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Abstract: The Timed Up and Go (TUG) is a widely used clinical test to assess mobility and fall risk in Parkinson’s 
disease (PD). The traditional outcome of this test is its duration. Since this single measure cannot provide 
insight on subtle differences in test performances, we considered an instrumented TUG (iTUG). The aim 
was to find, by means of a feature selection, the best set of quantitative measures that would allow an 
objective evaluation of gait function in PD. We instrumented the TUG using a triaxial accelerometer. 
Twenty early-mild PD and twenty age-matched control subjects performed normal and dual task TUG trials. 
Several temporal, coordination and smoothness measures were extracted from the acceleration signals; a 
wrapper feature selection was implemented for different classifiers with an exhaustive search for subsets 
from 1 to 3 features. A leave-one-out cross validation (LOOCV) was implemented both for the feature 
selection and for the evaluation of the classifier, resulting in a nested LOOCV. The resulting selected 
features permit to obtain a good accuracy (7.5% of misclassification rate) in the classification of PD. 
Interestingly the traditional TUG duration was not selected in any of the best subsets. 

1 INTRODUCTION 

The Timed Up and Go (TUG) is a widely used 
clinical test to assess balance, mobility and fall risk 
in Parkinson’s disease (PD). The traditional outcome 
of this test is its duration, measured by a stopwatch. 
Since this single measure cannot provide insight on 
subtle differences in test performances, instrumented 
Timed Up and Go tests (iTUG) have been recently 
proposed (Weiss et al., 2010; Zampieri et al., 2010). 
These studies demonstrated the potential of using 
inertial sensors to quantify TUG performance. As 
stated in (Zampieri et al., 2010), quantitative 
evaluation is especially important for early stages of 
PD when balance and gait problems are not 
clinically evident but may be detected by 
instrumented analysis. The aim of this study was to 
find, by means of a feature selection process, the 
best set of quantitative measures that would allow an 
objective evaluation of gait function in PD and could 
be considered as possible early biomarkers of the 

disease. Feature selection has recently been used in 
the field of Parkinson’s disease to quantify the 
performance of a PD subject (Brewer, Pradhan, 
Carvell, & Delitto, 2009); in the mentioned study the 
quantitative data came from force/torque sensors. 

2 METHODS 

We examined twenty early-mild PD subjects OFF 
medication (Hoehn & Yahr ≤ 3, 62±7 years old, 12 
males and 8 females) and twenty healthy age-
matched control subjects (CTRL, 64±6 years old, 7 
males and 13 females). The OFF condition in PD 
subjects was obtained by a levodopa washout of at 
least 18 hours and a dopamine agonist washout of at 
least 36 hours. Subjects wore a tri-axial 
accelerometer, McRoberts© Dynaport Micromod, 
on the lower back at L5 level. They performed three 
TUG trials (single task, ST) and three TUG trials 
with a concurrent cognitive task (dual task, DT), 
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which consisted in counting audibly backwards from 
100 by 3s. The TUG trial consisted of rising from a 
chair, walking 7m at preferred speed, turning 
around, returning and sitting down again. A 
schematic representation of the task is shown in 
figure 1. 

 
Figure 1: Timed Up and Go Test and extracted parameters. 

Several temporal (including total duration of the 
test), coordination and smoothness measures were 
extracted from the acceleration signals in different 
sections of the TUG. In figure 1 the main measures 

are reported.  
Considering the gait section, each stride (from 

one heel strike to the consecutive heel strike of the 
same leg) defines one gait cycle. The phase is 
determined by the ratio between the duration of the 
first step of the gait cycle and the entire duration of 
the gait cycle: a factor of 360 is used to transform 
the variable into degrees (360 degrees would 
correspond to the entire gait cycle). (Plotnik, Giladi, 
& Hausdorff, 2007). Among the other measures, 
phase coordination index measures the symmetry of 
gait (Plotnik et al., 2007) and jerk score (for both sit-
to-stand and gait sections) can be seen as an index of 
movement smoothness. 

In the gait section, jerk score and step duration 
were computed for each step; for the following 
analysis their averages across all the steps were 
considered, together with measures of variability 
between different steps (standard deviation, STD, 
and coefficient of variation, CV). Similarly, phase 
was computed for each gait cycle but only its 
average and variability measures were considered. 

Jerk score (for both sit-to-stand and gait 
sections), STD, and max value of acceleration, were 
computed along two orthogonal axes of the 

 
Figure 2: Feature selection procedure. 
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accelerometer: the first aligned with the direction of 
gait progression and coincident with the 
biomechanical anteroposterior (AP) axis of the 
body; the second in the left/right direction and 
coincident with the biomechanical mediolateral 
(ML) axis of the body.  

For each measure, both in ST and in DT, we 
computed the mean value across the three repeated 
trials for the following analyses. 

To select, from all the available features (56 
measures extracted from the signals, 28 for ST and 
28 for DT), the subset which has the best 
discriminative ability, a “wrapper” feature selection 
(Kohavi & John, 1997) was implemented; the 
objective function was the predictive accuracy of a 
given classifier on the training set. We used the 
following classifiers: linear and quadratic 
discriminant analysis (LDA and QDA, respectively), 
Mahalanobis classifier (MC), logistic regression 
(LR), K-nearest neighbours (KNN, K=1) and linear 
support vector machines (SVM). An exhaustive 
search among subsets of cardinality from one to 
three was implemented; the limit of three was 
chosen to permit a clinical interpretation of the result 
(it would be difficult to associate too many features 
with different aspects of the disease). Subsets of 
different cardinalities were considered separately. 

The adopted procedure is similar to the one 
proposed by Brewer et al. (2009) where an 
exhaustive search of subsets of three features was 
performed. Still, in the present study, feature 
selection bias was also considered because the 
available features (56) are more than the available 
data (40 subjects). 

Since feature selection is part of the tuning 
design of the classifier, it needs to be performed on 
the training set, in order to avoid the aforementioned 
feature selection bias in the final evaluation of the 
accuracy of the classifier (Simon, Radmacher, 
Dobbin, & McShane, 2003). The most common 
solution to this problem is to use a nested cross 
validation procedure (Kohavi and John, 1997): the 
internal feature selection step is repeated for each 
training set resulting from the external cross 
validation. In this study, because of the small sample 
size (40), a leave-one-out cross validation (LOOCV) 
was implemented both for the feature selection steps 
and for the final evaluation of the classifier. 

As it can be seen in figure 2, the external cross 
validation used for estimation of the accuracy of the 
classifier (LOOCVext) splits the dataset in 40 
different training and testing sets (TRi,TSi 1≤i≤40); 
for each TRi, a different feature selection step was 
performed (FSi, 1≤i≤40). The objective function 

(predictive accuracy) of each feature selection was 
evaluated by an internal LOOCV (LOOCVint). After 
each FSi, a list of optimal subsets of features was 
generated: there was generally more than one subset 
with the same highest LOOCVint accuracy (more 
than one optimal subset). In the nested procedure TSi 
should be classified from the classifier built with a 
single subset chosen by FSi; in this study, since more 
than one optimal subset was found, it was not 
possible to make a unique choice. Moreover 
different FSi led to different lists of optimal subsets. 
So we decided to extract the subset which was 
selected as optimal more frequently over all the FSi 
(overall optimal subset, see figure 2). The number of 
times a certain subset was selected as optimal 
(selection times) can be seen as an index of how that 
subset is robust to changes in the training set, and 
therefore to selection bias. Eventually, the accuracy 
of the classifier (misclassification rate, MR) was 
computed by LOOCVext for the overall optimal 
subset (see figure 2). 

3 RESULTS AND DISCUSSION 

In table 1 the results of the feature selection 
procedure for subsets of 3 measures are reported; the 
estimated accuracy is presented together with the 
selection times (the number of times a subset was 
selected as optimal among the 40 different feature 
selection procedures). Subsets of 3 measures were 
preferred since subsets of lower cardinality led to 
higher misclassification rates. It can be seen that a 
good misclassification rate could be achieved (7.5%-
10%) by all the classifiers. As discussed in section 2, 
estimates of misclassification rates of subsets with 
higher selection times should be considered as more 
reliable, regarding selection bias, with respect to 
estimates with lower selection times. Therefore 
subsets with higher selection times should be 
preferred. 

Considering the overall optimal subsets from all 
the classifiers, the procedure always selected a 
measure related with the sit-to-stand and one or two 
measures related with the gait phase. In four subsets 
there is also a measure extracted during stand-to-sit. 
It should also be remarked that every subset 
presented in table 1 is made of both single and dual 
task related measures. 

These measures improve the discrimination 
power between CTRL and PD with respect to the 
traditional TUG duration (the best misclassification 
rate that can be obtained by using this single 
measure with the reported classifiers, in ST or in 
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DT, is 35%), which interestingly was not selected in 
any of the overall optimal subsets. Moreover TUG 
duration alone was not significantly different 
between the two groups (as in Weiss et al., 2010 and 
Zampieri et al., 2010) and therefore it could not 
discriminate between CTRL and early-mild PD. 
Instead, considering various quantitative measures 
related to different parts of the TUG (see table 1), 
allowed us to obtain good accuracy in the 
classification of PD subjects. This accuracy would 
not have been obtained without feature selection; 
considering all the features altogether, the number of 
features is higher than the number of samples. In this 
case LDA, QDA and MC cannot be used because it 
is not possible to estimate the covariance matrix; 
similarly, in LR the model is overparameterized and 
some coefficients of the logistic model are not 
identifiable. So the only classifiers that can be used 
without feature selection are KNN and SVM which, 
using all the features, have a MR of 52% and 20%, 
respectively; this reflects the importance of 
performing feature selection in this kind of datasets. 

Furthermore it has to be noted that even if our 
relatively small sample size limits the power of our 
data mining perspective a nested cross validation 
was applied to limit the possible feature selection 
bias. Since it was not possible to follow the typical 

nested procedure (because several different 
combinations of features were selected as optimal), a 
value was derived which can be seen as an index of 
the reliability of the estimation of the 
misclassification rate. 

4 CONCLUSIONS 

The main result achieved by this work is that a set of 
few quantitative measures, derived from a clinical 
test for gait evaluation, can discriminate with a good 
accuracy between PD and CTRL subjects. 

Further experiments should be made on new 
subjects to have an independent data set and validate 
these findings; in particular, the selected optimal 
measures could be tested on PD subjects in an earlier 
stage of their disease in order to check if they could 
also be used as early biomarkers of PD. On the other 
hand it should be investigated whether the presented 
measures remain valid and maintain their superiority 
over TUG duration for later stages of the disease. In 
fact, even if the presented subsets are optimal for 
classifying early-mild PD, there is no guarantee that 
they would be optimal to monitor the disease 
progression or to detect changes in gait patterns after 

Table 1: Results of the feature selection procedure. 

Classifier Overall optimal subsets Task Selection 
times /40 MR 

 STD of AP acceleration during Sit-to-Stand single task   
LDA Max AP acceleration during Stand-to-Sit dual task 32 7.5% 

 STD of the phase during gait dual task   
 STD of ML acceleration during Sit-to-Stand single task   

QDA Max AP acceleration during Stand-to-Sit single task 25 7.5% 
 CV of the step duration during gait dual task   
 Jerk score of AP acceleration during Sit-to-Stand single task   

LR Jerk score of ML acceleration during gait single task 28 7.5% 
 STD of the step duration during gait dual task   
 Jerk score of AP acceleration during Sit-to-Stand single task   

KNN Jerk score of AP acceleration during gait dual task 36 7.5% 
 CV of the jerk score of ML acceleration during gait dual task   
 Jerk score of AP acceleration during Sit-to-Stand single task   

MC Jerk score of ML acceleration during gait single task 32 10% 
 max AP acceleration during Stand-to-Sit dual task   
 Jerk score of ML acceleration during Sit-to-Stand single task   

SVM CV of the jerk score of ML acceleration during gait single task 25 7.5% 
 max AP acceleration during Stand-to-Sit dual task   
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a particular medical treatment; in this context, the 
next step will be a follow-up of the study with the 
same subjects. 

Another future goal will be to assess if the TUG 
carried out under DT can add discriminative power 
with respect to the ST alone (as suggested by this 
study), since this would have important implications 
on the experimental design. 
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