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Abstract: Ranking search results is an ongoing research topic in information retrieval. The traditional models are the
vector space, probabilistic and language models, and more recently machine learning has been deployed in an
effort to learn how to rank search results. Categorization of search results has also been studied as a means to
organize the results, and hence to improve users search experience. However there is little research to-date on
ranking categories of results in comparison to ranking the results themselves.
In this paper, we propose a probabilistic ranking model that includes categories in addition to a ranked results
list, and derive six ranking methods from the model. These ranking methods utilize the following features: the
class probability distribution based on query classification, the lowest ranked document within each class and
the class size.
An empirical study was carried out to compare these methods with the traditional ranked-list approach in terms
of rank positions of click-through documents and experimental results show that there is no simpler winner in
all cases. Better performance is attained by class size or a combination of the class probability distribution of
the queries and the rank of the document with the lowest list rank within the class.

1 INTRODUCTION

Existing search engines such as Google, Bing and Ya-
hoo return a list of retrieved documents based on each
document’s relevance to a user’s query. Web users
scroll through the result set to find a document that
satisfies their information need. Since documents are
only organized based on their relevance score, it is
not uncommon for documents on one topic to be scat-
tered throughout the result list. Thus, for example, a
search on the keyword, “jaguar” will produce results
in two topic areas, cars and animals, but all the doc-
uments on the topic of cars will not come before, or
after, documents on animals.

Several researchers have proposed grouping to-
gether documents with a common theme. The ratio-
nale for this is the hypothesis that users should be able
to quickly identify the topic area related to their query,
and thereby avoid the need to look at documents in
other topic areas.

There are two broad approaches to grouping. The
first is based on clustering, while the other is based

on classification. A key distinction between the two
approaches is how groups are labeled. In clustering, a
retrieved set of documents, the result set, is clustered
into a set of groups based on a clustering algorithm.
Each group is then assigned a labeled to describe its
associated topic area. This label is automatically de-
rived from the documents contained within the group.
Not only might these labels be unfamiliar to a user,
but the same topic area may be assigned different la-
bels depending on the documents in the group. A
recent survey of clustering of search results can be
found in (Carpineto et al., 2009).

The classification approach has a predefined
(Chen and Dumais, 2000; Zeng et al., 2004; Zhu et al.,
2008) set of groups/topic areas, typically derived from
an ontology. Thus, the label for a group/class is prede-
fined and is independent of the documents contained
within it. Of course, these labels may also be unfamil-
iar to a user. However, since the label for a class does
not change, (i) users have an opportunity to learn the
meaning, and (ii) the labels can be carefully chosen to
help users understand what the class represents.
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There has been considerable work on document
categorization, which is discussed in Section 2. How-
ever, this is not the main focus of our work.

Once a document result set has been categorized,
the users is first presented with a list of the categories
represented by documents. The user then selects a
category and the documents within this class are then
presented. In such an arrangement, it is necessary
to rank classes presented to the user. However, de-
spite the fact that document ranking remains one of
the most active research areas in information retrieval,
there has been surprisingly little research on ranking
classes.

In this paper, we investigate various approaches
to ranking classes and how such rankings affect the
number of classes and documents a user must inspect
prior to finding a documents satisfying his or her in-
formation need. Section 3 describes the details of the
class rankings we consider. Section 4 then describes
our experimental methodology, and Section 5 sum-
marizes our experimental results. Finally, Section 6
provides a discussion of the results.

2 RELATED WORK

There has been significant work on clustering and
classification of search results (Carpineto et al., 2009;
Chen and Dumais, 2000; Zeng et al., 2004; Zhu et al.,
2008). Our interest is specific to how previous re-
search ranked classes. There are two main approaches
to doing so.

The first approach (Chen and Dumais, 2000) ranks
classes based on their size, i.e. the top-ranked class
contains more documents than the other classes. This
approach is simple and assumes that a class’s rele-
vance is purely a function of the number of documents
it contains.

The second approach (Zamir and Etzioni, 1999;
Zeng et al., 2004) ranks classes based on various
properties associated with the documents in each
class. For example, in (Zamir and Etzioni, 1999) the
authors ordered the clusters by their “estimated co-
herence”, defined as a function of the number of doc-
uments each phrase contains and the number of words
that make up its phrase. And in (Zeng et al., 2004),
all n-gram (n ≤ 3) were first extracted from search
results as candidate phrases, and salient scores were
calculated from a regression model trained from man-
ually labeled data. The features included phrase fre-
quency/inverted document frequency, phrase length,
intra-cluster similarity, cluster entropy and phrase in-
dependence. The salient scores are used to rank the
clusters.

A second important consideration is how docu-
ments are ranked within a class. Several alterna-
tives have been proposed. However, in the work de-
scribed here, the relative ranking of documents within
a class is the same as their relative ranking in the
original result set. We believe that this is an impor-
tant experimental design consideration. In particular,
if the ranking of documents in altered within a class,
then it is very difficult to determine whether any im-
provement is due to (i) the class ranking, (ii) the new
document ranking, or (iii) a combination of (i) and
(ii). Thus, in order to eliminate this potential ambigu-
ity, we maintained relative document rankings within
classes. Thus, any improvement must only be due to
the class ranking.

3 CLASS-BASED RANKING
METHOD

Before we discuss the various class ranking algo-
rithms we examined, it is useful to first describe how
we evaluated performance. For a conventional sys-
tem, in which the result set is displayed as a ranked
list of documents, i.e. we have a list of documents
{d1,d2, · · ·dN}, if the k-th document is the desired
document, then the user must look atk documents
(d1 · · ·dk). We refer tok as the “list rank” of the doc-
ument, since it was rankedk in a one-dimensional list
of retrieved documents. Clearly, the lower the list
rank, the quicker the user will find the desired doc-
ument.

The performance of a classification-based system
is slightly more complicated to define. Consider the
case where the user is looking for document,di, j,
wherei denotes the rank of the class the document is
contained in, andj is the document’s rank within this
class. Thus, a user must look ati class labels and then
j document snippets in order to find document,di, j,
a total of(i+ j) classes and documents. We refer to
(i+ j) as the “classification rank” (CR) of document
di, j.

For any classification-based system, we compare
a document’s classification rank to its original, corre-
sponding list rank,k. We say that the classification-
based system outperforms the list-based system if
i+ j < k, i.e., the user looks as few classes and docu-
ments.

Note that we have implicitly assumed that (i) doc-
uments are correctly assigned to classes, and (ii) that
users always choose the correct class. In practice,
this will not always be the case. However, the as-
sumption simplifies our analysis and permits us to de-
termine the best-case performance of class-based re-
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trieval systems. The reader is directed to (Zhu et al.,
2008) for more discussion of when this assumption
does not hold.

Given an initial retrieval set,D = {d1 · · ·D|D|},
that has been grouped into a set of classes,C =
{c1 · · ·c|C|}, we now wish to determine the relative
ranking of each class. The information we have avail-
able is the query,q, and the documents,D. We take
a straightforward Bayesian approach, i.e. we wish to
estimate the probability,P(ci|q), that class,ci is rele-
vant, conditioned on the query,q,

P(c|q)≈ P(c)P(q|c). (1)

We now consider how each of these two terms
might be estimated.

3.1 Query-dependent Classification

The probability,P(q|c), is the likelihood that classc
generates queryq. It is related to solving the query
classification problem (Shen et al., 2006). This prob-
lem has received significant recent attention (Broder
et al., 2007; Cao et al., 2009) since the 2005 KDD
Cup competition (Li and Zheng, 2005). Solutions to
this problem typically enrich the query terms using
keywords from the top-ranked documents in the re-
sult set1.

For a test query, the class probability distribution
is given by

P(q|c)≈
1

1+ exp(−(wT
c x+ b))

, (2)

where,x is term vector containing the query and en-
richment terms, and the weightswc and interceptb are
derived from L2-regularized logistic regression (Lin
et al., 2007), based on a set of labeled examples. Al-
ternative estimates forP(q|c) are possible, but are not
considered in this paper.

3.1.1 Query-based Rank (QR)

If each class is only ranked based on Equation (2),
i.e. we ignore the query-independent term,P(c), in
Equation (1), we refer to it asquery-based rank (QR).

3.2 Query-independent Classification

To estimateP(c), we make use of the available docu-
ments in retrieved result set.2 We further assume that

1The implicit assumption, shared with pseudo-relevance
feedback, is that the top-ranked documents are relevant.

2Note that we can estimateP(c) based on the class dis-
tribution of the collection, but this is beyond our scope and
it is not as accurate as the retrieved result set.

only documents contained in the class,Dc, affect the
probability of the class, i.e.

P(c)≈ P(c|Dc). (3)

We believe this assumption is reasonable as the class
probability is mainly determined by the information
within the class, not by the other classes. Thus, Equa-
tion (1) becomes

P(c|q)≈ P(c|Dc)P(q|c). (4)

We now considered several ways to estimate the con-
ditional probabilityP(c|Dc)

3.

3.2.1 Document-based Rank (DR)

One approach to estimatingP(ci|Dc) is to base the
probability on the top-ranked document in the class,
ci. The reader is reminded that the original rank or-
der of documents in the result set is retained within a
class.

The j-th ranked document in class,ci, is denoted
di, j. The document’s corresponding list rank, i.e.
its rank prior to classification, is denoteds(di, j) =
s(dk) = k.

We then define the conditional probability,
P(c|Dc) as

P(c|Dc) = f (s(di,1)), (5)

wherec = ci, and s(di,1) is the list rank of the top
document in classci. The function,f (x), can be any
monotonically decreasing function in the valuex. In
this paper we consider the inverse function defined by

f (x) =
1
x

(6)

and the logistic function defined by

f (x) =
1

1+ exp(x)
. (7)

If we only rank classes based on the query-
independent factor of Equation (1), then both func-
tions, f (x), will rank the classes in the same order. In
the subsequent experiments, we therefore only con-
sider the inverse function, and rank classes according
to

P(c|Dc) =
1

s(di,1)
(8)

We refer to this as thedocument-based rank (DR).

3More precisely, we presents functions to approximate
the likelihood of the classc to be examined rather than prob-
ability, as the results do not sum to 1.

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

296



3.2.2 Size Rank (SR)

In contrast to ranking classes based on the top-ranked
document in the class, we also consider the case
where the conditional probabilityP(c|Dc) is based on
the class size. That is, the bigger the class, i.e. the
more documents assigned to the class, the more im-
portant the class is considered to be. Thus, we have

P(c)≈ P(c|Dc) =
|c|

∑i |ci|
, (9)

where|c| is the number of elements in the classc, and
the denominator is the size of result set.

Again, if we only rank classes based on the query-
independent factor of Equation (1), and the class
ranks are based on the size of the classes, as defined
in Equation (9), then we refer to this as theSize Rank
(SR).

3.3 Additional Class Ranking Models

From Equation (2) and the definitions forP(q|c) and
P(c), we can now define a variety of different models
for ranking classes based onboth the query-dependent
and query-independent probabilities..

3.3.1 Query/ Inverse Rank (QDIR)

If the class ranking is determined by the product of
Equations (2) and (6), then we obtain

P(c|q)

≈
1

1+ exp(−(wT
c x+ b))

×
1

s(dc,1)
. (10)

We call this rank theQuery/Inverse Rank(QDIR).

3.3.2 Query/Logistic Rank (QDLR)

TheQuery/Logistic Rank (QDLR) is correspondingly
defined as

P(c|q)

≈
1

1+ exp(−(wT
c x+ b))

×
1

1+ exp(s(dc,1))
. (11)

3.3.3 Query/Size Rank (QSR)

Similarly, if the class ranking is determined by the
product of Equations (2) and (9), then we have

P(c|q)≈
1

1+ exp(−(wT
c x+ b))

×
|c|

∑i |ci|
. (12)

We call this rank theQuery/Size Rank (QSR).

3.3.4 Summary of Ranks

We distinguish the methods for estimatingP(c|q) ≈
P(q|c)P(c|Dc) according to the different methods pre-
sented above. Thelist rank (LR) is the original rank of
a document in the result set, i.e. before any classifica-
tion. We then consider two query-independent meth-
ods of ranking classes, based on (i) the class size, i.e.
size rank (SR), and (ii) the top-ranked document in
each class, i.e.document rank (DR). We also consider
ranking classes based only of the query-dependent
term, i.e. thequery-based rank (QR). Finally, we
consider ranking classes based on a combination of
query-dependent and query-independent terms. In
all these cases, the query-dependent term is based
on Equation (2), and we vary the query-independent
term. Specifically, we consider (i)query/size rank
(QSR) in which the conditional probability,P(c|Dc)
is based on the size of a class, and (ii)query inverse
rank (QDIR) andquery logistic rank (QDLR), both of
which are based on a function of the top-ranked doc-
ument in each class, and where this function is the
inverse function or the logistic function, respectively.
The various methods are summarized in Table 1.

Table 1: The summary of the ranks.

Notation Meaning
LR List Rank, the rank of the results returned by

the search engine.
SR Size-based Rank computed according to

(Equation (9))
DR Document-based Rank computed according

to (Equation (6)).
QR Query-Based Rank computed according to

(Equation (2))
QSR Query/Size Rank computed according to

(Equation (12))
QDIR Query/Inverse Rank computed according to

(Equation (10)).
QDLR Query/Logistic Rank computed according to

(Equation (11)).

4 EXPERIMENTAL SET UP AND
DATA

Evaluation of information retrieval systems requires
knowledge of a document’s relevance with respect
to a query. One indirect source of such informa-
tion is query logs. These logs consist of queries
together with associated click-through data. Previ-
ous research (Liu et al., 2007) showed that retrieval
evaluation based on query logs yields similar per-
formance to retrieval evaluation based on traditional
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human assessors. We used a subset (the RFP 2006
dataset) of an MSN query log, collected in spring
2006. The log contains approximately 15 millions
queries. Each query has associated with it either (i) no
click-through data (no-clicks), (ii) one click-through
data (one-click), or (iii) multiple click-through data
(multiple-click).

We ignore queries for which there is no associ-
ated click-through data (approximately 6.1 million
queries). Forone-click queries, of which there are
approximately 7.2 million, we assume the query was
satisfied by the document clicked on. Formultiple-
click queries, of which there are approximately 1.6
million, we assume that the query was satisfied by the
last document clicked on. We realize that this will not
always be true, but assume that it is true sufficiently
often to provide us with reliable results. Note that
this assumption has been partially justified by other
researchers (Joachims et al., 2005), in the context of
multiple-click queries.

The query log does not include information de-
scribing the result set returned in response to the
query. Rather, the click-through data only identifies
those documents in the result set that the user clicked
on. Of course, in order to evaluate the various classifi-
cation based systems, we need access to the complete
result set. We acquired this information by issuing
the query to a search engine, specifically Microsoft
Live Search on May 2009, which was subsequently
replaced by Bing. Note that for some queries, the
url’s clicked on in the query log are not returned by
the search engine, either because its rank is beyond
our retrieved result set or the url is no longer avail-
able. We discarded such queries. In the case where
the url is returned in the result set, we assume the
the result set returned by Live Search is similar to the
result set observed by the user during the collection
of the log. We acknowledge that this is a major as-
sumption, which cannot be verified, and future work
is needed to repeat these experiments on a more recent
data set.

We now describe our experimental methodology.
The total number of unique queries which have a
click-through is 3,545,500. Among them, there are
658,000 multiple-click queries whose top-20 search
results have been downloaded by us before Microsoft
upgraded Live to Bing. We took a random sam-
ple of 20,000 one-click queries and 20,000 multiple-
click queries, whose click-through occurred both in
the query log and in our retrieved data set.

For each query, the list rank of the relevant doc-
ument (i.e. the document clicked on forone-click or
the final document clicked on formultiple-click) were
recorded. Next, the documents in the result set were

classified into one of 27 classes; these classes are enu-
merated in the appendix; see (Bar-Ilan et al., 2009) for
more detail about this ontology.

In order to classify the documents we compute
P(c|q) from Equation (2), using logistic regression.
The training data is obtained from two manually clas-
sified subsets of an AOL search log (Beitzel et al.,
2005). The first one contains 9,913 manually classi-
fied queries, resulting from a Master’s level Informa-
tion Science class assignment at Bar-Ilan University
during 2007 (Bar-Ilan et al., 2009). The second one
is a labeled log file from AOL’s research lab. We en-
riched the query with the top-10 snippets in the result
set, the titles of the top-10 documents and their urls to
form the vectorx. Then for the test query, we enriched
the query with the same information and predict the
probability via Equation (2).

To keep our data consistent, for a given query, we
record the list rank of the given click-through in the
result set, as it may be different from the one recorded
in the log data. Then query classification is carried
out by enriching the query with the top-10 results. In
this manner we attain the class probability distribu-
tion. After that we assign each result into its class.

5 EXPERIMENTAL RESULTS

In Section 5.1, we present the results for multiple-
click queries (m-clicks). The results for one-click
queries (1-click) are presented in Section 5.2.

5.1 Results for Multiple-click Queries

Each target document has an original list rank from
1 to 20. Table 2 shows for each list rank, the mean
value of the corresponding classification rank. Col-
umn 1 of Table 2 provides the list rank of the target
documents for the top-10 documents, i.e., there is no
classification, only a traditional list of retrieved docu-
ments. Column 2-7 provide the equivalent classifica-
tion ranks (CR), i.e., the total number of classes and
documents a user must examine in order to find the
target document. If the CR is less than the LR, then
the classification based system outperforms a tradi-
tional system. The smallest value indicates the least
number of documents that a user must inspect before
finding the desired document. Columns 8-14 provide
the same data for list ranks between 11 and 20.

We can see that for list ranks between 1 and 4, all
CR values in the corresponding row are greater than
the list rank. For a list rank of 5 and higher, there is
always a CR that is less than the corresponding list
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Table 2: The comparison of class based rank for the last clickthrough according to list rank(m-clicks).

LR QR DR SR QSR QDLR QDIR LR QR DR SR QSR QDLR QDIR
1 3.00 2.00 2.88 2.79 2.08 2.13 11 7.46 7.69 7.16 7.18 7.60 7.57
2 3.55 3.00 3.39 3.32 2.93 3.01 12 7.89 8.07 7.52 7.59 8.01 7.93
3 3.95 3.64 3.73 3.68 3.58 3.63 13 8.38 8.58 7.99 8.05 8.50 8.41
4 4.45 4.23 4.20 4.20 4.15 4.18 14 8.41 8.66 8.07 8.13 8.57 8.50
5 4.81 4.80 4.63 4.58 4.71 4.70 15 8.99 9.17 8.56 8.68 9.10 9.05
6 5.28 5.26 4.95 4.99 5.19 5.18 16 9.55 9.84 9.25 9.32 9.74 9.64
7 5.65 5.86 5.41 5.42 5.74 5.68 17 9.64 10.03 9.23 9.29 9.94 9.83
8 6.11 6.24 5.86 5.85 6.15 6.12 18 10.50 10.82 10.12 10.17 10.72 10.63
9 6.37 6.58 6.13 6.13 6.49 6.44 19 10.69 10.95 10.27 10.36 10.88 10.80

10 6.83 7.05 6.54 6.56 6.97 6.89 20 11.27 11.52 10.98 10.95 11.41 11.32

rank. However, it is not the case that a single partic-
ular classification-based system is superior, although
in most cases, ranking classes by class size (SR) has
best performance.

One reason why the classification-based rankings
do not yield an improvement for list ranks of 5 or less,
is that classification ranks introduce a small overhead,
i.e. an extra click to examine the class the result is
in. Thus, if the desired document is ranked first, i.e.
its list rank is 1, and, for classification-based ranking,
this document is the first document in the first class,
the user must examine one class and one document,
thereby incurring a cost of 2.

It is interesting to note that for an initial list rank
of 5 or less, the best classification-based methods
are provided by document-based ranking methods,
specifically DR and QDIR. However, for list ranks
greater than 5, classification methods based on class
size perform best. For an initial list ranks between 5
and 10, we observe that SR and QSR are the best, and
for an initial list rank greater than 10, SR most usually
performs best. This might be due to the fact that for
list ranks greater than 10, the initial query is, by defi-
nition, poor, and therefore ranking classes based only
on the query-independent component is usually supe-
rior. However, the difference in performance between
the two methods is actually quite small.

Figure 1 shows the cumulative distribution of tar-
get documents for each method. We see that for list
rank, approximately 25% of target documents are at
list rank of 1, and 35% have a list rank less than or
equal to 2. No class rank system has a class rank of 1
because of the overhead it introduces. Approximately
25% of clicked document have a classification rank of
2. The list rank and classification rank cross at rank 4.
Approximate 50% of documents have a rank of 4 or
less for all systems. Conversely, 50% of clicked doc-
uments have a rank greater than 4, and in those cases,
a class based system performs better.

Figure 1: The cumulative distribution of the rank of target
documents for m-clicks queries.

5.2 Results for One-click Queries

The performance for one-click queries is very similar
to the multiple-click queries.

Table 3 shows the mean value of the respective
classification rank for each list rank. Column 1 of Ta-
ble 3 provides the list rank of the clicked document in
the list-ranked results set. We can see that all classi-
fication ranks perform worse than the list rank when
list rank is less than or equal to 4, which is similar to
the results in Table 2. The classification rank outper-
forms the list rank when the list rank is greater than 4.
In those cases, once again, ranking classes based on
class size, i,e, SR and QSR, exhibit best results.

Figure 2 shows the cumulative distribution of tar-
get documents for each method, for 1-click queries.

Compared to the Figure 1, the list rank more
strongly dominates the top ranks, i.e., approximate
47% of target documents are at list rank of 1 and
about 70% of target documents are at ranks of three or
less. As before, ranking classes based on a document-
based ranking provides the best performance for the
classification methods when the list rank is less than
5.

If the initial query is good, i.e. the target docu-
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Table 3: The comparison of class based rank for the one click through according to list rank(1-click).

LR QR DR SR QSR QDLR QDIR LR QR DR SR QSR QDLR QDIR
1 3.11 2.00 2.85 2.79 2.08 2.14 11 8.03 8.06 7.54 7.67 8.03 8.03
2 3.57 3.00 3.32 3.28 2.94 3.04 12 7.95 8.03 7.38 7.47 7.98 7.93
3 4.13 3.68 3.74 3.76 3.61 3.68 13 8.23 8.25 7.78 7.78 8.17 8.14
4 4.56 4.25 4.20 4.21 4.18 4.22 14 8.71 8.67 8.28 8.29 8.60 8.56
5 4.98 4.78 4.62 4.65 4.71 4.73 15 9.04 9.18 8.61 8.67 9.13 9.10
6 5.40 5.31 5.04 5.05 5.25 5.24 16 9.55 9.85 9.28 9.26 9.72 9.57
7 5.87 5.85 5.51 5.52 5.77 5.74 17 10.05 10.37 9.81 9.79 10.31 10.17
8 6.22 6.16 5.88 5.92 6.06 6.06 18 9.88 10.14 9.65 9.60 10.09 9.91
9 6.40 6.51 6.05 6.09 6.43 6.36 19 10.95 11.12 10.38 10.60 11.05 11.01

10 7.01 7.11 6.63 6.64 7.04 7.01 20 10.95 11.17 10.51 10.58 11.14 11.03

Figure 2: The cumulative distribution of the rank of target
documents for 1-click queries.

ment has a list rank less than 5, then displaying re-
sults as a traditional one-dimensional list is superior.
However, for queries where the initial list rank is 5
or more, classification based ranking offers better re-
sults. It would therefore be interesting to investigate a
hybrid method for displaying the result set, in which
the top-ranked document is displayed first, followed
by categorized results.

6 CONCLUDING REMARKS

We proposed a probabilistic model for ranking
classes, and derived six ranking functions from
this model. Two models, SR and DR, were
query-independent, and one model, QR, was query-
dependent. A combination of these resulted in the
models QSR, and QDIR and QDLR.

Within each class, the rank order of documents
was identical to that in the original list rank. We be-
lieve this is an important experimental control in or-
der to be certain that any improvements in ranking are
solely due to the classification methods under investi-
gation.

We examined a subset of queries derived from an

MSN log recorded in Spring 2006. This subset con-
sisted of 20,000 queries for which 1-click was asso-
ciated with each query, and 20,000 queries for which
multiple-clicks were associated with each query. The
two data sets were examined independently, but ex-
perimental results are consistent across both. In par-
ticular, we observed that for target documents with
an initial list rank less than 5, the classification-based
methods offered no advantage. This is partly due to
the fact that these methods introduce a small over-
head, i.e. to even examine the first document in the
first class requires two, rather than one click. How-
ever, for target documents with an initial list rank of
5 or more, classification methods are better. Of the
six methods examined, the two based on class size,
SR and QSR, performed best. The difference between
these two methods is also small.

For the case where the target document has an ini-
tial scroll rank of 5 or less, the document-based classi-
fication methods performed best. However, they were
inferior to traditional list rank, i.e. no classification.

The fact that traditional list rank performs well
for good queries, i.e. where the initial rank of target
documents is less than 5, while classification-based
methods perform well for poorer queries, i.e. where
the initial rank of target documents is greater than
4, suggests that some form of hybrid method should
be investigated. For example, one could display the
top-ranked document followed by categorized results.
This would be an interesting line of future investiga-
tion.

A key assumption of our experimental results is
that the retrieved results obtained using Live Search
are similar to those observed by users at the time the
query log was collected in Spring 2006. It is not pos-
sible to verify this assumption, and it would be inter-
esting to repeat our experiments on more recent data.

In our work, we also assume that classification is
perfect, i.e. that documents are correctly classified
and that users correctly identify the target class. In
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practice, this will not be the case, and our experimen-
tal results must be considered a best case. Neverthe-
less, we are optimistic that classification errors can be
kept small. In particular, documents could be clas-
sified during indexing, when considerably more in-
formation than just the result set is available. And,
over time, users are likely to learn the classification
ontology and increase the frequency of choosing the
correct class.
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APPENDIX

The list of classes, See below:
[Art, Auto, Companies & Business, Computing, Di-
rectories, Education, Employment, Entertainment, Fi-
nance & Economy, Food & Drink, Games, Gov-
ernment Organization, Health & Medicine, Holiday,
Home, Law & Legislation, Nature, News, People,
Places, Pornography, Religion, Science, Shopping,
Society & Community, Sports, Technology]
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