies that aims at shedding some light 
into the relationship between mutation probabilities 
and mating strategies in EAs. The report reinforces 
the idea that any experimental study on non-random 
mating strategies for EAs must take into account 
several mutation probability values; otherwise, the 
results are probably biased towards a specific 
strategy.  

Besides the above-referred techniques, a large 
number of other GAs with non-random mating are 
found in the literature. Due to their characteristics, 
these GAs are worthwhile exploring as diversity 
maintenance schemes for dynamic optimization.  

3 ADMGA AND REPLACEMENT 
STRATEGIES 

There are many possible replacement strategies1 for 
GAs but, in general, they may be classified into two 
categories: generational and elitist. Generational 
GAs replace the entire parents’ population by the 
children; in elitist strategies, offspring has to 
compete with their parents. ADMGA, due to its 
specific design, is a population-wide elitist strategy 
(Thierens, 1999). This means that some individuals 
may remain in the population for more than one 
generation. Since changes in non-stationary 
functions are not always easy to detect, the most 
reliable way to guarantee that a fitness value does 
not become outdated by a change in the environment 
is to reevaluate all the chromosomes that remain in 
the population after reproduction. Assuming this 
worst case scenario does not affect generational 
GAs, because the entire population is replaced by 
the offspring in each generation, and ݊ fitness values 
must be always computed — where ݊ is the 
population size —, independently of the premises. 

As for an elitist GA, assuming that changes are 
very hard to detect means that old individuals must 
be reevaluated and that the average ratio between 
new solutions and function evaluations, in each 
generation, is below 1. In the particular case of 
ADMGA, it has been shown (Fernandes, 2009) for 
several problems that this ratio is approximately ½, 
meaning that, ADMGA generates only half of the 
solutions that a standard generational GA is able to 

 
1We call replacement strategy to the procedure that, from the 
population of parents P(t) and the population of offspring P’(t), 
selects the individuals that form the population P(t+1) and then 
replace population P(t).  
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generate in the same period of time. This may be 
particularly penalizing when the frequency of 
changes is high, and, in fact, ADMGA’s 
performance has been shown to degrade in those 
situations. The question is: is it possible to improve 
ADMGA’s performance in fast dynamic problems 
by changing the replacement strategy in a way that 
those reevaluations are accompanied by the 
introduction of new genetic material in the 
population? To assess this hypothesis, we test three 
alternative replacement strategies. Before discussing 
them, let us describe the main algorithm. 

ADMGA is a self-regulated dissortative mating 
EA, which incorporates an adaptive Hamming 
distance mating restriction that tends to relax as the 
search process advances. After two parents are 
selected, crossover only occurs if the Hamming 
distance between them is found to be above a 
threshold value. If not, the recombination event is 
classified as failed and another pair of individuals is 
selected until ݊ 2⁄  pair have tried to recombine (݊ is 
the population size). 

ADMGA 
initialize population P(t) with size N 
evaluate population P(t) 
set initial threshold ts(0) 
while (not termination condition) 
   create new individuals P’(t) 
   evaluate new individuals P’ (t) 
   create new population        // see figure 2 
end while 

Procedure: create new individuals 
matingEvents ← ݊/2; 
successfulMating ← 0; 
failedMating ← 0 
while (successfulMatings < 1) do 
   for (i ← 1 to matingEvents)  do 
      select two chromosomes (c1, c2) 
      compute Hamming distance H(c1, c2) 
      if (H(c1, c2) >= ts(t)) 
              crossover and mutate 
         successfulMating ← successfulMating+1 
      end if 
      if (H(c1, c2) < ts(t))  failedMating 
←failedlMating+1 
   end for 
   if (failedMating > successfulMating)  ts(t+1)← ts(t)-
1 
   else       ts(t+1) ← ts(t)+1 
end while 

Figure 1: ADMGA’s pseudo-code. 

After the reproduction cycle is completed, a new 
population is created by selecting the ݊ members 
amongst the parents and newly generated offspring. 

Then, the threshold is incremented when the number 
of successful matings is greater or equal than the 
number of failed matings, and it is decremented 
otherwise (see pseudo-code in figure 1). This way, 
the genetic diversity indirectly controls the threshold 
value. When diversity is decreased, threshold tends 
to be decremented because the frequency of 
unsuccessful mating will necessarily increase. 
However, mutation introduces variability in the 
population, resulting in occasional increments of the 
threshold that moves it away from 0. The only 
parameters that need to be tuned in ADMGA is 
population size ݊ and mutation probability . 
Crossover probability is not used (in a way,  is 
somewhat adaptive, because selected individuals 
recombine or not depending on their Hamming 
distance and the threshold value). As for the 
threshold, ADMGA has shown to be capable of self-
adapting its value in the first generation, and 
therefore threshold may be set to its highest possible 
value (݈ െ 1, where ݈ is the chromosome length) in 
the beginning of the run. However, in order to avoid 
initial generations in which the ratio between new 
individuals and function evaluations is very low, an 
initial threshold value of ݈ 4⁄  is used when 
optimizing non-stationary functions. 

RS 1 
insert best  െ   individuals from P(t) into P’(t) ’
P(t+1) ← P’(t)´ 
 is the size of P’(t) ’ is the size o P(t) and  //

RS 2
insert mutated best  െ  individuals from P(t) into ’
P’(t)  
P(t+1) ← P’(t) 

RS 3 
insert  െ  copies of mutated best from P(t) into ’
P’(t)  
P(t+1) ← P’(t) 

RS 4 
insert  െ   random solutions into P’(t) ’
P(t+1) ← P’(t) 

Figure 2: ADMGA’s create new population procedure: 
replacement strategies (RS). 

DMGA was tested in dynamic optimization 
problems and it showed to outperform a standard 
generationl GA, a standard population-wide elitist 
GA, RIGA, EIGA and the Self-Organized Criticality 
RIGA (SORIGA) (Tinós & Yang, 2007) on several 
problems and dynamics (Fernandes, 2009). 
However, when the frequency of changes is high, 
ADGMA’s performance when compared to the other 
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algorithms diminishes. In order to overcome this 
difficulty, three different replacement strategies are 
introduced. Figure 2 describes these replacement 
strategies, as well as the original scheme used for 
dynamic optimization (RS 1). Please note that every 
strategy inserts the offspring into the new 
population. The differences reside in the way in 
which the remaining slots are occupied — that is, 
݊ െ ݊Ԣ slots, where ݊ is the population size and ݊’ is 
the offspring population size. 

Replacement strategy 1 (RS 1) — original 
ADMGA’s strategy — inserts the ݊ െ ݊Ԣ best 
individuals from the parents’ population into the 
new population. Replacement strategy 2 (RS 2) fills 
up the remaining slots with mutated copies of the 
݊ െ ݊’ best individuals in parents’ population (with 
mutation probability ). Replacement strategy 3 
(RS 3) inserts ݊ െ ݊’ mutated copies of the best 
solution. Finally, strategy 4 (RS 4) inserts random 
immigrants — i.e., randomly generated genotypes 
— into the vacant slots. The following section 
describes the problems used to test the efficiency of 
the algorithms. 

4 EXPERIMENTAL SETUP 

The experiments were conducted with dynamic 
versions of an order-3 trap function, an onemax 
problem and the 0 െ 1 knapsack problem. This way 
we have, in the test set, a simple linear function 
(onemax), a quasi-deceptive trap function (order-3 
trap) and a combinatorial problem (knapsack). The 
stationary functions were then used to construct 
dynamic versions via the dynamic problem 
generator proposed in (Yang, 2003) This section 
describes the stationary functions, the dynamic 
problem generator, and the methodology followed 
during the experiments. 

The knapsack version used in these experiments 
is described in (Yang & Yao, 2005). The function 
has a global optimum with fitness 1853 (since the 
weights are non-negative integers the global 
optimum can be obtained with dynamic 
programming). A trap function is a piecewise-linear 
function defined on unitation (the number of ones in 
a binary string) that has two distinct regions in the 
search space, one leading to a global optimum and 
the other leading to the local optimum. Depending 
on its parameters, trap functions may be deceptive or 
not. The traps in this study are defined by: 

Ԧሻݔሺݑሺܨ ൌ ൜
݇, Ԧሻݔሺݑ ݂݅ ൌ ݇ 

݇ െ 1 െ ,Ԧሻݔሺݑ ݁ݏ݅ݓݎ݄݁ݐ
 (1)

where u(ݔԦ) is the unitation function and ݇ is the 
problem size (and also the fitness of the global 
optimum). With this equation, order-  traps are in 
the region between deceptive and non-deceptive. For 
this study, a 30 bit problem was constructed by 
concatenating 10 order-3 subproblems. The fitness 
of the global optimum is 30. Finally, the onemax is a 
simple linear problem that consists in maximising 
the number of ones in a binary string. For the 
experiments, we used a 100-bit problem. 

The test environment proposed in (Yang, 2003) 
was then used to create a dynamic experimental 
setup based on the functions described above. This 
problem generator has two parameters that control 
the severity of the changes and their frequency: ߩ is 
a value between 0 and 1.0 which controls the 
severity of change and ߬ defines number of 
generations between changes. By changing ߩ and ߬ 
it is possible to control two of the most important 
features when testing algorithms on dynamic 
optimization problems: severity (ߩ) and period (߬ሻ 
— i.e., 1 ߬⁄  is the frequency — between changes 
(Angeline, 1997). In order to evaluate an algorithm’s 
configuration when solving a specific problem, the 
offline performance (Tinós & Yang, 2007) — i.e., 
the best-of-generation fitness values averaged over 
the total number of runs and over the data gathering 
period — is first examined: 

ீതതതതതܨ ൌ
1
G
ൈቌ

1
R
ൈܨீ

ோ

ୀଵ

ቍ

ீ

ୀଵ

 (2)

where ܩ is the number of generations, ܴ is the 
number of runs (30 in all the experiments) and ܨீ 
is the best-of-generation fitness of generation ݅ of 
run ݆ of an algorithm on a specific problem.  This 
value gives information on how close the GAs are 
able to track the moving solution. 

Problem generator’s parameter ߬ defines the 
number of generations between each change. 
Because this value, if provided without the 
population size ݊, does give us enough information 
on the real period between changes, in this paper we 
use the number of evaluations between each change 
ሺߝሻ. This does not affect the generator because if 
every individual in population (with size ݊) is 
evaluated in each generation ݐ, then ߬ ൌ ߝ/݊. 

For each one of the stationary problems, five 
different dynamic scenarios were constructed by 
setting ߝ to 600, 1200, 2400, 4800, 9600, 19200 and 
38400. As for the severity (ߩ) value, it is randomly 
generated in each time the function changes. The 
scope of this investigation is the performance 
according to the frequency of changes, and therefore 
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setting ߩ to random values simplifies the analysis. 
Every run covered 50 periods of change, i.e., 50 ൈ  ߝ
evaluations, with changes every ߝ evaluations. 

A GA has several parameters that model their 
general behavior. We are particularly interested in 
GAs’ performance when varying the mutation 
probability, because evolutionary approaches that 
work by maintaining population diversity at a higher 
level during the search may be shifting the optimal 
mutation probability to different values. For 
instance, and as stated above, it has been 
demonstrated that dissortative and assortative mating 
increase and decrease, respectively, the optimal 
mutation probability of a GA. Therefore, it is of 
extreme importance to test the GAs under a 
reasonable range of values, otherwise the results 
may become biased toward some of the approaches. 
Probability values were set to 1/ሺ2 ൈ ݈ሻ, 1/݈, 2/݈ 
and 4/݈. 

The population size ሺ݊ሻ also affects the 
performance of the GAs, not only on static 
problems, but also in dynamic environments. 
Knowing the optimal size is important for 
determining with accuracy the scalability of a GA 
and to avoid superfluous computation effort due to a 
population larger than the optimal. Although this 
investigation does not aim at studying scalability or 
finding the optimal population size for each 
problem, a proper research method must test 
different ݊ values, otherwise there is a risk of 
comparing suboptimal parameter settings and, 
consequently, getting invalid conclusions. In this 
study, all the algorithms were tested with ݊  ൌ  8, 
16, 30, 60 and 120.  

As for crossover, uniform crossover was chosen 
in order to avoid taking advantage of the trap 
function building blocks tight linkage, which 
happens when using other traditional operators such 
as one- or two-point crossover. Every algorithm in 
the test set uses binary tournament (tournament size 
2 is in general a fairly good selective pressure for 
most problem (Thierens, 1999)). 

The ADMGA versions were compared with 
GGA and EIGA. EIGA is a very simple scheme that 
in each generation replaces a fraction ݎ of the 
population by mutated copies of the best solution of 
the previous generation (with mutation 
probability  ). The author shows that the algorithm 
is more effective when the changes are not too 
severe. Due to its simplicity and the interesting 
results reported in (Yang, 2008), EIGA was selected 
as the main peer-algorithm for this study. In 
addition, EIGA has some similarities with one of the 
replacement strategies proposed in this paper to 

improve ADMGA’s performance, which makes in a 
suitable candidate for being included in the test set.  

EIGA and ADMGA’s RS 4 are inspired by the 
Random Immigrants GA (RIGA) (Grefenstette, 
1992), which maintains diversity by introducing ݎ 
random solutions in the population in each 
generation, thus guarantying that brand new genetic 
material enters the population in every time step. 
Although RIGA is a kind of standard GA for 
evolutionary dynamic optimization experiments, the 
results in (Fernandes & Rosa, 2008b) and (Yang, 
2008) show that ADMGA and EIGA are able to 
clearly outperform RIGA in most of the dynamic 
scenarios. Therefore, we chose to remove the 
algorithm from the test set in order to simplify the 
study and the report. Moreover, RS 4 was found to 
be the worst replacement strategy in the test set, 
being unable to deal with the proposed dynamic 
problems. RS 4 is not a proper strategy for ADMGA 
and therefore, in order to simplify the graphics, it 
was removed from analysis and discussion in section 
5. 

GGA was tested with crossover probability set to 
0.7 and 1.0. A 2-elitist GGA was also tested. The 
best results were attained with  ൌ  1.0 and 2-
elitism. Like the other algorithms, EIGA was also 
tested with several values;  is set to 0.6 (as 
suggested in (Yang, 2008)), 0.7 and 1.0; ݎ is set 0.2 
(also, as suggested in (Yang, 2008)). Please note that 
due to its design, EIGA population size ݊כ must set 
so that ሺ1  ሻݎ ൈ כ݊ ൌ ݊, where ݊ is the population 
size of a standard GA that would perform the same 
number of function evaluations in each generation. 
EIGA was tested with different ݊כ values and the 
results discussed in the following section refer 
always to the best configurations. Please refer to 
(Yang, 2008) for details on this particular issue and 
on the algorithm’s implementation and parameter 
tuning. 

 

Figure 3: Experimental results with order-3 trap function. 
Standard ADMGA compared with GGA and EIGA. 
Population size ݊  ൌ  ;30  ൌ  1 ݈⁄  (GGA) and  ൌ
 2 ݈⁄  (EIGA and ADMGA);  ൌ  1.0; GGA with 2-
elitism.
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Figure 4: ADMGA replacement strategies in onemax, order-3 trap and knapsack dynamic problems. Population size: 
݊  ൌ  16 (onemax) and ݊  ൌ  30 (trap and knapsack); ݉  ൌ  2/݈ (RS 1) and ݉  ൌ  1/݈ (RS 2 and RS 3). RS 2 with 2-
elitism. 

5 RESULTS AND DISCUSSION 

Figure 3 illustrates the issue addressed by this study. 
ADMGA only outperforms the other GAs when ߝ is 
above a specific value. In the order-3 dynamic 
problem, ADMGA is clearly outperformed by the 
other algorithms when ߝ  ൏  4800 — an assumption 
confirmed by statistical tests. The main objective is 
to find a replacement strategy for ADMGA that 
reduces this value. Figure 4 summarizes the results 
attained by the different versions of ADMGA by 
showing the configurations with ݊ and values that 
maximize the performance of each replacement 
strategy.  

The graphics show that RS 2 is capable of 
outperforming standard ADMGA (RS 1) in the high 
frequency scenarios. Replacement strategy 3, which 
introduces mutated copies of the best individual in 
the population, works well in the onemax problem, 
but it is outperformed by the other strategies in most 
of the dynamic scenarios based on the other two 
functions. (RS 2 is 2-elitist, because this improves 
its performance. Please note that RS 2 is quite 
disruptive. This the payoff for having diversity 
maintenance mechanisms, but the elitism guarantees 
that the best solutions are not lost.) 

Table 1: Kolmogorov-Smirnov tests (RS 2 vs RS1). 
Results are shown as + signs when ADMGA with RS 2 is 
significantly better than the ADMGA with RS 1, − when 
RS 2 is significantly worst, and ≈ when the differences are 
not statistically significant. Parameters as in fig. 4. 

ε→ 600 1200 2400 4800 9600 19200 38400 

onemax + + + + ≈ ≈ ≈ 

trap + + + + + + + 

knapsack + + + + + + + 

 

Table 1 summarizes the statistical tests conducted 
on these results. RS 2 is compared with RS 1 using 
Kolmogorov-Smirnov tests with 0.05 level of 
significance. The tests show that RS 2 clearly 
outperforms standard ADMGA (RS 1) in most of the 
problems. The first objective of this study has been 
accomplished: one of the schemes is able to improve 
ADMGA’s performance in fast dynamic problems. 
Let us now compare RS 2 with the other GAs.  
Figure 5 compares ADMGA (RS 2) with GGA and 
EIGA. As already stated, GGA and EIGA were 
thoroughly tested in order to avoid unfair 
comparisons. GGA works better with  ൌ  1.0 and 
2-elitism. Best population size is ݊  ൌ  16 for 
onemax, and ݊  ൌ  30 for order-3 trap and knapsack 
(same values were found for the remaining 
algorithms). In general,GGA’s performance is 
optimized by  ൌ  1 ݈⁄  except with knapsack, where 
the best is  ൌ  2 ݈⁄ . 

Table 2: Kolmogorov-Smirnov tests (RS 2 vs GGA). The 
results are shown as + signs when ADMGA with RS 2 is 
significantly better than GGA, − when RS 2 is 
significantly worst, and ≈ when the differences are not 
statistically significant. Parameters as in figure 5. 

ε→ 600 1200 2400 4800 9600 19200 38400 

onemax − − ≈ ≈ ≈ ≈ ≈ 

trap ≈ ≈ + + + + + 

knapsack − − ≈ ≈ ≈ + + 

 
Figure 5 and table 2 shows that for ߝ    2400, 

ADMGA is never outperformed by GGA. In 
particular, the ߝ value above which ADMGA is at 
least equivalent to GGA decreases from 4800 to 600 
in order-3 trap (compare figures 3 and 5). Table 3 
compares ADMGA with the standard strategy (RS
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Figure 5: ADMGA (RS 2), GGA and EIGA. Parameters as in fig. 3 and 4. Population size n = 16 (onemax) and n = 30 
(order-3 and knapsack). GGA with  ൌ  1 ݈⁄  (onemax and trap) and  ൌ  2 ݈⁄  (knapsack). EIGA with  ൌ  2 ݈⁄  and 
ݎ ൌ  0.2. 

1) and GGA. By comparing tables 2 and 3, it is 
noticeable that RS 2 reduces the ߝ above which 
ADMGA is significantly better or at least 
statistically equivalent to GGA in the dynamic 
scenarios of the three base functions. 

If we compare ADMGA’s replacement strategy 2 
with EIGA the conclusions are similar: see figure 5 
and table 4. EIGA performs better than ADMGA in 
fast onemax problem and knapsack problems. On 
the other hand, EIGA is outperformed by ADMGA 
in almost every order-3 trap dynamic problem. 
(Please note that in (Yang, 2008), EIGA is tested 
with ߝ  ൌ  1200 and ߝ  ൌ  6000, a range that is 
covered by the experiments conducted for this 
paper).  

Table 3: Kolmogorov-Smirnov tests (RS 1 vs GGA). The 
results are shown as + signs when ADMGA with RS 1 is 
significantly better than GGA, − when RS 1 is 
significantly worst, and ≈ when the differences are not 
statistically significant. Parameters as in figures 4 and 5. 

ε→ 600 1200 2400 4800 9600 19200 38400 

onemax − − − − ≈ ≈ ≈ 

trap − − − ≈ + + + 

knapsack − − − − − ≈ + 

As stated above, the comparisons in this study 
were made considering the worst-case scenario, i.e., 
changes are hard to detect and a reliable detection 
requires the reavaluation of the chromosomes that 
are copied from previous generations. However, we 
may consider a different assumption: changes are 
easy to detect and all that is required is to evaluate 
every old chromosomes after a change is detected. 
Under these conditions, the results are different. The 
summarized outcome of EIGA and ADMGA is 
shown in Table 5: ADMGA clearly outperforms 
EIGA in almost every dynamic problem. However, 

at this point we cannot exclude the possibility of 
population-wide elitism may now be biasing the 
results towards ADMGA; therefore, other 
experiments must be devised in order to properly 
compare the GAs. 

Figure 6 compares the genetic diversity, as 
defined in (Fernandes, 2009), of the different 
strategies. RS 2 is able to maintain diversity at a 
higher level during the different periods. On the 
other hand, the highly elitist strategy 3, as expected, 
decreases the diversity when compared to the 
standard strategy. These results may explain the 
general behavior of the replacement strategies. Since 
RS 2 is able to reduce diversity loss, it attains better 
results throughout the test set. 

6 CONCLUSIONS 

This paper proposes new replacement schemes for 
Adaptive Dissortative Mating Genetic Algorithm 
(ADMGA). The main objective is to improve 
standard ADMGA’s performance in dynamic 
problems with high frequency of changes. One of 
the proposed strategies outperforms the standard 
strategy in most of the dynamic scenarios designed 
to test the algorithms. This new strategy (RS 2) 
simply mutates the chromosomes that remain in the 
population after the recombination stage — the best 
݊ െ ݊’ solutions in the parents’ population, where ݊ 
is the population size and ݊’ is the offspring 
population size — before reevaluating them. 

The results show that ADMGA is capable of 
outperforming not only a standard GA, but also the 
Elitism-based Immigrants GA (EIGA) in some 
classes of problems and dynamics: 1) when the 
frequency of changes is lower, ADMGA is never 
outperformed by the other GAs; 2) as for higher 
frequencies, ADMGA is never outperformed by 
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GGA and EIGA in order-3 trap functions. Finally, 
preliminary tests with non-stationary environments 
in which the changes are easy to detect show that 
ADMGA is able to outperform EIGA in every 
(except one) scenario.  

Table 4: Kolmogorov-Smirnov tests (RS 2 vs EIGA). The 
results of the test are shown as + signs when ADMGA 
with RS 2 is significantly better than EIGA, − when RS 2 
is significantly worst, and ≈ when the differences are not 
statistically significant. Parameters as in figure 5. 

ε→ 600 1200 2400 4800 9600 19200 38400 

onemax − − − ≈ ≈ ≈ ≈ 

trap ≈ ≈ + + + + + 

knapsack − − ≈ ≈ ≈ ≈ ≈ 

One of ADMGA’s advantages over other GAs is 
that it only requires two parameters that need to be 
tuned (݊ and ), while EIGA, for instance, requires 
the setting of four parameters (݊, , and ݅ݎ). 
Since EIGA has been recently proposed as a GA 
specifically conceived for dynamic optimization, 
and since the report in (Yang, 2008) claims that the 
algorithm performs well on dynamic, we may state 
that ADMGA is a viable strategy for tackling 
dynamic optimization problems. 

 

Figure 6: RS 1, 2 and 3 genetic diversity. Dynamic order-3 
trap function with ߝ  ൌ  2400. Parameters as in figure 4. 

Table 5: Kolmogorov-Smirnov tests (RS 2 vs EIGA). The 
results of the test are shown as + signs when ADMGA 
with RS 2 is significantly better than EIGA, − when RS 2 
is significantly worst, and ≈ when the differences are not 
statistically significant. Parameters as in figure 5. 

ε→ 600 1200 2400 4800 9600 19200 38400 

onemax + + + + + + ≈ 

trap + + + + + + + 

knapsack + + + + + + + 
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