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Abstract: The Multiple-Criteria Evidence Accumulation Clustering (Multi-EAC) method, is a clustering ensemble ap-
proach with an integrated cluster stability criterion used to selectively learn the similarity from a collection
of different clustering algorithms. In this work we analyze the original Multi-EAC criterion in the context of
the classical relative validation criteria, and propose alternative cluster validation indices for the selection of
clusters based on pairwise similarities. Taking several clustering ensemble construction strategies as context,
we compare the adequacy of each criterion and provide guidelines for its application. Experimental results on
benchmark data sets show the proposed concepts.

1 INTRODUCTION

A recent trend in clustering, that constitutes the state-
of-the art in the area, are clustering combination
techniques (also called clustering ensemble methods)
(Fred, 2001; Fred and Jain, 2005; Strehl and Ghosh,
2002; Fern and Brodley, 2004; Topchy et al., 2005;
Ayad and Kamel, 2008). These methods attempt to
find better and more robust partitioning of the data by
combining the information of a set ofN different par-
titions, theclustering ensemble- P.

In (Fred and Jain, 2006) the authors proposed
the Multi-Criteria Evidence Accumulation Cluster-
ing (Multi-EAC) method as an extension to the EAC
framework (Fred, 2001; Fred and Jain, 2005), filter-
ing the cluster combination process using a cluster
stability criterion. Instead of using the information
of the different partitions, it is assumed that, since
algorithms can have different levels of performance
in different regions of the space, only certain clusters
should be considered. This algorithm selectively de-
cides on the expertise level of each algorithm over the
several regions of the space, highest local expertise
overriding less confident decisions, and low exper-
tise decisions being totally ignored in the combination
process.

In this paper we focus on the shift of paradigm -
from partition to cluster level validation. We propose
to further explore the stability criteria proposed in the
framework of the Multi-EAC, contextualizing it on

the classical relative validation criteria.
Using this motivation we propose some cluster

validation criteria, which validate each of the clusters
in a data partition. With the proposed criteria we go
beyond the classical problem of partition validation,
focusing our goal in evaluating the quality of individ-
ual clusters. Furthermore we adapt these criteria to
pairwise similarities, evaluating them in the context
of the Multi-EAC algorithm.

The remainder of this document is organized as
follows. In the next section we review the classi-
cal clustering validity criteria used to assess the qual-
ity of partitions relative to each other, contextualizing
the present work on previous works. In section 3 we
briefly review the clustering combination techniques
and the Multi-EAC paradigm. We propose new cri-
teria for cluster validation, in section 4, shifting the
paradigm from partition to individual cluster analy-
sis. The proposed formulation is based on pairwise
similarities instead of feature-based object represen-
tations. In section 5 we apply the proposed indices
in the context of Multi-EAC method. In section 6 we
present the experimental setup and results over bench-
mark and real data-sets. Finally in section 7 we draw
some conclusions and present future work.
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2 RELATED WORK

The problem of evaluation/comparison of clustering
results as well as deciding the number of clusters bet-
ter fitting the data is fundamental in cluster analysis
and it has been subject of many research studies (Jain
and Dubes, 1988; Dubes and Jain, 1979; Levine and
Domany, 2000; Halkidi et al., 2002a; Halkidi et al.,
2002b; Verma and Meila, 2003).

In the literature there are various methods for
quantitative evaluation of clustering results known
under the name ofclustering validationor evaluation
techniques. Measures or indices of cluster validity are
classically divided into three types: A) External; B)
Internal; C) Relative. For more details consult (Jain
and Dubes, 1988; Sergios Theodoridis, 1999; Halkidi
et al., 2002a).

In this paper we evaluate the clustering structure,
focusing onRelative criteriaand cross-validation.

The basic idea ofRelative criteria is the evalu-
ation of the clustering structure by comparing it to
other clustering schemes, resulting from the same
algorithm but with different parameter values, or
from other algorithms. Many different indices have
been proposed in the literature, such as the Silhou-
ette (Rousseeuw, 1987), Dunn’s Index, Davies and
Bouldin (Jain and Dubes, 1988) (Halkidi et al., 2001).
Most of them are geometrical motivated and estimate
how compact and well separated the clusters are.

Our approach builds over this indices but instead
of validating all the partition, we consider each cluster
independently.

Other approaches to clustering validation include
variants of cross-validation (Jain and Moreau, 1987;
Levine and Domany, 2000; Ben-Hur et al., 2002; Roth
et al., 2002), where, unlike classical cross-validation
(used in supervised classification), no class informa-
tion is required. Several related procedures have also
been proposed for inferring the number of clusters
(Lange et al., 2002). These techniques focus on an-
alyzing the stability of the solution and can be cat-
egorized in the internal validity criteria for clustering
validation, not requiring any kind ofa priori informa-
tion. Methods adopting this approach use different re-
sampling schemes to simulate perturbations over the
original data-set, so as to assess the stability of the
clustering results with respect to sampling variability.
Partitioning results that are more robust (i.e., with mi-
nor cluster assignment changes) with respect to the
data perturbation are chosen as the most consistent
and better solutions.

The Multi-EAC uses this last class of techniques,
using sub-sampling to assess the stability of pairwise
co-associations.

3 CLUSTERING ENSEMBLE
METHODS AND MULTI-EAC

Clustering ensemble methods can be decomposed
into a cluster generation mechanism and a partition
integration process, both influencing the quality of
the combination results. Different approaches have
been followed for the production of the clustering en-
semble, involving different proximity measures, al-
gorithms, initializations, and features spaces. For
the combination process there are also diverse ap-
proaches, from graph-based (Strehl and Ghosh, 2002;
Fern and Brodley, 2004), voting or statistical perspec-
tives (Fred, 2001; Fred and Jain, 2005; Topchy et al.,
2005; Ayad and Kamel, 2008). Overall, the several
methods equally weight clusters belonging to an in-
dividual partition, as schematically plotted in figure
1.

Figure 1: Schematic description of a clustering ensemble
method.

Fred and Jain (Fred and Jain, 2005; Fred, 2001)
proposed a statistical method of combination, the Ev-
idence Accumulation Clustering (EAC), based on co-
occurrences of pairs of objects in the same clusters,
which can be interpreted as pairwise votes, over theN
different partitions of the clustering ensemble. This is
a robust combination method that additionally to the
combined partition,P∗, produces as intermediate re-
sult a learned pairwise similarity, summarizing max-
imum likelihood estimates of pairwise co-occurence
probabilities, as assessed from the clustering ensem-
ble (see figure 2).

In (Fred and Jain, 2006) the authors proposed
Multi-Criteria Evidence Accumulation Clustering
(Multi-EAC) method as an extension of the EAC
framework, filtering the cluster combination process
(see figure 3) using a cluster stability criterion. In-
stead of using all the pairwise co-associations, it is
assumed that, since algorithms can have different lev-
els of performance in different regions of the space,
only certain pairwise co-associations should be con-
sidered. Its selection is assessed through a stability
criterion based on subsampling.

The method relies on two stages: the first stage
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Figure 2: The main phases in the EAC method. The
data partitions of the Clustering Ensemble (CE) are com-
bined accumulating the pairwise co-associations over the
co-association matrix,C .

Figure 3: Evidence Accumulation under the Multi-EAC
framework: filtering the cluster combination process.

aims at learning, for each algorithm, what are the re-
gions where it performs well, that is, it selective learns
clusters based on a sub-sampling and ensemble com-
bination approach; the second stage integrates this in-
formation, combining the selected clusters.

Lets us defineclustering algorithm instantiation
the tuple formed by a clustering algorithm and a par-
ticular instantiation of the corresponding algorithmic
parameters. Hereafter, for simplicity, we refer by al-
gorithm l , denoted byAlgl , one such clustering algo-
rithm instantiation.

The identification of the regions where a partic-
ular algorithm,Algl , performs well is based on sta-
bility analysis over combination results obtained by
applying the EAC method (Fred and Jain, 2005) on
perturbed versions of the data-set, obtained through
sub-sampling.

Let X = {x1,x2, . . . ,xns} represent a data-set with
ns observations, andXsubi be a sub-sampling version
of the data set, by randomly selecting (without repo-
sition) b samples from X, (b< ns). In total, there are
(ns

b

)

different sub-sampling versions of the data-set.
EachXsubi is clustered usingAlgl , yielding the

partitionPl
i . GivenN such perturbed versions of the

data set, through algorithmAlgl we obtain a cluster-
ing ensemble CEl . These partitions are combined us-
ing the EAC method, accumulating the pairwise evi-
dence over the co-association matrix,C l , whose en-
tries are defined by:

C
l (i, j) = ni j /mi j , (1)

whereni j is the number of co-associations of the pair
(i, j), andmi j the number of subsampling experiments
where this pair is present. Note that the subscriptl
indicates that this matrix was obtained according to
algorithm Algl . For extracting clusters obtained by
this algorithm, any clustering algorithm that accepts
a similarity matrix (the co-association matrix) as in-
put can be applied. Typically the Single Link or Av-
erage Link agglomerative hierarchical methods (Jain
and Dubes, 1988) are used.

In order to identify the different levels of local per-
formance of the algorithm, the stability of each of the
extracted cluster is computed using the co-association
values of that cluster (denoted byCk), according to:

stabCk = ∑
i, j∈Ck, j 6=i

C (i, j)
(nk)(nk−1)

, (2)

wherenk is the number of objects inCk, correspond-
ing to average pairwise stability of clusterCk.

Only clusters having stability values higher than a
specified threshold,th, areselected; thus the method
selectively learns pairwise similarities, over each en-
semble, that is over eachAlgl .

In the second stage of the algorithm, the selected
clusters are further combined into a global similarity
matrix using a max rule. Each selected cluster, repre-
sented in ank×nk co-association matrix, is combined
with the other clusters selecting the sub-matrices with
more stable values (max rule), thus joining all the in-
dividual contributions.

4 THE PROPOSED
FRAMEWORK:
CLUSTER VS PARTITION
VALIDITY CRITERIA

While classical validity indexes are designed to mea-
sure the overall quality of data partitions, our goal is
to define indices that measure the quality of individual
clusters within a partition, and amongst distinct par-
titions. Herein we propose several indices to address
this problem reviewing first the classical ones.

Most of the relative indices use geometrical con-
siderations, and are based on a dissimilarity matrix
computed over the original feature space, such as the
Euclidean distance. Letd(i, j) represent the dissimi-
larity between objectsi and j.

The Silhouette index(Rousseeuw, 1987) judges
the quality of a clustering solution by quantifying the
compactness/separability of clusters. For each object
in a cluster, the ”Silhouette value”, measures the de-
gree to which a sample belongs to its current cluster
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relative to the otherK-1 clusters. For each,xi ∈Ca, let
a(i) denote the average distance between the object
and all other objects inCa, andb(i) denote the aver-
age distance betweenxi and all objects in the nearest
competing clusterCb:

a(i) =
1

|Ca|−1 ∑
j∈Ca,i6= j

d(i, j) (3)

b(i) = min
b 6=i

{

1
|Cb|

∑
j∈Cb

d(i, j)

}

(4)

The silhouette width for eachxi is computed us-
ing:

s(i) =
b(i)−a(i)

max{a(i),b(i)}
(5)

A global silhouette width can be computed taking
the mean of the silhouette width for all samples in the
data-set:

S=
1
ns

ns

∑
i=1

s(i) (6)

To measure the compactness of a cluster,Ck, we
propose to measure the average dissimilarity of the
pairs of samples within that cluster:

Ak =
1

(nk)(nk−1) ∑
i, j∈Ck, j>i

d(i, j) (7)

To measure the separability betweenCk and its
nearest clusterCl , we compute the average dissimi-
larity between pairs of objects inCk and the objects in
the competing clusterCl :

Bk = min
1≤l≤K , l 6=k

1
(nk)(nl )

∑
i∈Ck

∑
j∈Cl

d(i, j) (8)

We define theCluster Silhouette (Bolshakova
and Azuaje, 2003), as:

Sk =
Bk−Ak

max{Ak,Bk}
(9)

This produces a score in the range[−1,1], indicat-
ing how good an individual cluster is within its par-
tition. A value close to 1 indicates that the cluster is
compact and separated from the other clusters; a value
closer to 0 suggest that the cluster is not so compact or
separated from the nearest clusters, while a negative
value suggest that is likely that the clusters has been
incorrectly assigned.

Dunn’s index (Dunn, 1974) (Bezdek and Pal,
1995) quantifies how compact and well separated
clusters are, being defined as:

D = min
1≤q≤K

{

min
q+1≤r≤K

(

dist(Cq,Cr)

max1≤p≤K diam(Cp)

)}

(10)

where dist(Cq,Cr) represents the distance between
the q-th and ther-th cluster, anddiam(Cp) is the p-
th cluster diameter, as defined by:

dist(Cq,Cr) = min
i∈Cq, j∈Cr

d(i, j), (11)

diam(Cp) = max
i, j∈Cp

d(i, j), (12)

In order to compare different clusters we propose
to compute theDunn’s cluster index, for clusterCk,
which can be defined as:

Dk =
min1≤r≤K,r 6=k dist(Ck,Cr)

diam(Ck)
(13)

This validation index can be used to compare dif-
ferent clusters and ifDk > 1 this is indicative that the
clusterCk is compact and separated from the other
clusters.

5 CLUSTER SELECTION
CRITERIA IN MULTI-EAC

The Multi-EAC algorithm relies on the identification
of clusters selected from the extracted solutions of
the ensembles produced by the different algorithms,
based on co-association values,C . In (Fred and Jain,
2006) the selection of clusters was performed accord-
ing to equation 2. The idea behind this test is to mea-
sure the mean evidence of co-association of pairs of
samples over the subsampling experiments performed
over the data-set, using one particular algorithm. If
pairs of samples have been co-associated by the clus-
tering algorithm over these subsampling versions of
the data-set, then these samples should be selected as
stable associations. This value can be interpreted as
an intra-cluster stability criteria, since only samples
belonging to the same cluster are used. We will refor-
mulate the previous index in the context of the cluster
validity criteria.

In previous section, indexes are defined based on
dissimilarities, the following are adaptations using the
similarities represented in the co-association matrix
C .

To measure the compactness of a clusterCk, the
Ak term (equation 7) can be reformulated, using the
intra-cluster similarity, as:

As
k =

1
(nk)(nk−1) ∑

i, j∈Ck, j>i

C (i, j) (14)

To quantify the separability between clusters, the
Bk term (equation 8), can be reformulated with the
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inter-cluster similarity, measured by the maximum
similarity between clusters:

Bs
k = max

1≤l≤K , l 6=k

1
(nk)(nl )

∑
i∈Ck

∑
j∈Cl

C (i, j) (15)

Notice that, when using sub-sampling for produc-
ing clustering ensembles, the co-association matrix,
C , represents both pairwise similarity and pairwise
stability, due to the perturbation on the data set. In
this later situation, the intra-cluster similarity given by
equation 14 corresponds to the previously proposed
cluster stability validity index,stabCk, as in equation
2.

Both As
k and Bs

k vary in the range[0,1] (since
C (i, j) is in the interval[0,1]) indicating for the up-
per limit of the interval, high intra-cluster similarity,
and high inter-cluster similarity.

To integrate both the intra-cluster and the inter-
cluster information, we reformulate theCluster Sil-
houette (in equation 9) as:

Ss
k =

As
k−Bs

k

max{As
k,B

s
k}

(16)

Notice that in this case we would like to have a
intra-cluster value (As

k) larger than the inter-cluster
similarity (Bs

k), and therefore the numerator is rede-
fined in reverse order.Ss

k takes values the same in-
terval [-1,1], following the indications of the previous
definedSk: values close to 1 indicate that clusterCk is
compact and well separated.

The second proposed index is a reformulation of
theDunn’s cluster index (equation 13) using similar-
ities:

Ds
k =

diam(Cp)

max1≤r≤K,r 6=k sim(Ck,Cr)
(17)

wheresim(Ck,Cr) represents the similarity between
thek-th and ther-th cluster, anddiam(Ck) is thek-th
cluster diameter, defined in terms of pairwise similar-
ities by:

sim(Ck,Cr) = max
i∈Ck, j∈Cr

C (i, j) (18)

diam(Ck) = min
i, j∈Ck
C (i, j) (19)

Both diam(Ck) andsim(Ck,Cr) vary in the range
[0,1] (sinceC (i, j) is in the interval[0,1]) indicating
for the upper limit of the interval, high intra-cluster
similarity, and high inter-cluster similarity.

Notice in the definition ofDs
k, the numerator and

the denominator are exchanged (compared with equa-
tion 13), allowing that whenDs

k > 1 is also an indica-
tion of compact and well separated cluster.

We propose to evaluate the efficiency of the pre-
vious measures for the selection of the clusters in the

Multi-EAC Algorithm. We compare the selection of
clusters using the intra-cluster and the inter-cluster
pairwise similarity in order to determine which cluster
should be selected. Clusters with high value of intra-
cluster similarity should be considered; clusters with
inter-cluster similarity lower than a given threshold
th can also be considered well separated. Moreover,
we study the integration of both concepts (intra and
inter-cluster similarities), using the Cluster Silhouette
and the Dunn’s cluster index, trying to improve the
robustness of the selection.

In the rest of the paper consider the following no-
tation:

intrasum: The original selection index used as base-
line quality measure - uses the intra-cluster aver-
age similarity (equation 14). Cluster selection cri-
terion: intrasum> thintrasum;

intersum: Uses the inter-cluster average similarity
(equation 15). Selection criterion:intersum< th1
⇔ (1− intersum)> thintersum;

silh: Global silhouette of a cluster (equation 16). Se-
lection criterion:silh> thsilh;

intramin: Computes the minimum intra-cluster sim-
ilarity, related to cluster diameter, according to 19.
Selection criterion:intramin> thintramin;

intermax: Computes the maximum inter-cluster
similarity, according to 18. Selection criterion:
intermax< th⇔ (1− intermax)> thintermax ;

Dunn: Dunn’s cluster index, according to 17. Selec-
tion criterion:Dunn> thDunn.

The selection of clusters depends on the com-
parison with pre-determined thresholds. To select
compact and well separated clusters, in the case of
thintrasum, thintersum, thintramin andthintermin the thresh-
old should be close to 1; in the case of thethDunn the
threshold should be higher that 1.

The estimation of the most adequate threshold is
out of the scope of the present paper. In this paper we
fixed thDunn= 10 and the remaining thresholds were
set toth= 0.9.

6 EXPERIMENTAL ANALYSIS

We base our evaluation of the proposed criteria on
several synthetic and real-world benchmark data-sets
from the UCI repository (Asuncion and Newman,
2007).

To produce the ensembles we use different algo-
rithms, enabling the selection of clusters based on
different clustering criteria: three agglomerative hi-
erarchical clustering methods (Jain and Dubes, 1988)-
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Single Link, Complete Link, Average Link (either fix-
ing the number of clusters or using the life-time cri-
teria (Fred and Jain, 2005)); one partitional cluster-
ing method - K-means (Jain and Dubes, 1988); and a
Spectral Graph Partioning Algorithm - NJW Spectral
Clustering (Ng et al., 2002).

In table 1 we present the data-set characteristics
and the parameter values used with different cluster-
ing algorithms. For the NJW Spectral Clustering, the
scaling parameterσ in the Gaussian affinity matrix,
representing the similarity matrix, was taken in the
intervalsσ1 = [0.08,0.1 : 0.05 : 0.95,1 : .5 : 10], σ2 =
[0.08,0.1 : 0.1 : 0.9,1 : 1 : 10] andσ3 = [1 : 0.5 : 10],
where [σmin : inc : σmax], represents the set of allσ
values beginning withσmin, terminating withσmax,
with increments ofinc.

Table 1: Benchmark data-sets characteristics and parameter
values used with different clustering algorithms.

Data-Sets K ns
Ensemble
Ks σ

spiral 2 200 2-8 σ1
cigar 4 250 2-8 σ1
rings 3 450 2-6 σ1
breast-cancer 2 683 2-10,15,20 σ3
iris 3 150 3-10,15,20 σ1
image-1-Martin 7 1000 7-15,20,30, 37 σ2

We applied eachclustering algorithm instantia-
tion, Algl (characterized by a set of parameter values),
to N different subsampled versions,Xsubi , of the data-
set, fixingN=100. The obtained clustering ensemble
CEl is combined over the co-association matrixC l .
For extracting the combined partitions, we used the
Single Link and the Average Link agglomerative hier-
archical methods, fixing the number of clusters equal
to the real number of clusters, and using the life-time
criteria (Fred and Jain, 2005).

We applied each of the stability criteria to the ex-
tracted solutions. We selected a cluster when its sta-
bility was higher than a given threshold. The applied
thresholds wereth= 0.9 for intrasum, silh, intramin,
1-intramax, 1-intersum. For the Dunn we selected
th= 10.

The accuracy of the results is evaluated using the
Consistency Index - CI (Fred, 2001), obtained by
matching the clusters in the obtained partition with
the ground truth class labels. If a cluster groups two
natural classes, CI matches cluster with the class with
higher number of objects. When the clustering parti-
tions have the same number of clusters as the ground
truth, CI corresponds to the percentage of correct la-
beling, that is(1−Pe), wherePe is the error prob-
ability. In this work, when extracting the final parti-

tion, we fix the number of clusters equal to the ground
truth, so the CI gives the percentage of correct label-
ing.

To obtain more information about the selection
criteria, we analyzed if the selected clusters represent
”good” or ”bad” clusters. This categorization is based
on the following: a ”good” cluster represents a group-
ing of objects belonging to only one natural cluster;
on the other hand a ”bad” cluster represents a cluster
that joins objects belonging to two (or more) different
natural clusters, that is we prefer clusters that cannot
include the overlapping between natural clusters.

0 1 2

−4

−3

−2

−1

0

1

2

3

(a) Ground truth.
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(b) K-Means ensemble.
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(c) Spectral clustering en-

semble.

Figure 4: Examples of obtained partitions when clustering
algorithm instantiation is inadequate.

We illustrate the problem of bad clusters with
the synthetic 2D cigar data set presented in figure 4.
The data-set is composed of four distinct gaussians
(ground truth illustrated in figure 4(a)). Figures 4(b)
and 4(c) are two examples of a partitions obtained us-
ing SL as extraction method (fixing the number of
clusters toK = 4) over the ensembles produced for
two different clustering algorithm instantiations: the
first using K-Means withK = 4 and the second using
Spectral Clustering withK = 10 andσ = 0.1. The
numbers adjacent to each cluster represent the origi-
nal intrasum stability index and the letters are used
to identify each of the clusters.

In both examples we have wrong partitionings of
the data set (when compared with the ground truth
4(a)). In example 4(b) we see that the black colored
clusters (named ’D’ and marked with ’+’) have been
wrongly joined; in example 4(c) the green painted
clusters (with ’.’ marker) have also been wrongly
joined.

In the first case the stability obtained with the in-
trasum selection index is high (0.9), but on the latter
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Table 2: Selection criteria values for example of figure 4.

C nsk Match intrasum 1-intersum silh intramin 1-intermax Dunn
A 100 100 0.60 0.87 0.78 0.01 0.36 0.02
B 96 96 0.60 0.87 0.78 0.02 0.36 0.04
C 4 4 0.88 0.46 0.40 0.81 0.21 1.02
D 50 0 0.90 0.46 0.41 0.77 0.21 0.97

Table 3: Clustering results, in terms of Consistency Index,CI, using the Single Link (SL) and the Average Link hierarchical
(AL) methods. The ensembles result from combining the selected clusters from all the clustering algorithm instantiations.

Data-Sets
(SL) (AL)

intrasum intersum silh intramin intermax Dunn intrasum intersum silh intramin intermax Dunn

cigar 0.80 0.80 0.80 0.80 1.00 1.00 0.99 0.99 0.99 0.99 1.00 1.00
spiral 0.51 0.51 0.51 0.51 1.00 1.00 0.59 0.61 0.62 0.51 1.00 1.00
iris 0.67 0.67 0.67 0.67 0.34 0.34 0.90 0.90 0.90 0.67 0.34 0.34
rings 0.45 0.56 1.00 0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
breast 0.65 0.65 0.65 0.65 0.65 0.65 0.96 0.96 0.96 0.96 0.65 0.65
image 0.68 0.68 0.68 0.33 1.00 1.00 0.98 0.98 1.00 0.33 1.00 1.00

is lower (0.279), allowing the selection of a wrong
cluster in one of the situations. Table 2 presents for
this example the values of the other proposed cluster
selection criteria. Each row represents each of the ob-
tained clusters (labelled from ’A’ to ’D’) and columns
represent:nsk -the number of samples of each cluster;
Match - the number of samples that matches the ob-
jects in the natural clusters of figure 4(a) considering
the definition of ”good” clusters;intrasum to Dunn
the selection criterion.

Considering the global selection threshold 0.9 for
thintrasum, thintersum, thintramin andthintermin, and 10 for
thDunn , the cluster ’D’ (last row of the table) would
only be selected by theintrasumcriteria. That is, the
other proposed cluster validity indexes are more se-
lective than the previous criterion.

To better understand the differences, consider the
co-association matrix of figure 5 which corresponds
to the example in figure 4(b). The different stability
indexes use differently the co-association values:

• Theintrasum uses only the intra cluster similari-
ties. The obtained value is an average of the sim-
ilarities of the objects within the cluster in analy-
sis;

• When using theintramin instead of the average
between the similarities, the minimum similarity
is the value that is extracted (thus being more re-
strictive);

• When considering to use the inter-cluster infor-
mation, theintersum criteria averages the simi-
larities of the objects of the analysed cluster with
the ones on the closer cluster, and theintermax
uses the maximum value, being more restrictive.

In figure 5 , the color scheme ranges from blue

(C (i, j) = 0) to red (C (i, j) = 1), corresponding to
the magnitude of similarity, and the axis represent
the samples of the data-set organized such that sam-
ples belonging to the same cluster are displayed con-
tiguously. The two lower block diagonal matrices
represent the wrongly joined clusters (named ’D’).
Their intracluster similarity is very high, but when
analysing the minimum value of intracluster similar-
ity it is possible to see that this cluster is not so sta-
ble as it first looks (0.77 similarity - compared with
an average similarity of 0.90). If we consider the in-
tercluster similarity, the corresponding stability value
will significantly decrease. It can be noticed that there
are vertical and horizontal lines on the matrix repre-
senting higher similarity values. The inclusion of the
other sources of information avoids the inclusion of
this bad cluster (merging two ”natural” clusters) in the
final combination process.
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Figure 5: K-Means ensemble (K = 4) - Example of associ-
ated co-association matrix.
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The new proposed criteria seem more restrictive
than theintrasum (used before), selecting fewer clus-
ters from the co-association matrixes obtained from
each algorithm instantiation. Nevertheless the inte-
gration of all the algorithm instantiations, for almost
all of the benchmark data-sets, resulted in the inclu-
sion of clusters that covered all the data-set.

To summarize the results for the benchmark data-
sets, we present in table 3 the CI index using the SL
and the AL hierarchical methods as extraction meth-
ods, marking for each data-set the maximal CI value.

The right half of the table presents more marked
cells, showing that the AL extraction method con-
ducted to better results. Comparison of the results
shows that the Silhouete (silh), the intermax, and the
Dunnindex systematically leads to better results than
the original intrasum selection criterium. The re-
maining do not show an evident superiority, andin-
tramin is the index presenting the worst performance.

The intermaxandDunn criteria were the best in
almost every data-set. The cases in which they did not
obtain the best results correspond to situations where
only a subset of samples was selected, since these cri-
teria selected only a small part of the evaluated clus-
ters. This fact caused that some objects were not part
of any of the selected clusters, penalizing the over-
all result, since some natural clusters didn’t have any
match.

The criterion Silhouete gave also results compa-
rable with Dunn and intermax criteria in almost all
data-sets, allowing the coverage of all objects in ev-
ery data-set.

7 CONCLUSIONS

Adopting the Multiple-Criteria Evidence Accumula-
tion Clustering method (Multi-EAC) as baseline clus-
ter combination method, we addressed the issue of
selection of meaningful clusters from the multiple
data partitions. In previous work, the authors pro-
posed a cluster validity criterion based on cluster sta-
bility, assessed from intermediate co-association ma-
trices, obtained from clustering ensembles produced
by a single clustering algorithm by perturbing the
data set using sub-sampling. In this paper we pro-
posed new cluster validity criteria for the selection of
clusters from the same intermediate co-associations
matrices but using it on a different perspective. In-
stead of considering only the intra-cluster similarity,
we propose indexes based on inter-cluster similarity
and combination of intra-cluster and inter-cluster sim-
ilarities. Comparison of the several criteria was based
on the performance of the combined data partitions,

obtained by accounting only on clusters that are se-
lected according to the corresponding criteria.

Experimental results have shown that four out of
the the five proposed criteria lead in general to better
combination results than by using the cluster stabil-
ity criterion. In particular, the criterion Silhouete and
Dunn focusing both the intra and the inter-cluster sep-
arability, and theintermax focusing on intra-cluster
separability, gave the overall best results.

Furthermore, the new methods can also be ap-
plied to clustering ensembles that do not make use of
data sub-sampling, being of more general applicabil-
ity. Additional experiments on larger data sets and on
more real data sets are underway.
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