
EXPERIMENTAL EVIDENCE ON DATA WAREHOUSE
FRAGMENTATION AND ALLOCATION IN A DISTRIBUTED

CONTEXT

Tekaya Karima, Abdellaziz Abdelatif
Data-processing Department, Faculty of Sciences of Tunis, Rommana, El Manar 2, Tunisia

Habib Ounalli
Data-processing Department, Faculty of sciences of Tunis, Rommana, El Manar 2, Tunisia

Keywords: Distributed data warehouse, Fragment Evaluator, Fragmentation, Allocation, Primary and derived horizontal
fragmentation.

Abstract: Since a relational data warehouse has the same physical structure as a classical database, it can enjoy all the
benefits realized during the past in distributed databases such us data availability, simplicity, rapid local data
access and transparent access to remote sites. So, it would be interesting to test its decentralization by
adapting the most adequate fragmentation and allocation technique. In this paper, we present a data
warehouse fragmentation and allocation approach in a distributed context. We conduct first, computation
studies using a mathematical cost model. Then, we test our approach on a real data warehouse by using the
APB1 benchmark data set on Oracle11G.

1 INTRODUCTION

Data Warehouse (DW) decentralisation starts by
data fragmentation and then fragment allocation.
Obviously, fragmentation is considered today as an
important option in physical DW design. Its process
begins with the collection of the predefined queries
throughout the geographically dispersed company
sites. Then, it extracts from these queries all the join,
projection and selection operations. These
operations are used for logical tables partitioning.
The deployment of the fragmentation in a DW must
be quit founded with the specificities of the
multidimensional modelling. In fact, a relational
DW is modelled by a star schema which consists of
a fact table and several dimension tables. The former
is a huge table constituted by two attribute types:
key attribute (conjunction of foreign keys) and
measure attributes. The fact table is interconnected
to dimension table’s by links of cardinalities one to
many. The latter, around the fact table, are generally
small-sized, denormalized and contain two types of
attributes: descriptive and hierarchical ones. Despite
the fact that a relational DW has the same physical

structure as a relational database, it is distinguished
by its multidimensional aspects. In fact, each
measure in the fact table is determined according to
a number of dimension keys. Fragmentation must
respect the granularity level of the fact table. In
addition, analyses are done according to one or
many dimension(s). Each dimension has some
hierarchical attributes that support ascending (or
descending) analyses. Such a topology (star model)
is conceived to answer effectively the requirements
of the analysis queries. A well adapted
fragmentation technique, therefore guarantees a best
deployment of the fact table granularity level and
dimension hierarchical attributes. Otherwise, in a
distributed context, the fragmentation technique
aims to decentralize the DW. Fragmentation is based
on decision makers requests, their geographical
location and the number of partitions needed to
efficiently meet their needs. Fragmentation is no
longer limited to optimize data storage, but it
extends to the reorganization of the whole logical
model of the DW into several local models
according to local needs of the company sites. As in
to the centralized environment, local and remote

102 Karima T., Abdelatif A. and Ounalli H..
EXPERIMENTAL EVIDENCE ON DATA WAREHOUSE FRAGMENTATION AND ALLOCATION IN A DISTRIBUTED CONTEXT.
DOI: 10.5220/0003104801020110
In Proceedings of the International Conference on Knowledge Management and Information Sharing (KMIS-2010), pages 102-110
ISBN: 978-989-8425-30-0
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)

access to data in the decision support system must be
transparent to users, i.e., managed by the current
distributed data base management system.
Consequently, the DW can benefits from all the
advantages of distributed databases such as data
availability, simplicity, rapid local data access and
transparent access to remote sites.
The paper is organized as follows: in section 2, we
present related works. In section 3, we illustrate a
DW fragmentation and allocation strategy. In section
4, we use a mathematical cost model to evaluate the
fragment cost. In section 5, we apply some
experiments on a real DW to evaluate our approach.
Section 6 contains concluding remarks.

2 STATE OF THE ART

DW fragmentation has been recently a subject of
study in the literature. As it has a similar relational
physical structure like relational databases,
researches start by adapting classical fragmentation
techniques (vertical, horizontal and hybrid
fragmentation). These experiences demonstrate that
DW fragmentation task becomes very difficult
facing star model multidimensional aspect. In fact,
proposals can be classified according to the DW
architectures. In the following sections, we classify
works according to three different architectures:
centralized, parallel, and Distributed DW (DDW).

2.1 Centralized DW Fragmentation

Many research studies address the issue of
fragmenting relational DWs to efficiently process
analytical queries into centralized context.

(Datta et al., 1999) and (Golfarelli et al.,1999)
use vertical fragmentation of the fact table; While
(Datta et al., 1999) use vertical fragmentation
technique to build the Curio index and to improve
ad-hoc query performance, (Golfarelli et al.,1999)
use this technique on warehouse views optimization.
(Bellatreche & Boukhalfa, 2005) use the horizontal
fragmentation technique. According to Bellatreche,
the best way to fragment a star schema is by using
the primary and derived fragmentation technique.
The fact table fragmentation is based on the
partitioning schemas of dimension tables. (Wu &
Buchmaan, 1997) recommend combining horizontal
fragmentation technique and vertical fragmentation
technique for query optimization.

2.2 Parallel DW Fragmentation

Some research studies concentrate on the issue of
fragmenting relational DWs into a parallel context:
(Costa & Madeira, 2004) and (Furtado, 2004) focus
on the horizontal partitioning of the DW among a
cluster of computers. Their technique partitions the
fact table over all nodes and replicates small
dimension tables in each node. Authors exploit
existing database management system partitioning
techniques. While Costa and Madeira use a row-by-
row round-robin partitioning technique, Furtado uses
hash partitioning technique based on the analysis of
the workload. (Ciferri & Souza, 2002) introduce The
WebD2W System. The latter propose a DW
horizontal fragmentation algorithm. This algorithm
uses only one dimension table in the fragmentation
process but no considerations were given to
dimension attributes relationship hierarchies.
(Ciferri, 2007) extends the work done by (Ciferri &
Souza, 2002) and proposes the MHF-DHA
algorithm. In this work, the fragmentation process
uses multiple dimension tables as a basis to fragment
the fact table and addresses the treatment of
dimension attributes relationship hierarchies.

2.3 Distributed DW Fragmentation

Very few works concentrate on the issue of
fragmenting relational DWs to the decentralization
purpose. (Noaman & Barker, 1997) proposed a
specific architecture for a DDW. This one is based
on the ANSI/X3/SPARC architecture that has three
levels of schemas: internal, conceptual and external.
To distribute the DW, authors exploit a top-down
strategy that uses horizontal fragmentation (Noaman
et al., 1999). They proposed a horizontal
fragmentation algorithm for the fact table. This
algorithm is an adaptation of the work done by
(Ozsu & Valduriez, 1991). (Wehrle et al., 2005)
propose a data grid infrastructure to implement the
DW decentralization. Their data model is based on
"chunks" as atomic entities of a DW that can be
uniquely identified. Then, they build contiguous
blocks of these chunks to obtain suitable fragments
of the DW. The fragments stored on each grid node
must be indexed in a uniform way to effectively
interact with the existing grid services.

2.4 Discussion

The fundamental aspects of the DW fragmentation
have been studied by many works. But the most
important of them have limited its use in a

EXPERIMENTAL EVIDENCE ON DATA WAREHOUSE FRAGMENTATION AND ALLOCATION IN A
DISTRIBUTED CONTEXT

103

centralized environment. What distinguishes our
work from those works is that they aim to improve
the data storage organization and the parallel queries
execution by partitioning a table into multiple sub-
tables. Besides, data allocation process is not
considered as a problem since the DW is centralized.
In our context we intend to decentralize the data
storage of the whole DW according to the user’s
needs. Starting from a general model, we generate
several sub-models. Each sub-model is specified as a
future data mart. Works focused on the decentralized
context are in general theoretical and lack of
experimental evidence. Other studies have
investigated technical aspects of the DW
decentralization on a data grid. They proved
experimentally that we can use easily advanced
infrastructure; such as data grid to support DDW.

Therefore, it will be interesting to evaluate and
experiment a DW fragmentation and allocation
strategy for a decentralization purpose.

3 DW FRAGMENTATION AND
ALLOCATION STRATEGY

The DW decentralization has two main phases: data
fragmentation and fragment allocation. Data
fragmentation consists in generating several sub-
models from the general star model. To fragment the
star model tables we use predicates as criterion. We
apply the predicate construction technique (Ozsu &
Valduriez, 1991) to construct the minterm predicate
list. Then, we adapt the horizontal primary and
derived fragmentation technique to fragment
dimension and fact tables. Finally, we allocate each
fragment to the corresponding site. We use three
fragment allocation techniques: simple allocation,
allocation with replication and allocation with some
studied replications.

Figure 1: Sale activity star schema.

We choose, as an example, the sales activity
schema (Figure 1). It consists of one fact table
(Sales) and a set of dimension tables (Product,

Location, Date and Customer) connected by foreign
keys for all possible links. The fact table contains
business facts or measures and foreign keys which
refer to the primary keys in the dimension tables.

3.1 Predicate Construction Phase

In this phase, we start by extracting predicates from
the most used queries trough the company sites.
Then, we use the com_min algorithm (Ozsu &
Valduriez, 1991) to generate minterm predicate list.
According to the Com_min algorithm (Ozsu &
Valduriez, 1991), a relation, or a fragment, must be
partitioned "into at least two parts which are
accessed by at least one application differently". We
have chosen the Com_min algorithm because it
guarantees data completeness, table reconstruction
and fragment disjointness.
We take as an example the nine following queries
running on the DW tables. We can extract from each
query the used predicate list:
Q1. This application analyses sales turnover into site

1 according to the location ordered by products.
The predicates are {Id_P=1,2 & Id_L=1}

Q2. This application analyses sales quantities into
site 1 according to the location ordered by
customer categories. The predicates are
{Id_C=1,2,3 & Id_L=1}

Q3. This application analyses sales turnover
quantities into the sites: 1, 2 and 3 according to
the location ordered by customer categories and
products. The predicates are {Id_P=1,2,3,4 &
Id_C=1,2,3,4,5,6,7,8,9 & Id_L=1,2,3}

Q4. This application analyses sales turnover into site
2 according to the location ordered by products.
The predicates are { Id_P=2,3 & Id_L=2}

Q5. This application analyses sales quantities into
site 2 according to the location ordered by
customer categories. The predicates are {
Id_C=4,5,6 & Id_L=2}

Q6. This application analyses sales turnover
quantities into site 2 according to the location
ordered by customer categories and by products.
The predicates are { Id_P=2,3 , Id_C=4,5,6 &
Id_L=2}

Q7. This application analyses sales turnover into site
3 according to the location ordered by products.
The predicates are { Id_P=3,4 & Id_L=3}

Q8. This application analyses sales quantities into
site 3 according to the location ordered by
customer categories. The predicates are {
Id_C=7,8,9 & Id_L=3}

Q9. This application analyses sales turnover
quantities into sites 3 according to the location

KMIS 2010 - International Conference on Knowledge Management and Information Sharing

104

ordered by customer categories and by products.
The predicates are { Id_P=3,4 , Id_C=7,8,9 &
Id_L=3}

We suppose that:
 In the site 1: just the product Id_P=1 and

Id_P=2 are on sale, there is one location Id_L=1
and the corresponding customers are Id_C=1,
Id_C=2 & Id_C=3.

 In the site 2: just the product Id_P=2 & Id_P=3,
are on sale, there are two locations Id_L=2 &
Id_L=3 and the corresponding customers are
Id_C=4, Id_C=5 & Id_C=6.

 In the site 3: just the product Id_P=1, Id_P=2,
Id_P=3 & Id_P=4 are on sale, there are two
locations Id_L=4 & Id_L=5 and the
corresponding customers are Id_C=7, Id_C=8 &
Id_C=9.

We recapitulate the complete and minimal
dimension predicate list by site in the following lists:

 Site1: Site 2: Site3:
Id_P=1,2
Id_L=1
Id_C=1,2,3

Id_P=2,3
Id_L=2, 3
Id_C=4,5,6

Id_P=1,2,3,4
Id_L=4,5
Id_C=7,8,9

After Appling the com_min algorithm to the
preliminary predicate list, the corresponding
complete and minimal predicate list is:
MP={P1:Id_P=1, P2: Id_P =2, P3:Id_P=3, P4:
Id_P=4, P5: Id_L=1, P6: Id_L=2, P7: Id_L=3, P8:
Id_L=4, P9: Id_L=5, P10: Id_C in [1,2,3], P11: Id_C
in [4,5,6], P12:Id_C in [7,8,9], P13: Id_R=1, P14:
Id_R=2, P15: Id_R=3}.
The next phase of the predicate construction
technique is the conjunction of simple predicates
which is called a minterm predicate. In fact, each
simple predicate can be produced in its natural form
or by negation. The number of minterm predicate is
z=2m; with m the number of simple predicate.
Minterm predicates are exponential on the number
of simple predicates; we can eliminate meaningless
minterm predicates by identifying those which
contradict to a set of implications.
We suppose as an example that we have the
following implication list:

i1: P10 ¬P11 ٨ ¬P12
i2: P11 ¬P12 ٨ ¬P10
i3: P12 ¬P10 ٨ ¬P11
i4: P13 ¬P14 ٨ ¬P15
i5: P14 ¬P13 ٨ ¬P15
i6: P15 ¬P13 ٨ ¬P14
i7: P5 ¬P6 ٨ ¬P7 ٨ ¬P8 ٨ ¬P9
i8: P6 P7 ٨ ¬P5 ٨ ¬P8 ٨ ¬P9

i9: P7 P6 ٨ ¬P5 ٨ ¬P8 ٨ ¬P9
i10: P8 P9 ٨ ¬P5 ٨ ¬P6 ٨ ¬P7
i11: P9 P8 ٨ ¬P5 ٨ ¬P6 ٨ ¬P7

The implication list integrates fact implications, for
instance: site 1 contains one location: id_L1=1, two
product id_P=1, id_P=2 and id_C in [1, 2, and 3].
The implication list depends on the semantic of the
application.
If we have the following fact implication list:

 i12: P13 P1 ٨ P2 ٨ P5 ٨ P10
 i13: P14 P2 ٨ P3 ٨ P6 ٨ P7 ٨ P11
 i14: P15 P1 ٨ P2 ٨ P3 ٨ P4 ٨ P8 ٨ P9

We will obtain the corresponding fact minterm
predicates list:
 m1: Id_P=1 ٨ Id_P=2 ٨ Id_L=1 ٨ Id_C IN

[1,2,3] ٨ Id_R=1
 m2: Id_P=2 ٨ Id_P=3 ٨ Id_L=2 ٨ Id_L=3 ٨

Id_C IN [4,5,6] ٨ Id_R=2
 m3: Id_P=1 ٨ Id_P=2 ٨ Id_P=3 ٨ Id_P= 4 ٨

Id_L= 4 ٨ Id_L=5 ٨ Id_C IN [7,8,9] ٨ Id_R=3

3.2 DW Fragmentation Phase

The fragmentation phase consists, first, in
fragmenting the dimension table according to the
minterm predicate list (Primary horizontal
fragments). Then, we use a semi-join (α) operation
between dimension primary horizontal fragments
and the fact table to generate horizontal derived
fragments. Table 1 contains the primary horizontal
fragments list of the previous example.

Table 1: Primary Horizontal fragments.

After applying derived horizontal fragmentation on
table Sales, we obtain the following derived
horizontal fragment list: 1F , 2F and 3F

 1F = α(Sales, R1) ∩ α(Sales,P1) α
(Sales,P2)
 ∩ α(Sales,L1) ∩ α(Sales,V1).

2F = α(Sales,R2) ∩ α(Sales,P2) ∩
 α(Sales,P3) ∩ α(Sales,L2) ∩
 α(Sales,V2).

3F = α(Sales,R3) ∩ α(Sales,P1) ∩
 α(Sales,P2) ∩ α(Sales, P3) ∩
 α(Sales,P4) ∩ α(Sales,L3)∩

 α(Sales,V3).

3.3 Allocation Phase

There are three possible allocation strategies: simple

EXPERIMENTAL EVIDENCE ON DATA WAREHOUSE FRAGMENTATION AND ALLOCATION IN A
DISTRIBUTED CONTEXT

105

fragment allocation, allocation with fragment
replication and allocation with some studied
fragment replication.

We take as an example the fragments uses
frequency matrix. The columns present horizontal
fragments, rows represent the three sites of the
company, and each cell contains the frequency of a
fragment uses.

3.3.1 Simple Allocation Strategy

Each fragment is allocated into the site where it is
the most frequently used. This option is generally
chosen when the accesses cost between the
organization sites does not have negative impact on
the DW performance. The corresponding allocation
matrix is given bellow.

The columns present primary horizontal fragments
of dimension tables. The columns R1, R2 and R3
present primary horizontal fragments of the
dimension table Region. L1, L2 and L3 present
primary horizontal fragments of the dimension table
Location. P1, P2, P3 and P4 present primary
horizontal fragments of the table Product. F1, F2, F3
present derived horizontal fragments of the fact table
Sales. The matrix rows represent the three sites of
the company. Each cell contains the state of each
fragment on the corresponding site. A indicates that
a fragment is allocated on a site. O indicates that a
fragment is out or non-existing on a site. U indicates
that a fragment is used or accessed by a site but it’s
not replicated in it.

3.3.2 Allocation with Replication Strategy

In this strategy, each fragment is allocated where it
is used. We opt for the local data accesses rather
than the data remote accesses. The corresponding
allocation matrix is given bellow.

3.3.3 Allocation with some Studied
Replication Strategy

In this strategy, each fragment is allocated where it
is the most frequently used and replicated into sites

in which the data remote accesses cost is elevated.
The corresponding allocation matrix is given bellow.

To evaluate generated fragments, we conduct
numeric and experimental studies. Numeric studies
are based on the adaptation of the known objective
function developed in (Chakravarthy, 1992).
Experimental studies are based on distributing a real
DW by using the data set of the APB1 Benchmark
(OLAP Council, 1998).

4 DW FRAGMENT EVALUATOR

Our first strategy to evaluate DW fragments is to use
a cost model. Each fragment is evaluated by its local
processing cost and remote one on each site. It is
supposed that there are no data redundancies
between fragments. Fragments are allocated to sites
where they are the most used. DW Fragment
Evaluator (DWFE) computes the processing cost of
each fragment. The Fragment Evaluator (FE) is
given by:

2
R

2
M EEFE += (1)

Where 2
ME is the local horizontal fragment access

cost and 2
RE is the remote one.

4.1 Local Fragment Access Cost

The local horizontal fragment access cost 2
ME is the

first component of the DWFE. As an adaptation of
the work presented by Chakravarthy in
(Chakravarthy, 1992), 2

ME is given by:

 (2)

Where M is the total number of fragments; T is the
total number of transactions in the site c; itcS is the
number of rows in Fi accessed by a transaction t at a
site c; tcq is a frequency of an application t at a site
c and ni is the total number of rows contained in a
fragment Fi. This component uses the square-error
criterion as given by Jain in (Jain, 1988) for data
clustering. The objective here is to obtain a fragment
which minimizes the square error for a fixed number
of fragments. This criterion assigns a penalty factor
whenever local rows are accessed in a particular
fragment. (Chakravarthy, 1992)

4.2 Remote Fragment Access Cost

The remote horizontal fragment access cost 2
RE is

)]n/S1(S*q[E iitc
M

1i
T

1t itctc
2
M ∑ ∑= = −=

KMIS 2010 - International Conference on Knowledge Management and Information Sharing

106

the second component of the DWFE. For each
transaction running on a fragment, we compute the
ratio between the number of remote rows to be
accessed by a transaction t and the total number of
rows in each remote fragment. The remote
horizontal fragment access cost which is an
adaptation of the work presented by Chakravarthy in
(Chakravarthy, 1992) is given in the following
equation:

 (3)

Where: is the number of relevant remote row
access in fragment k accessed remotely with respect
to a fragment i by a transaction t at a site c; is
the total number of rows in fragment k accessed
remotely with respect to a fragment i by a
transaction t.

We use the DWFE to measure the performance
of a fragmentation schema. A lower DWFE value
means fewer penalties and thus; better performance.
We take as an example the following row numbers
(Table 2). We use this example to computes the
DWFE for each fragment.

Table 2: Row sets on each site.

To allocate each fragment, we test three cases: (1)
fragmentation with full copy resides on site 1; (2)
fragmentation with one copy resides on every site
and (3) fragmentation with some fragment
replication. We present in table 3, table 4 and table 5
the local access cost and a remote access cost of
each table.

Table 3: CASE 1: Fragmentation, full copy resides on
site 1.

Table 4: CASE 2: Fragmentation copy resides on each
site.

In case 1, the fact table is centralized in one site, the
remote access cost is very high. In case 2, each
fragment is replicated there where its frequency of
use is positive. The remote access cost is always
equal to 0, because the fragment is locally accessed
by the decision support system. The Local access
cost is very high for the sales table because this one
is generally characterized by a huge number of rows.
Consequently, replicating the fact table in each site
is not a good option.

Table 5: CASE 3: Fragmentation with some replication.

In case 3, we remark that all local access costs are
fewer than the case 2 because just some fragments
are replicated.

We can deduce that if an organization is
distributed geographically and if its decision support
system is disseminated on several distant sites, it is
more interesting to adapt DDW architecture since it
gives better performance. In figure 2, we present the
FE values for the three cases. It is clear that
fragmentation with some fragment replication gives
lower costs than fragmentation with full copy resides
on site 1 and fragmentation with one copy resides on
every site.

Figure 2: Fragment allocation strategies comparison.

itkR
r
itkn

∑ ∑
= ≠ ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

T

1t iK
r
itk

itk
itkitk

2
tc

2
R

n

RR*R*qE

EXPERIMENTAL EVIDENCE ON DATA WAREHOUSE FRAGMENTATION AND ALLOCATION IN A
DISTRIBUTED CONTEXT

107

5 EXPERIMENTAL
EVALUATION

We have conducted an experimental study to
evaluate our proposal. We have used the dataset from
the APB1 benchmark (OLAP Council, 1998). The
star schema of this benchmark has one fact table
Actvars (33 323 400 tuples) and four dimension
tables (Figure 3): Prodlevel (9 900 tuples), Custlevel
(990 tuples), Timelevel (24tuples) and Chanlevel (10
tuples). We have considered a workload of 36
queries with 27 selection predicates. We have
conducted experiments using Oracle 11g. The data
set of APB1 benchmark is created and populated
using generator programs offered by APB1. We use
three machines having the same following
characteristics. Intel Core2Duo, 2 Gb of memory.

Figure 3: Star schema of the benchmark APB1 Sale
activity star schema.

5.1 APB1 Dataset Benchmark
Decentralization

We give bellow the complete and minimal predicate
list to the dimension table (We replace the attributes
Product_I and Customer_I by sequential numbers to
simplify the tasks of decentralization):

By applying the predicate construction technique,
we obtain the following fact minterm predicate list:
PM1: P7^P8^P9^P16^17^18^25^26^27
PM2: P1^P2^P3^P10^P11^P12^P19^P20^P21
PM3: P4^P5^P6^P13^P14^P15^P22^P23^P24

We take as an example the following fragment uses
frequencies matrix:

According to the fragment uses frequencies matrix,
we generate the fragment allocation matrix using the
simple allocation technique.

Finally, we allocate the various fragments into three
remote sites. The sites communicate through a
virtual Private Network using a tunneling protocol.
We use a workload of 36 queries that we execute to
a centralized APB1 benchmark. We see in figure 4
that remote access increases the execution time of
applications especially those whose users are
geographically distant. Then, we execute the same
workload into APB1 benchmark dataset distributed
using our DW fragmentation and allocation
approach.

5.2 Discussion

DDW architectures support multiple geographically-
distributed business divisions. It allows each
business division to have its own extraction,
transformation, loading tools and multiple data
marts. The central DW stores corporate-wide data
and all components are synchronized across the
DDW environment using a global metadata
repository.

Queries workload can be classified into two
categories: specific queries and general queries.
Specific queries describe local needs (example:
analyze sales amount by product of site 1). General
queries describe needs of the whole company sites

Figure 4: Specific queries execution time.

(example: compare sales amount by product of all
the company sites). In figure 4, we present specific

KMIS 2010 - International Conference on Knowledge Management and Information Sharing

108

queries execution time. Results show that DDW
gives better performance for all the specific queries
compared to the centralized context. Summed
specific queries execution time is reduced by 82%.
In figure 5, we present general queries execution
time. Results show that DDW gives better
performance for some general queries but not for
others. For query 1 (sales analysis by product by
year) and query 5 (sales analysis by quarter by year),
the execution times are elevated compared to the
centralized context. The specificity of those queries
is that they are based on JOIN operations between
all fragments localized at different distant
geographical sites. In this case, the execution time is
elevated compared to a CDW however the summed
general queries execution time is reduced by 76%.

Figure 5: General queries execution time.

6 CONCLUSIONS

The design of DDW is an optimization problem
requiring solutions to several interrelated problems
including: data fragmentation, fragment allocation,
and local optimization. Each problem can be solved
with several different techniques, thereby making
the distributed database design a very difficult task.
Although there are many researches on the design of
data fragmentation, most of them are focused on the
centralized context and no considerations are given
to the distributed allocation problem. Our work is
considered one of the few dealing with data
fragmentation and fragment allocation for the
decentralization purpose. In this paper, we adapt a
DW fragmentation approach using the predicate
construction technique to generate the predicate list
and the primary and derived horizontal technique to
fragment dimension and fact tables. Then, we study
three fragment allocation techniques into a
distributed environment. First, we allocate fragment
according to the simple allocation technique. Then,
we replicate fragment there were they are used

according to the fragment allocation with replication
technique. Finally, we revise some fragment
replication using the allocation with some fragment
replication technique. After that, we conduct
computing evaluation by using a DWFE and we
compare the three fragment allocation cases. Finally,
we implement our approach on a real DW. Results
demonstrate that DW decentralisation gives better
performance when data storage is distributed trough
the company sites. But, the execution time for
queries which are based on JOIN operations between
all distributed fragments is higher than in a
centralized context. As future work we intend to
study OLAP distant queries optimization in a DW
distributed context.

REFERENCES

Bellatreche, L., & Boukhalfa, K., 2005, An Evolutionary
Approach to Schema Partitioning Selection in a Data
Warehouse, In DAWAK’07, 7th International
Conference on Data Warehousing and Knowledge
Discovery. Volume 3589 of LNCS,

Chakravarthy S., et al., 1992. An objective function for
vertically partitioning relations in distributed databases
and its analysis, Distributed and Parallel Databases
journal.

Ciferri, C. D. A. & Souza, F., 2002, Focusing on Data
Distribution in the WebD2W System. In DAWAK’02,
4th International Conference on Data Warehousing
and Knowledge Discovery, Vol. 2454 of LNCS.

Ciferri, C. D. A., et al., 2007. Horizontal fragmentation as
a technique to improve the performance of drill-down
and roll-up queries. In SAC‘07, 22nd ACM Symposium
on Applied Computing.

Costa, M. & Madeira, H., 2004. Handling Big Dimensions
in Distributed Data Warehouses using the DWS
Technique. In DOLAP’04, 7th ACM Eleventh
International Workshop on Data Warehousing and
OLAP.

Datta, A. & Ramamritham, K., & Thomas, H. M., 1999.
Curio: A Novel Solution for Efficient Storage and
Indexing in Data Warehouses. In VLDB’99, 25th
International Conference on Very Large Data Bases.

Furtado, P., 2004. Workload-based Placement and Join
Processing in Node-Partitioned Data Warehouses. In
DaWaK’04, 6th International Conference on Data
Warehousing and Knowledge Discovery., p. 38-47.

Golfarelli, M., Maio, D. & Rizzi, S., 1999. Vertical
fragmentation of views in relational data warehouses.
SEDB’99. In Settimo Convegno Nazionale su Sistemi
Evoluti Per Basi Di Dati.

Jain, A. & Dubes, R., 1988. Agorithms for clustering Data.
Prentice Hall Advanced Reference Series, Englewood
Cliffs, NJ.

EXPERIMENTAL EVIDENCE ON DATA WAREHOUSE FRAGMENTATION AND ALLOCATION IN A
DISTRIBUTED CONTEXT

109

Noaman, A. Y. & Barker, K., 1997. Distributed data
warehouse architectures. Journal of Data
Warehousing. Vol. 2.

Noaman, A. Y., Barker, K., 1999. A Horizontal
Fragmentation Algorithm for the fact relation in a
Distributed Data Warehouse. In ICKM’99, 8th
International Conference on Information and
Knowledge Management.

OLAP Council, 1998. Apb-1 olap Benchmark, release 2.
http://www.olapcouncil.org/research/bmarkly.htm.

Ozsu, M. T. & Valduriez, P., 1991. Principles of
Distributed Database Systems. (pp. 657). Prentice-
Hall, Inc. Upper Saddle River, NJ, USA

Wehrle, P., Miquel, M. & Tchounikine, A., 2005. A
Model for Distributing and Querying a Data
Warehouse on a Computing Grid. In ICPADS’05, 11th
International Conference on Parallel and Distributed
Systems. IEEE Computer Society.

Wu, M.-C. & Buchmann, A. P., 1997. Research Issues in
Data Warehousing. In Datenbanksysteme in Buro,
Technik und Wissenschaft, pages 61–82.

KMIS 2010 - International Conference on Knowledge Management and Information Sharing

110

