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Ontology evaluation poses a number of difficult challenges requiring different evaluation methodologies, par-
ticularly for a “dynamic ontology” representing a complex set of concepts and generated by a combination of
automatic and semi-automatic methods. We review evaluation methods that focus solely on syntactic (formal)
correctness, on the preservation of semantic structure, or on pragmatic utility. WWe propose two novel methods
for dynamic ontology evaluation and describe the use of these methods for evaluating the different taxonomic
representations that are generated at different times or with different amounts of expert feedback. The pro-
posed “volatility” and “violation” scores represent an attempt to merge syntactic and semantic considerations.
Volatility calculates the stability of the methods for ontology generation and extension. Violation measures the
degree of “ontological fit” to a text corpus representative of the domain. Combined, they support estimation
of convergence towards a stable representation of the domain. No method of evaluation can avoid making
substantive normative assumptions about what constitutes “correct” representation, but rendering those as-
sumptions explicit can help with the decision about which methods are appropriate for selecting amongst a
set of available ontologies or for tuning the design of methods used to generate a hierarchically organized

representation of a domain.

1 INTRODUCTION

The evaluation of domain ontologies that are gen-
erated by automated and semi-automated methods
presents an enduring challenge. A wide variety of
evaluation methods have been proposed; but it should
not be assumed that one or even a handful of evalua-
tion methods will cover the needs of all applications.
Ontology evaluation is as multifaceted as the domains
that ontology designers aspire to model. Projects dif-
fer in the resources available for validation, such as
a “gold standard” ontology, measures of user satis-
faction, explicitly stated assumptions about the logi-
cal or semantic structure of the domain’s conceptual-
ization, or a textual corpus or dictionary whose fit to
the ontology can be measured. They will also differ
in the goals of the evaluation — for instance, whether
they aim to use evaluation to select amongst a set of
available ontologies or to tune their methods of on-
tology design. Further, the methods will differ in the
assumptions they make about their subject domains
— for no evaluation method is possible without sub-
stantive normative assumptions as to the nature of the
“right” ontology.
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At the Indiana Philosophy Ontology (InPhO)
project®, we are developing techniques to evaluate the
taxonomic structures generated by machine reason-
ing on expert feedback about automatically extracted
statistical relationships from our starting corpus, the
Stanford Encyclopedia of Philosophy (SEP). InPhO
does not assume that a single, correct view of the dis-
cipline is possible, but rather takes the pragmatic ap-
proach that some representation is better than no rep-
resentation at all (Buckner et al., 2010). Evaluation
allows us to quantify our model and makes explicit
the specific biases and assumptions underlying each
candidate taxonomy.

In this paper, we describe a pair of evaluation met-
rics we have found useful for evaluating ontologies
and our methods of ontology design. These met-
rics are designed for projects which have access to
large textual corpora, and which expect the structure
of their ontology to fit the distribution of terms in this
corpus. The volatility score (section 4.1) measures the
structural stability over the course of ontology exten-
sion and evolution. The violation score (section 4.2)
measures the semantic fit between an ontology’s tax-
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onomic structure and the distribution of terms in an
underlying text corpus.

Before diving into these methodologies, we will
first situate them within the broader evaluation litera-
ture (section 2). Then we will describe the InPhO in
further detail, along with the raw materials we will be
evaluating (section 3). After this, we explore each of
the two new measures, labeling their assumptions and
demonstrating their capacity to guide the process of
ontology design.

2 STATE OF THE ART

Approaches to ontology evaluation are heavily depen-
dent on the positions taken towards ontology struc-
ture and design. Different assumptions underlying
these positions are often left implicit and this has
led to a tangled web of conflicting opinions in the
literature. However, Gangemi, Catenacci, Ciaramita
and Lehmann (2006) provide an excellent conceptual
scaffolding for use in detangling the web by establish-
ing three categories of evaluation techniques:

Structural Evaluation inspects the logical rigor
and consistency of an ontology’s encoding
scheme, typically as a directed graph (digraph) of
taxonomic and non-taxonomic relations. Struc-
tural evaluations are a measure of syntactic cor-
rectness. A few examples of structural evalua-
tion include the OntoClean system (Guarino and
Welty, 2004) and Gomez-Pérez’s (1999) paradigm
of correctness, consistency and completeness,
which was extended by Fahad & Qadir (2008).
Our proposed volatility score (Section 4.1) is a
structural evaluation of semantic consistency dur-
ing successive stages of a dynamic ontology’s it-
erative extension and evolution.

Functional Evaluation measures the suitability
of the ontology as a representation of the target
domain. Many functional evaluations follow a
“gold standard” approach, in which the candidate
ontology is compared to another work deemed
a good representation of the target domain (e.g.
Dellschaft & Staab (2008) and Maedche & Staab
(2002)). Another approach is to compare the can-
didate ontology to a corpus from which terms and
relations are extracted (Brewster et al., 2004). Our
proposed violation score (Section 4.2) is a corpus-
based functional evaluation of semantic ontologi-
cal fit.

Usability Evaluation examines the pragmatics
of an ontology’s metadata and annotation by fo-
cusing on recognition, efficiency (computational

and/or economic), and interfacing. The recog-
nition level emerges from complete documenta-
tion and effective access schemes. The efficency
level deals with proper division of ontological re-
sources, and proper annotation for each. The in-
terfacing level is limited by Gangemi et al. (2006)
to the examination of inline annotations for inter-
face design, but these are not essential properties.

One chief measure of usability is compliance to
standards such as OWL and RDFa. Several frame-
works for social usability evaluation have been
proposed by Supekar (2004) and Gomez-Pérez
(in Staab, 2004). ONTOMETRIC is an attempt
to codify the various factors in usability evalua-
tion by detailing 160 characteristics of an ontol-
ogy and then weighting these factors using semi-
automatic decision-making procedures (Lozano-
Tello and Gomez-Pérez, 2004).

These three paradigms of evaluation are real-
ized in different evaluation contexts, as identified by
Brank, Mladenic and Grobelnik (2005):

Applied.  For functional and usability evalua-
tion, using the ontology to power an experimental
task can provide valuable feedback about suitabil-
ity and interoperability. Applied approaches re-
quire access to experts trained in the target domain
and/or ontology design. Velardi, Navigli, Cuc-
chiarelli, and Neri’s OntoLearn system (2005) uti-
lizes this type of applied evaluation metric. Porzel
and Malaka (2005) also use this approach within
speech recognition classification.

Social. Methods for usability evaluation proposed
by Lozano-Tello and Gomez-Pérez (2004), Su-
pekar (2004), and Noy (in Staab, 2004) for net-
works of peer-reviewed ontologies, in a similar
manner to online shopping reviews. Most social
evaluation revolves around the ontology selection
task. These evaluations involve a purely qualita-
tive assessment and may be prone to wide varia-
tion.

Gold Standard. As mentioned above, the gold
standard approach compares the candidate on-
tologies to a fixed representation judged to be a
good representation (Maedche and Staab, 2002;
Dellschaft and Staab, 2008). These approaches
draw strength from the trainability of the au-
tomatic methods against a static target, but the
possibility of over-training of automated and
semi-automated methods for ontology population
means that the methods may not generalize well.

Corpus-based. Approaches such as those used by
Brewster, Alani, Dasmahapatra, and Wilks (2004)
calculate the “ontological fit” by identifying the

111



KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

proportion of terms that overlap between the on-
tology and the corpus. This is a particularly well-
suited measure for evaluating ontology learning
algorithms. Our methods expand this measure-
ment approach to cover term relations through
both the violation and volatility measures.

This collection of evaluation paradigms and con-
textual backdrops allows us finally to consider the
type of information content being evaluated. A
“computational ontology”, such as the InPhO, is a
formally-encoded specification of the concepts and a
collection of directed taxonomic and non-taxonomic
relations between them (Buckner et al., 2010; Gruber,
1995; Noy and McGuinness, 2001). When evaluat-
ing information content, we must be careful to delin-
eate those which are node-centric (focusing on con-
cepts) from those which are edge-centric (focusing
on relations). Many authors (Maedche and Staab,
2002; Guarino and Welty, 2004; Brewster et al., 2004;
Gomez-Pérez, 1999; Velardi et al., 2005) focus upon
node-centric techniques, asking “Are the terms speci-
fied representative of the domain?” These investigate
the lexical content of an ontology. However, the se-
mantic content of an ontology is not defined solely
by the collection of terms within it, but rather by the
relations of these terms. Maedche & Staab (2002)
take this initial lexical evaluation and extend it to an
edge-based approach which measures the number of
shared edges in two taxonomies. The proposed viola-
tion and volatility scores (Section 4) are novel edge-
based measures which address the semantic content of
an ontology by comparing them to statistics derived
from a relevant corpus as a proxy for domain knowl-
edge. Additionally, these scores can provide insight
to the ontology design process by showing the con-
troversy of domain content and convergence towards
a relatively stable structure over time.

3 OUR DYNAMIC ONTOLOGY

A wide variety of projects can benefit from the de-
velopment of a computational ontology of some sub-
ject domain. Ontology science has evolved in large
part to suit the needs of large projects in medicine,
business, and the natural sciences. These domains
share a cluster of features: the underlying structures
of these domains have a relatively stable consensus,
projects are amply funded, and a primary goal is of-
ten to render interoperable large bodies of data. In
these projects, the best practices often require hir-
ing so-called “double experts” — knowledge modelers
highly trained in both ontology design and the sub-
ject domains — to produce a representation in the early
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stages of a project which is optimally comprehensive
and technically precise.

There is another cluster of applications, however,
for which these practices are not ideal. These involve
projects with principles of open-access and domains
without the ample funding of the natural sciences.
Additionally, ontologies for domains in which our
structural understanding is controversial or constantly
evolving, and projects which utilize computational
ontologies to enhance search or navigation through
asynchronously updated digital resources must ac-
count for the dynamic nature of their resources —
whether it is in the underlying corpus or in the judg-
ments of the experts providing feedback on domain
structure. On the positive side, these areas often have
more opportunities to. collect feedback from users
who are domain experts but lack expertise in ontol-
ogy design.

For the latter type of project we have recom-
mended an approach to design which we call dynamic
ontology. While a project in the former group prop-
erly focuses the bulk of its design effort on the pro-
duction of a single, optimally correct domain repre-
sentation, the latter cluster is better served by treating
the domain representation as tentative and disposable,
and directing its design efforts towards automating as
much of the design process as possible. Dynamic on-
tology, broadly speaking, tries to take advantage of
many data sources to iteratively derive the most useful
domain representation obtainable at the current time.
Two primary sources of data are domain experts and
text corpora. Domain experts provide abstract infor-
mation about presently-held assumptions and emer-
gent trends within a field from a source, namely their
own ideas, that is hard to examine directly. Text cor-
pora make it possible to quantify what is meant by
“domain” by providing a concrete encoding of the se-
mantic space that is available for empirical analysis,
in contrast to the ill-defined abstraction of “the do-
main is what the experts conceive of it as”. From both
kinds of sources many types of data may be gathered:
statistical relationships among terms, feedback from
domain experts, user search and navigation traces, ex-
isting metadata relationships (e.g. cross-references or
citations), and so on. As more data become available
and our understanding of the subject domain contin-
ues to evolve, the domain representation will be be
dynamically extended, edited, and improved.

In dynamic ontology, problems of validation loom
especially large due to the combination of heteroge-
nous data sources. Each step in the design process
presents modelers with a panoply of choices for in-
consistency mitigation — e.g., which sources of data
to favor over others, how to settle feedback disagree-
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ments, which reasoning methods to use for popula-
tion, how much feedback to solicit, and how to weigh
user feedback against statistical suggestions. The au-
tomation of ontology design is a field in its infancy,
and very little is known about the optimal choices to
satisfy specific design goals. Additionally, dynamic
ontologists might have questions regarding represen-
tational stability. If the domain is itself in flux or
controversial, modelers might want to know if they
have captured that change. The quantity of feedback
may also influence the convergence of a population
method to some stable representation. The devel-
opment of precise metrics about the relationship be-
tween an ontology and a domain may be useful in a
answering these questions.

The InPhO is a dynamic ontology which models
the discipline of philosophy. Our approach leverages
expert knowledge by augmenting it with machine rea-
soning, greatly reducing the need for expensive “dou-
ble experts”. The primary source of text data and do-
main experts is the Stanford Encyclopedia of Philoso-
phy (SEP)2. With over 700,000 weekly article down-
loads, the SEP is the leading digital humanities re-
source for philosophy. The corpus consists of over
1,200 articles and 14.25 million words maintained by
over 1,600 volunteer authors and subject editors. The
tremendous depth of the encyclopedia makes it im-
possible for any one person to have expertise over the
whole domain, necessitating the creation of a useful
organization scheme to provide better editorial con-
trol and content accessibility. At the same time, the
comprehensive richness of the SEP makes it a reason-
able proxy for the discipline of philosophy as a whole.

We begin with a small amount of manual ontology
construction obtained through collaboration with do-
main experts. A lexicon is established from SEP ar-
ticle titles, Wikipedia philosophy categories, n-gram
analysis and ad hoc additions by the InPhO curators.
We then build on this framework using an iterative
three-step process of data mining, feedback collec-
tion, and machine reasoning to populate and enrich
our representation of philosophy (see Figure 1).

First, the SEP is mined to create a co-occurrence
graph consisting of several statistical measures. For
each term in our lexicon, information entropy is mea-
sured, which provides an estimate of relative gen-
erality. For each graph edge, we calculate the J-
measure, which provides an estimate of semantic sim-
ilarity. From these measures we are able to generate
hypotheses about hypernym/hyponym candidates for
sets of terms in the corpus (Niepert et al., 2007). Sec-
ond, SEP authors and other volunteers verify these
hypotheses by answering questions about relational

Zhttp://plato.stanford.edu

hypotheses. This reduces the effect of any statisti-
cal anomalies which emerge from the corpus. Finally,
logic programming techniques are used to assemble
these aggregated feedback facts into a final popu-
lated ontology (Niepert et al., 2008). This knowledge
base can then be used to generate tools to assist the
authors, editors, and browsers of the SEP, through
tools such as cross-reference generation engine and
context-aware semantic search.

As was mentioned in the introduction, our prag-
matic approach recognizes the likelihood that there is
no single, correct view of the discipline. However,
even if other projects do not agree with our taxonomic
projections, our statistical data and expert evaluations
may still be useful. By exposing our data from each
of the three steps through an easy-to-use API, we en-
courage other projects to discover alternative ways
to construct meaningful and useful representations of
the discipline. Additionally, by offering an open plat-
form, we invite other projects to contribute relevant
data and expert feedback to improve the quality of the
service,

3.1 Raw Materials

In this section we describe the various components
of our project which can be exploited for ontology
evaluation.

3.1.1 Structure

The core of the InPhO is the taxonomic representation
marked by the isa relations between concepts. Con-
cepts in the InPhO may be represented as part of ei-
ther class or instance relations. Classes are specified
through the direct isa hierarchy of the taxonomy (see
below). Instances are established between a concept
and another concept which is part of the taxonomic
structure. Semantic crosslinks (hereafter, links) can
be asserted between two classes to capture the relat-
edness of ideas deemed mutually relevant by feedback
or automatic methods.

3.1.2 Statistics

The InPhQO’s ontology population and extension tech-
niques rely upon an external corpus (the SEP) to
generate hypotheses about similarity and generality
relationships. From this corpus we generate a co-
occurrence graph G = (V; E) in which each node rep-
resents a term in our set of keywords. An edge be-
tween two nodes indicates that the terms co-occur at
least once.
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Figure 1: The InPhO Workflow.

For each node, the information content (Shannon
entropy) is calculated:

H (i) = p(i) log p(i) @)

For each edge, the directed J-measure (Smyth and
Goodman, 1992; Niepert et al., 2007) and conditional
entropy (Shannon, 1949) is calculated bidirectionally.
The conditional entropy calculates the information
content of a directed edge i X j. This is used as a
measure of semantic distance between two terms:

p()
pQi; j)

The J-measure calculates the interestingness of in-
ducing the rule “Whenever idea i is mentioned in a
fragment of text, then idea j is mentioned as well”

(Niepert et al., 2007). This is used as a measure of
semantic similarity between two terms:

H(ji1) = p(; j)log 2

£ ¥ j)=p(jjilog p;{};’
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3.1.3 Methods

The taxonomy itself is populated through the use of
answer set programming (Niepert et al., 2008). A
population method M(R;S; F) is specified by a set of
rules R, a seed taxonomy S, and a set of expert feed-
back or statistical hypotheses F. Changes in F allow
us to measure the impact of groups of expert feed-
back and to evaluate an ontology extension method.
Proposed ruleset changes can be evaluated by main-
taining the same set of inputs while testing variations
in R. The seed taxonomy is used to reduce the com-
putational complexity of a methodology, and changes
to this seed can be used to strengthen the ontology
design process. We currently have two years of data
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collected on nightly repopulation of the published In-
PhO taxonomy, which is used for evaluation of our
ontology extension methods.

3.2 Our Challenges

As hinted above, our dynamic approach to ontology
design presents several unique challenges which re-
quire that appropriate validation methods be devel-
oped to address them. Specifically, there are a variety
of different ways that our answer set program could
infer a final populated ontology from aggregate ex-
pert feedback. For example, there are different ways
of settling feedback inconsistencies (e.g. by lever-
aging user expertise in various ways (Niepert et al.,
2008)), by checking for inconsistency between feed-
back facts (e.g. looking only at directly asserted in-
consistencies or by exploring transitivities to look for
implied inconsistencies), and by restricting the con-
ditions in which an instance or link relationship can
be asserted (e.g. forbidding/permitting multiple clas-
sification, forbidding linking to a node when already
reachable by ancestry, etc.). It is difficult or impossi-
ble to decide which of these design choices is optimal
a priori, and some precise evaluation metric would be
needed to determine which ruleset variations tend to
produce better results in certain circumstances.
Furthermore, our current methodology uses a
manually-constructed seed taxonomy and populates
this taxonomic structure through user feedback.
Many options are possible for this initial hand-coded
structure, and different experts would produce differ-
ent conceptualizations; we might want a measure of
which basic conceptualization tends to produce rep-
resentations which best fit the distribution of terms in
the SEP. More ambitiously, if we allow the answer
set program to use disjunctive branching rules with
regards to instantiation (thus creating multiple candi-
date ontologies from a single set of input), we could
produce a large space of possible ontologies consis-
tent with user feedback and a general theory of on-
tologies; the task would then be to rank these candi-
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dates according to their suitability for our metadata
goals. Again, a precise evaluation metric which could
be used to select the “best” ontology from this space
is needed.

Another guestion concerns the amount of expert
feedback needed before we begin to see diminishing
returns. For example, we can only collect a limited
amount of feedback from volunteer SEP authors and
editors before the task becomes onerous; as such, we
want to prioritize the collection of feedback for ar-
eas of the ontology which are currently underpopu-
lated, or even pay some domain experts to address
such sparseness. To optimize efficiency, we would
want to estimate the number of feedback facts that
are needed to reach a relatively stable structure in that
area.

Finally, given that philosophy is an evolving do-
main rich with controversies, we might wonder how
much our evolving representation of that domain cap-
tures these debates as they unfold. One of the alluring
applications of dynamic ontology is to archive ver-
sions of the ontology -over time and study the evo-
lution of a discipline as it unfolds. This is doubly-
relevant to our project, as both our domain corpus
(the asynchronously-edited SEP) and our subject dis-
cipline are constantly evolving. The study of this con-
troversy and the evolution resulting from it could be
greatly enhanced by using metrics to precisely char-
acterize change across multiple archived versions of
the ontology.

4 OUR SCORES

By stressing the dynamic nature of philosophy, we
do not mean to imply that the sciences lack contro-
versy, or that scientific ontologies do not need ways of
managing change. Nevertheless, whereas the sciences
typically aim for empirically-grounded consensus, the
humanities often encourage interpretation, reinterpre-
tation, and pluralistic viewpoints. In this context, the
construction of computational ontologies takes on a
social character that makes an agreed-upon gold stan-
dard unlikely, and makes individual variation of opin-
ion between experts a permanent feature of the con-
text in which ontology evaluation takes place. Be-
cause of the dynamic, social nature of the domain, we
do not try to achieve maximal correctness or stability
of the InPhO’s taxonomy of philosophical concepts
in one step. But by iteratively gathering feedback,
and improving the measures by which the ontology
fit to various corpora can be assessed, we can hope
to quantify the extent to which a stable representation
can be constructed despite controversy among users.

Our volatility score is designed to provide such a mea-
sure.

Many approaches to ontology evaluation, such as
our volatility score, focus solely on syntactic (formal)
properties of ontologies. These methods provide im-
portant techniques for assessing the quality of an on-
tology and its suitability for computational applica-
tions, but stable, well-formed syntax is no guarantee
that semantic features of the domain have been accu-
rately captured by the formalism. By using the SEP
as a proxy for the domain of philosophy, our violation
score exploits a large source of semantic information
to provide an additional estimate as to how well the
formal features of our ontology correspond to the rich
source material of the SEP.

4.1 \olatility Score

Most generally, a volatility score provides a mea-
sure of the amount of change between two or more
different versions of a populated ontology.® Such a
metric can serve a number of different purposes, in-
cluding controversy assessment and stability assess-
ment for a proposed methodology. As mentioned ear-
lier, the ever-changing copora and domains modeled
by a dynamic ontology are riddled with controversy.
By comparing the changes between multiple archived
versions of a populated ontology through a “directed
volatility” score, we are able to track the evolution of
a knowledge base over time. At the same time, we
expect a proposed methodology to handle inconsis-
tencies gracefully. By using random samples of ex-
pert feedback, we are able to test a ruleset variation’s
stability through a “grab-bag volatility” score. By ad-
justing the size of these random samples, we can also
use this measure to determine how much feedback to
solicit before reaching a point of diminishing returns
with regards to stability.

While “volatility” represents a family of related
methods, they all share the same basic intuition that
some value is added to the aggregate volatility score
each time the method “changes its mind” about as-
serting some particular link in the ontology (e.g. an
instance switches from being asserted to not asserted
under some class). For example, consider the repre-
sentation of controversy over time: if behaviorism is
said to be highly related to philosophy of language but
a handful of expert evaluations indicate otherwise, our
model would “change its mind” about asserting a link
between behaviorism and philosophy of language. As
other experts choose sides and weigh in on the matter,
the volatility continues to increase, further pointing to

SWe thank Uri Nodelman for early discussion of this
idea.
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an area of conflict. To consider another application,
volatility can be used to indicate how much feedback
is needed to reach stability for some area of the ontol-
ogy by taking random subsets of feedback facts, and
assessing the amount of volatility between ontologies
generated from those random subsets. By increasing
the size of the subset, we then see how much impact
new feedback is having. Once we reach an accept-
ably low threshold for volatility, we can decide that
collecting more feedback is not worth the effort and
cost.

4.1.1 Assumptions & Requirements

\olatility measures the structural stability of a set of
ontologies or (derivatively) an ontology population
method. Many in the semantic web community hold
that domain ontologies are supposed to be authorita-
tive descriptions of the types of entites in a domain
(Smith, 2003). However, ontology development is of-
ten an iterative process (Noy and McGuinness, 2001),
especially in dynamic ontology. The volatility score
carries with it this assumption that a “final answer”
description will not respond to the metadata needs
of a dynamic corpus such as the SEP, Wikipedia, or
WordNet. Additionally, a domain can undergo wide
paradigm shifts, dramatically changing its conceptual
landscape (Kuhn, 1962). The advent of new the-
ories like quantum mechanics or new technologies
like computers, for example, radically reshaped the
conceptual landscape of philosophy. Therefore, the
volatility score must be evaluated by domain experts
to determine whether instability is due to undesirable
errors/omissions in feedback or the machine reason-
ing program, or whether it instead properly highlights
ongoing controversy within the field. In the former
case, changes to the ontology extension methods can
be made and evaluated against the old measure using
the violation score. In the latter, these highlighted ar-
eas of controversy could be used to inform research in
the field. In the case of the InPhO project, this could
help facilitate analytic metaphilosophy (see Section
6.1 of Buckner, Niepert, and Allen (2010)).

4.1.2 Formalization

There are two subfamilies of volatility scores. One is
the “directed volatility” which assesses the number of
times an instance flips from being asserted to not as-
serted given an ordered set of ontologies. “Directed
volatility” can be used to examine archived versions
of an ontology and provide feedback about ontology
extension methods. However, these directed measures
will not be useful in calculating the amount of feed-
back needed for the domain representation to reach

116

some desired threshold of stability, as any ordering
of populated ontologies derived from n random sam-
ples of z feedback facts would be entirely arbitrary.
Thus we want a measure which does not require the
ontologies to be ordered, but rather provides an esti-
mate of how volatile that whole set is when mutually
compared.

One way to achieve this is to consider the set of
feedback facts not as a single entity which evolves
over time, but rather as a supply of materials that can
be used to populate an ontology. In a similar man-
ner, we conceive of the populated ontology not as
a-whole representation, but as a bag of inferred in-
stances. We then assess, for a set of n ontologies gen-
erated from random samples of z feedback facts and
any pair of terms P and Q, the relative proportion of
times instance_of (P, Q) is asserted vs. non-asserted.
Thus, for any two terms P and Q, the basic formula
for assessing the contribution of that pair to the over-
all volatility score is

oo
wpQ=1 X2 (5)
2
where x is the number of times that the
instance_of(P,Q) is asserted in the set under
consideration. The total volatility is given by

volatility(z) = v(P,Q)  (6)

1
count(P; Q) 8P0

However, a complication is introduced here in
that there are different etiologies which could lead
instance_of (P; Q) to switch from being asserted/non-
asserted. One way is for there to be a lack of any
feedback facts relevant to that instance which could
lead to the assertion of an instance_of relation; an-
other is due to the resolution of an inconsistency in
feedback facts (e.g. in one ontology a connection
is asserted between P and Q due to a user’s feed-
back, but not asserted in another because of con-
trary feedback from another user with a higher level
of expertise). In order to isolate these issues, we
adopt a “conservative” approach to assessing volatil-
ity: for any given pair of terms, we will only as-
sess a volatility contribution across the subset of on-
tologies where at least minimal raw materials are
present for asserting an instance_of relationship (e.qg.,
more_specific(P,Q) and highly_related(P;Q)). (It
follows from this that no violation is assessed for pairs
of terms which never have the raw materials for asser-
tion across those random subsets of feedback.) We
should still want to normalize this measure for the
whole set of generated ontologies, because we would
want to count an instance_of fact asserted 25 times
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out of 50 relevant ontologies (i.e. ontologies gener-
ated from the relevant raw materials) as more volatile
than a instance_of fact which shifted 10 times out of
20 relevant ontologies (out of the 50 total generated).
In this case, the equation is modified to

X Dim
VRQ=1 —Ft o (7)
2
which reduces to
oom
Yep=1 X 2 ®)
2
and gives the sum volatility of
volatilit (z)—# V(PQ)  (9)
y _count(F*,Q)gF,’Q ’

where m is the number of ontologies possessing raw
materials for a possible feedback assertion, and n is
the total number of ontologies generated for random
sampling of z feedback facts.

4.1.3 Interpretation of Results

Depending upon the modeler’s goals and assumptions
about the domain, the volatility metric can be dis-
played in different ways and given different interpre-
tations. Suppose, for example, that we want to visu-
alize an unfolding controversy in the discipline. We
may take some set of archived ontologies from the
temporal beginning and ending of the controversy,
and superimpose the volatility heat-maps for each
pairwise volatility comparison between a time slice
of the ontology and its temporal successor, coloring
areas of change, perhaps gradually fading from one
color to another as time goes on. “Hotter” areas of the
visualization indicate areas of more persistent contro-
versy, and the color shade indicates the trajectory of
the dialectic over time. This would allow an expert to
visualize the evolution of a controversy and its effects
rather effectively in a quick display.

Suppose instead that our goal was to determine the
amount of feedback needed for comprehensive and
authoritative coverage of an area of our ontology. In
that case, the volatility metric would be summed as in-
dicated above for random samples of z feedback facts,
and the net result would provide a volatility estimate
for z facts that could be compared to measures for
other numbers of feedback facts or a predetermined
threshold. In this case, volatility indicates not con-
troversy, but rather the stability of the representation
given that number of feedback facts, as well as how
likely that representation is to change with the addi-
tion of more. Furthermore, we could look not just

at the aggregate sum of individual pair volatilities,
but rather display those on a heat map again. “Hot-
ter” areas on this visualization might indicate areas
which require more comprehensive or authoritative
expert feedback, and thus could be used to direct the
feedback solicitation process towards areas where it
is most needed.

4.1.4 Preliminary Results

While we do not currently have enough feedback facts
to reliably estimate the amount of feedback needed
to_achieve diminishing returns, we have tested the
measure by taking random samples of z = 2000,
4000, 6000, and 8000 feedback facts, confirming
that volatility does indeed decrease with increas-
ing amounts of feedback even for our small data
set. A problem for small data sets, however, is that
the formalization of “grab-bag” volatility above de-
pends upon the idealization that one can draw y non-
overlapping random samples of z feedback facts from
the whole population of possible feedback. Our cur-
rent feedback consists of n = 8006 feedback facts.
This is severely limiting to the type of evaluation we
can presently do: At z = 2000, we can only take four
samples without overlap. As z approaches n, the prob-
ability that the very same feedback facts will be cho-
sen at each random sample increases exponentially
(and thus exponentially reduces the volatility metric).
While there are several possible methods to control
for this confound, we require a much larger sample of
feedback facts from which to draw our random sam-
ples. Further ideas as to how to deal with this con-
found are described in the Future Work section below.

4.2 \Violation Score

For a candidate taxonomy, we introduce a “violation
score” that is computed by assessing the degree to
which its relative placement of terms diverges from
statistically generated expectations about those terms
relative locations in semantic space (as estimated by
their corpus-derived similarity and relative generality
measures). Similar to Dellschaft and Staab (2008), we
consider violation on both a local and the global level.
For local violations we only look at parent-child tax-
onomic relations. For the global violations, we look
at the weighted pathwise distance between two terms
in a taxonomy.

4.2.1 Assumptions & Requirements
One goal of ontology design is to produce a represen-

tation which captures the semantic structure of a do-
main. In order to have a concrete standard for evalua-

117



KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

tion, the violation score uses the distribution of terms
in corpus, e.g. a reference work in that domain, as
a proxy for the domain itself. Evaluation may thus
draw upon the statistical measures outlined in Section
3.2.2. However, any metric relating an ontology’s tax-
onomic relations to statistical measures carries with
it implicit assumptions regarding the semantic inter-
pretation of the ontology’s structural properties, such
as the interpretation of edges, pathwise distance, or
genealogical depth. In order for the representation
to be useful in end user applications (such as visu-
alization, semantic search, and ontology-guided con-
ceptual navigation), we consider several approaches
to interpreting ontological structure, which may be
adopted with varying degrees of strength:

Topic Neutrality. One might simply wish to reg-
iment all of the vocabulary in a common structure
representing only the isa relationships that exist
among the various terms. The goal of such a tax-
onomy is simply to enforce a hierarchical struc-
ture on all the terms in the language. According to
this approach, there is no implied semantic signifi-
cance to the node depth (aka, genealogical depth)
or to path length between pairs of nodes beyond
the hierarchical semantics of the isa relation it-
self. For example, if English contains more levels
of classificatory terms for familiar animals than
it does for relatively unfamiliar organisms, a term
such as “dog” may sit at a greater depth in the tax-
onomy from the root node than terms for other or-
ganisms that are similarly specific, but nothing of
any semantic significance is implied by this depth
(or the distance between term nodes) beyond the
existence of the intervening terms in the language.

Depth as Generality. One might desire that all
sibling nodes have approximately the same level
of generality in the target domain, making node
depth (distance from the root node) semantically
significant. On this view, the terms dog (a species)
and feline (a family) should not be at the same
depth, even if the language of the domain or cor-
pus contains the same number of lexical con-
cepts between dog and thing as between feline and
thing. Here one expects the entropy of terms at the
same depth to be highly correlated.*

Leaf Specificity. One might desire that all leaf
nodes in the structure represent approximately the

4Edge equality provides a special case of depth as gener-
ality. The latter requires only that all edges at a given level
represent the same semantic distance, whereas edge equal-
ity also requires these distances to be consistent between
the different levels (e.g., the movement from a species to a
genus represents the same conceptual distance as that be-
tween an order and a class).
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same grain of analysis. On this view, regard-
less of node depth, leaves should have similar en-
tropy. Thus, for example, if hammerhead shark
and golden retriever are both leaf nodes, leaf
specificity is violated if these terms are not simi-
larly distributed across the corpus that is standing
proxy for the domain.

Choices among these desiderata are central to any
argument for edge-based taxonomic evaluation. This
is especially true for gold standard approaches which
implicitly hold the relations of two candidate ontolo-
gies to be semantically equivalent. Additionally, we
suspect that most domains have asymmetric taxo-
nomic structures: subtrees of sibling nodes are not
typically isomorphic to one another, and this means
that even within a given taxonomy, path length be-
tween nodes and node depth may not have the same
semantic significance.

In our comparison methods we assume that node
depth is topic neutral — that is, node depth bears lit-
tle correlation to specificity or generality on a global
level. However, by definition, a child node should be
more specific than its parent node. Thus, we measure
local violation by comparing the information content
of the parent and child nodes. When two terms are
reversed in specificity we can count this as a syntac-
tic violation of the taxonomic structure. Additionally,
we can expect sibling instances to be closely related
to one another and to their parent node by statistical
measures of semantic distance. An instance is in vi-
olation if it is an outlier compared to the rest of its
siblings.

We propose that overall violation is an emergent
property from these localized semantic violations.
These violations are each weighted by the magnitude
of the error, ensuring that an ontology with several
large mistakes will have greater violation than one
with many minute errors.

4.2.2 Formalization

A generality violation (g-violation) occurs when two
terms are reversed in specificity (e.g., the statistics
propose that connectionism is more specific than cog-
nitive science but the answer set asserts that cogni-
tive science is more specific). For two terms S and G,
where S is more specific than G, we hypothesize that
the conditional entropy will be higher for for G given
S than for S given G.

H(GjS)=>H(SjG) (10)

This makes intuitive sense if one considers the
terms dog (S) and mammal (G). The presence of the
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term dog will lend far more certainty to the appear-
ance of mammal than the other way around -- men-
tioning mammal is not very predictive of dog.

If this inequality does not hold, we take this as a
generality violation (g-violation):

gv(S;G) =H(SjG) H(G]S) (11)
The mean of the g-violations is then taken to give
the overall g-violation.

1

violationg(0) = i 5:6)
) 8S;G

v(S;:6)  (12)

A similarity violation (s-violation) occurs when an
instance’s semantic similarity to its parent class is an
outlier compared to the rest of its siblings. For exam-
ple, the entity (ideas about) federalism has been ob-
served under both (ideas about) social and political
philosophy and (ideas about) forms of government.
However, the siblings of federalism under forms of
government are much closer to their parent node, than
those under social -and political philosophy. There-
fore, a taxonomy asserting that federalism is an in-
stance of social and political philosophy will recieve
higher violation than one in which federalism is an
instance of forms of government.

Semantic similarity can be measured using a vari-
ety of measures reviewed in Jiang and Conrath (1997)
and Resnik (1999). We use the measure presented in
Lin (1998):

2 logP(C)
logP(x1) + logP(x2)

Such that x; and x; are entities in the taxonomy,
and C is the most specific class which subsumes x;
and Xo. As we are simply comparing an instance S to
its parent G, we can use:

sim(x1;x2) = (13)

2 logP(G)
logP(S) +logP(G)
The degree of s-violation can be determined by

the standard score, which normalizes the values by
standard deviation:

sim(S;G) =

(14)

sv(S;G) = (15)

where x is the raw semantic distance, p is the mean
of the semantic distance to the parent of all sibling
nodes and s is the standard deviation of this popula-
tion. The final s-violation is calculated as the mean of
s-violations.

sim(S;G) W
s

violations(O) = sv(S;G)  (16)

count(S; G) 85:G

4.2.3 Interpretation of Results

The violation score is intended as way to select the
best representation of a given set of input parameters.
In our methodology, the violation score is used to test
variations in ruleset changes or seed taxonomies. This
evaluation can be used throughout the ontology de-
sign process to perfect methodology. We have used
violation to examine changes to the assertion of se-
mantic crosslinks and in the weighting of expert feed-
back obtained from novice philosophers, undergradu-
ate majors, graduate students, and professors of phi-
losophy.

Additionally, we are able to use the violation
score to compare different samples of expert feed-
back by using the same seed taxonomy and ruleset.
The changes in violation scores exposed a steady in-
crease in taxonomic fit from novices to undergrad-
uates to graduate students, before a slight decrease
with professors. Further investigation of/ violations
found that our highest-level experts were more likely
to go against the statistical prediction in often use-
ful ways, further justifying the solicitation of feed-
back. Note that this starkly illustrates the limits of this
method of corpus-based ontology validation: in this
case, we solicited expert feedback precisely because
we regarded the co-occurrence statistics as less than
perfectly reliable, and in general the judgments of ex-
perts are regarded as more trustworthy than the eval-
uation metrics generated from those co-occurrence
statistics. As such, we would obviously not infer that
the ontology generated from the inclusion of expert
feedback is less desirable than that without. In gen-
eral, one should keep in mind during evaluation that
one should not evaluate representations generated us-
ing one source of data against evaluation metrics gen-
erated using another, less-trusted source of data. In
practice, this complicates even comparisons between
different versions of the ruleset, for we must care-
fully reason through whether some particular ruleset
change could be subtly biasing the representation to-
wards or against expert feedback (e.g., in the way it
settles inconsistency between users and experts).

4.2.4 Experimental Results

Since deploying the initial version of our answer set
program (described in Niepert et al. 2008), we discov-
ered a number of possible improvements, but could
not be sure a priori which version of the ruleset would
produce better results. The violation score provides
us with a way to compare these options in terms of
their suitability. We identified three binary param-
eters along which our program can vary, and have
compared the violation scores for each possible com-
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bination (resulting in a 2x2x2 matrix). The three pa-
rameters are briefly described under their abbreviated
names below.

“plink”. Our original ruleset (Niepert et al. 2008)
included non-taxonomic “links” to allow reacha-
bility between entities which were semantically
related but which, for various reasons, could not
be connected taxonomically. To minimize unnec-
essary taxonomic relations, we added a rule (here-
after, the “nins” rule) which blocked an instance X
from being asserted as an instance of a class Y if
there was also evidence that X was an instance of
class Z and Y was possibly linked (“plink”ed) to Z
(since in that case X would already be reachable
fromY viatheY ¥ Z link). Unexpectedly, we
found that this occasionally produced an undesir-
able “reciprocal plink deadlock” (see Figure 2):
whenever links were possible from both Y ¥ Z
and Z ¥ Y, the nins rule blocked X from be-
ing inferred as an instance of either Y or Z (and
thus X often became a taxonomic “orphan”). As
such, we created a second version of the pro-
gram which added a “no plink” restriction to the
“nins” rule, preventing this reciprocal plink situ-
ation. The “plink” parameter indicates that this
restriction was added to the nins rule.

y =—=—=7 plink —
. pins  seeee
nins = =

n‘x‘u
Figure 2: The reciprocal plink problem

“voting”. An important innovation of our project
involves the stratification of user feedback into
different levels of self-reported expertise and us-
ing this information in a two-step process to re-
solve feedback inconsistencies. The first step in
this process involves the application of a “voting
filter” which settles intra-strata feedback incon-
sistencies using a voting scheme and can be com-
pleted as a preprocessing step before the answer
set program is run (as described in Niepert et al
2009). The “voting” parameter indicates that this
filter was run.

“trans”. Much of the information on which our
program operates is derived from the transitivity
of the “more general than”/“more specific than”
feedback predicates. The second step of our
method for settling feedback inconsistencies in-
volves settling inter-strata inconsistencies, which
is completed from within our ruleset. However,
transitivities in feedback can be computed either
before or after these inter-strata inconsistencies
are resolved (the former resulting in many more
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inconsistencies requiring resolution). The “trans”
parameter thus indicates that this version of the
ruleset computes transitivities before (vs. after)
our ruleset settles inter-strata inconsistencies.

Each modification was then compared to the cur-
rent ruleset using both the s-violation and g-violation
metrics using corpus statistics and user evaluations
from July 24, 2010 (see Figure 3). The number of
instances asserted is also included. As we can clearly
see, every proposed change decreased both violation
scores, with the best results provided by adopting
all three changes®. The decrease in s-violation can
be interpreted as the development of denser semantic
clusters subsumed under each class. The decrease in
g-violation can be interpreted as movement towards
greater stratification in the heirarchy. This is quanti-
tative evidence that the principled design choices out-
lined above will provide useful additions to the ontol-
ogy enrichment process.

5 FUTURE WORK

With these methods of evaluating ontology structure
and function in hand, along with preliminary results
on our limrited feedback collection, we propose to
continue these evaluation experiments as new feed-
back is rapidly collected from SEP authors. These
scores will allow us to pursue a long-desired use of
our answer set programming to infer a space of popu-
lated ontologies and select an optimal one by ranking
them according to violation scores. We can then see
how consistent ruleset selection is.

We might also ask how feedback from people with
different levels of expertise in philosophy affects the
placement of terms in the InPhO. For instance, Eckart
et al (2010) have already gathered feedback data from
Amazon Mechanical Turk (AMT) users and com-
pared their responses to those of experts. Although
we know that as a whole they differ statistically from
experts, we do not yet know how much this matters
to the structure that is eventually produced from those
feedback facts.

As for the confound of overlapping samples in
the calculation of “grab-bag” volatility (see section
4.1.4), an ideal solution is to solicit more feedback,
increasing the amount of non-overlapping samples
of a size z. Collecting generalized feedback from
lower levels of expertise is economically feasible us-
ing AMT. Additionally, we can isolate small sections

5g-violation was lowest when adopting the plink and
voting changes, but not trans. However, the result with all
three changes was second lowest.
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s-violation g-violation instances
all-in  voting all-in voting | all-in  voting
current | 0.8248 0.8214 | -0.1125 -0.1170 | 417 456
plink | 0.8111 0.8089 | -0.1182 -0.1227 | 521 568
trans | 0.8119 0.8094 | -0.1133 -0.1168 | 452 491
plink, trans | 0.8061 0.8031 | -0.1153 -0.1188 | 502 546

Figure 3: Violation score evaluations on the InPhO using feedback and corpus statistics from July 24, 2010.

of the ontology to gather a very large amount of ex-
pert feedback from SEP authors in order to determine
the point of diminishing returns for that location and
extrapolate that result to estimate the amount of feed-
back required for other sections.

Finally, the InPhO has daily archives of its popu-
lated ontologies from October 23, 2008 to the present
(July 25, 2010). By using the volatility measure on
this data set, we should gain insights into our own
ability to capture controversy and convergence within
a field and be able to present that to philosophers
through the visualizations described in Section 4.1.3.

6 CONCLUSIONS

In this paper we have proposed two methods for
evaluating the structural and functional aspects of a
corpus-based dynamic ontology. Our work focuses on
the semantic evaluation of taxonomic relations, rather
than the lexical evaluation undertaken by Brewster et
al. (2004) and Dellschaft & Staab (2008). The vio-
lation score gives us a concrete measure of how well
an ontology captures the semantic similarity and gen-
erality relationships in a domain by examining statis-
tical measures on an underlying corpus. The volatil-
ity score exposes areas of high uncertainty within a
particular ontology population method, which can be
used for many purposes. Directed measures of volatil-
ity can indicate the evolution of a knowledge base
and highlight areas of controversy. Non-directed mea-
sures can indicate the stability of a ruleset variation by
using random samples of expert feedback. This can
also estimate the amount of expert feedback required
for a convergent representation. We also have exam-
ined the considerations necessary to examine a taxon-
omy, and demonstrated how these methods have been
used to enhance the enrichment process of the Indiana
Philosophy Ontology Project through experiments on
ruleset variations, expert feedback stratification and
stability.
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