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Abstract: Since a relational data warehouse has the same physical structure as a classical database, it can enjoy all the 
benefits realized during the past in distributed databases such us data availability, simplicity, rapid local data 
access and transparent access to remote sites. So, it would be interesting to test its decentralization by 
adapting the most adequate fragmentation and allocation technique. In this paper, we present a data 
warehouse fragmentation and allocation approach in a distributed context. We conduct first, computation 
studies using a mathematical cost model. Then, we test our approach on a real data warehouse by using the 
APB1 benchmark data set on Oracle11G. 

1 INTRODUCTION 

Data Warehouse (DW) decentralisation starts by 
data fragmentation and then fragment allocation. 
Obviously, fragmentation is considered today as an 
important option in physical DW design. Its process 
begins with the collection of the predefined queries 
throughout the geographically dispersed company 
sites. Then, it extracts from these queries all the join, 
projection and selection operations. These 
operations are used for logical tables partitioning. 
The deployment of the fragmentation in a DW must 
be quit founded with the specificities of the 
multidimensional modelling. In fact, a relational 
DW is modelled by a star schema which consists of 
a fact table and several dimension tables. The former 
is a huge table constituted by two attribute types: 
key attribute (conjunction of foreign keys) and 
measure attributes. The fact table is interconnected 
to dimension table’s by links of cardinalities one to 
many. The latter, around the fact table, are generally 
small-sized, denormalized and contain two types of 
attributes: descriptive and hierarchical ones. Despite 
the fact that a relational DW has the same physical 

structure as a relational database, it is distinguished 
by its multidimensional aspects. In fact, each 
measure in the fact table is determined according to 
a number of dimension keys. Fragmentation must 
respect the granularity level of the fact table. In 
addition, analyses are done according to one or 
many dimension(s). Each dimension has some 
hierarchical attributes that support ascending (or 
descending) analyses. Such a topology (star model) 
is conceived to answer effectively the requirements 
of the analysis queries. A well adapted 
fragmentation technique, therefore guarantees a best 
deployment of the fact table granularity level and 
dimension hierarchical attributes. Otherwise, in a 
distributed context, the fragmentation technique 
aims to decentralize the DW. Fragmentation is based 
on decision makers requests, their geographical 
location and the number of partitions needed to 
efficiently meet their needs. Fragmentation is no 
longer limited to optimize data storage, but it 
extends to the reorganization of the whole logical 
model of the DW into several local models 
according to local needs of the company sites. As in 
to the centralized environment, local and remote 
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access to data in the decision support system must be 
transparent to users, i.e., managed by the current 
distributed data base management system. 
Consequently, the DW can benefits from all the 
advantages of distributed databases such as data 
availability, simplicity, rapid local data access and 
transparent access to remote sites. 
The paper is organized as follows: in section 2, we 
present related works. In section 3, we illustrate a 
DW fragmentation and allocation strategy. In section 
4, we use a mathematical cost model to evaluate the 
fragment cost. In section 5, we apply some 
experiments on a real DW to evaluate our approach. 
Section 6 contains concluding remarks. 

2 STATE OF THE ART 

DW fragmentation has been recently a subject of 
study in the literature. As it has a similar relational 
physical structure like relational databases, 
researches start by adapting classical fragmentation 
techniques (vertical, horizontal and hybrid 
fragmentation). These experiences demonstrate that 
DW fragmentation task becomes very difficult 
facing star model multidimensional aspect. In fact, 
proposals can be classified according to the DW 
architectures. In the following sections, we classify 
works according to three different architectures: 
centralized, parallel, and Distributed DW (DDW). 

2.1 Centralized DW Fragmentation  

Many research studies address the issue of 
fragmenting relational DWs to efficiently process 
analytical queries into centralized context.  

(Datta et al., 1999) and (Golfarelli et al.,1999) 
use vertical fragmentation of the fact table; While 
(Datta et al., 1999) use vertical fragmentation 
technique to build the Curio index and to improve 
ad-hoc query performance, (Golfarelli et al.,1999) 
use this technique on warehouse views optimization. 
(Bellatreche & Boukhalfa, 2005) use the horizontal 
fragmentation technique. According to Bellatreche, 
the best way to fragment a star schema is by using 
the primary and derived fragmentation technique. 
The fact table fragmentation is based on the 
partitioning schemas of dimension tables. (Wu & 
Buchmaan, 1997) recommend combining horizontal 
fragmentation technique and vertical fragmentation 
technique for query optimization. 

2.2 Parallel DW Fragmentation 

Some research studies concentrate on the issue of 
fragmenting relational DWs into a parallel context: 
(Costa & Madeira, 2004) and (Furtado, 2004) focus 
on the horizontal partitioning of the DW among a 
cluster of computers. Their technique partitions the 
fact table over all nodes and replicates small 
dimension tables in each node. Authors exploit 
existing database management system partitioning 
techniques.  While Costa and Madeira use a row-by-
row round-robin partitioning technique, Furtado uses 
hash partitioning technique based on the analysis of 
the workload. (Ciferri & Souza, 2002) introduce The 
WebD2W System. The latter propose a DW 
horizontal fragmentation algorithm. This algorithm 
uses only one dimension table in the fragmentation 
process but no considerations were given to 
dimension attributes relationship hierarchies. 
(Ciferri, 2007) extends the work done by (Ciferri & 
Souza, 2002) and proposes the MHF-DHA 
algorithm. In this work, the fragmentation process 
uses multiple dimension tables as a basis to fragment 
the fact table and addresses the treatment of 
dimension attributes relationship hierarchies. 

2.3 Distributed DW Fragmentation 

Very few works concentrate on the issue of 
fragmenting relational DWs to the decentralization 
purpose. (Noaman & Barker, 1997) proposed a 
specific architecture for a DDW. This one is based 
on the ANSI/X3/SPARC architecture that has three 
levels of schemas: internal, conceptual and external. 
To distribute the DW, authors exploit a top-down 
strategy that uses horizontal fragmentation (Noaman 
et al., 1999). They proposed a horizontal 
fragmentation algorithm for the fact table. This 
algorithm is an adaptation of the work done by 
(Ozsu & Valduriez, 1991). (Wehrle et al., 2005) 
propose a data grid infrastructure to implement the 
DW decentralization. Their data model is based on 
"chunks" as atomic entities of a DW that can be 
uniquely identified. Then, they build contiguous 
blocks of these chunks to obtain suitable fragments 
of the DW. The fragments stored on each grid node 
must be indexed in a uniform way to effectively 
interact with the existing grid services. 

2.4 Discussion 

The fundamental aspects of the DW fragmentation 
have been studied by many works. But the most 
important of them have limited its use in a 
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centralized environment. What distinguishes our 
work from those works is that they aim to improve 
the data storage organization and the parallel queries 
execution by partitioning a table into multiple sub- 
tables. Besides, data allocation process is not 
considered as a problem since the DW is centralized. 
In our context we intend to decentralize the data 
storage of the whole DW according to the user’s 
needs. Starting from a general model, we generate 
several sub-models. Each sub-model is specified as a 
future data mart. Works focused on the decentralized 
context are in general theoretical and lack of 
experimental evidence. Other studies have 
investigated technical aspects of the DW 
decentralization on a data grid. They proved 
experimentally that we can use easily advanced 
infrastructure; such as data grid to support DDW.  

Therefore, it will be interesting to evaluate and 
experiment a DW fragmentation and allocation 
strategy for a decentralization purpose. 

3 DW FRAGMENTATION AND 
ALLOCATION STRATEGY 

The DW decentralization has two main phases: data 
fragmentation and fragment allocation. Data 
fragmentation consists in generating several sub-
models from the general star model. To fragment the 
star model tables we use predicates as criterion. We 
apply the predicate construction technique (Ozsu & 
Valduriez, 1991) to construct the minterm predicate 
list. Then, we adapt the horizontal primary and 
derived fragmentation technique to fragment 
dimension and fact tables. Finally, we allocate each 
fragment to the corresponding site. We use three 
fragment allocation techniques: simple allocation, 
allocation with replication and allocation with some 
studied replications.  

 
Figure 1: Sale activity star schema. 

We choose, as an example, the sales activity 
schema (Figure 1). It consists of one fact table 
(Sales) and a set of dimension tables (Product, 

Location, Date and Customer) connected by foreign 
keys for all possible links. The fact table contains 
business facts or measures and foreign keys which 
refer to the primary keys in the dimension tables. 

3.1 Predicate Construction Phase 

In this phase, we start by extracting predicates from 
the most used queries trough the company sites. 
Then, we use the com_min algorithm (Ozsu & 
Valduriez, 1991) to generate minterm predicate list. 
According to the Com_min algorithm (Ozsu & 
Valduriez, 1991), a relation, or a fragment, must be 
partitioned "into at least two parts which are 
accessed by at least one application differently". We 
have chosen the Com_min algorithm because it 
guarantees data completeness, table reconstruction 
and fragment disjointness. 
We take as an example the nine following queries 
running on the DW tables. We can extract from each 
query the used predicate list: 
Q1. This application analyses sales turnover into site 

1 according to the location ordered by products. 
The predicates are {Id_P=1,2 &  Id_L=1} 

Q2. This application analyses sales quantities into 
site 1 according to the location ordered by 
customer    categories. The predicates are 
{Id_C=1,2,3 & Id_L=1} 

Q3. This application analyses sales turnover 
quantities into the sites: 1, 2 and 3 according to 
the location ordered by customer categories and 
products. The predicates are {Id_P=1,2,3,4 & 
Id_C=1,2,3,4,5,6,7,8,9 & Id_L=1,2,3} 

Q4. This application analyses sales turnover into site 
2 according to the location ordered by products. 
The predicates are { Id_P=2,3 &  Id_L=2} 

Q5. This application analyses sales quantities into 
site 2 according to the location ordered by 
customer categories. The predicates are { 
Id_C=4,5,6 & Id_L=2} 

Q6. This application analyses sales turnover 
quantities into site 2 according to the location 
ordered by customer categories and by products. 
The predicates are { Id_P=2,3 , Id_C=4,5,6 & 
Id_L=2} 

Q7. This application analyses sales turnover into site 
3 according to the location ordered by products. 
The predicates are { Id_P=3,4 &  Id_L=3} 

Q8. This application analyses sales quantities into 
site 3 according to the location ordered by 
customer categories. The predicates are { 
Id_C=7,8,9 & Id_L=3}  

Q9. This application analyses sales turnover 
quantities into sites 3 according to the location 
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ordered by customer categories and by products. 
The predicates are { Id_P=3,4 , Id_C=7,8,9 & 
Id_L=3} 

We suppose that: 
 In the site 1: just the product Id_P=1 and 

Id_P=2 are on sale, there is one location Id_L=1 
and the corresponding customers are Id_C=1, 
Id_C=2 & Id_C=3.  

 In the site 2: just the product Id_P=2 & Id_P=3, 
are on sale, there are two locations Id_L=2 & 
Id_L=3 and the corresponding customers are 
Id_C=4, Id_C=5 & Id_C=6.   

 In the site 3: just the product Id_P=1, Id_P=2, 
Id_P=3 & Id_P=4 are on sale, there are two 
locations Id_L=4 & Id_L=5 and the 
corresponding customers are Id_C=7, Id_C=8 & 
Id_C=9.   

We recapitulate the complete and minimal 
dimension predicate list by site in the following lists: 

  Site1: Site 2: Site3: 
Id_P=1,2 
Id_L=1 
Id_C=1,2,3 

Id_P=2,3 
Id_L=2, 3 
Id_C=4,5,6 

Id_P=1,2,3,4 
Id_L=4,5 
Id_C=7,8,9 

After Appling the com_min algorithm to the 
preliminary predicate list, the corresponding 
complete and minimal predicate list is: 
MP={P1:Id_P=1, P2: Id_P =2, P3:Id_P=3, P4: 
Id_P=4, P5: Id_L=1, P6: Id_L=2, P7: Id_L=3, P8: 
Id_L=4, P9: Id_L=5, P10: Id_C in [1,2,3], P11: Id_C 
in [4,5,6], P12:Id_C in [7,8,9], P13: Id_R=1, P14: 
Id_R=2, P15: Id_R=3}.  
The next phase of the predicate construction 
technique is the conjunction of simple predicates 
which is called a minterm predicate. In fact, each 
simple predicate can be produced in its natural form 
or by negation. The number of minterm predicate is 
z=2m; with m the number of simple predicate. 
Minterm predicates are exponential on the number 
of simple predicates; we can eliminate meaningless 
minterm predicates by identifying those which 
contradict to a set of implications.  
We suppose as an example that we have the 
following implication list:  
 
i1: P10  ¬P11 ٨ ¬P12     
i2: P11  ¬P12 ٨ ¬P10 
i3: P12  ¬P10 ٨ ¬P11 
i4: P13  ¬P14 ٨ ¬P15 
i5: P14  ¬P13 ٨ ¬P15 
i6: P15  ¬P13 ٨ ¬P14 
i7: P5 ¬P6 ٨ ¬P7 ٨ ¬P8 ٨ ¬P9 
i8: P6   P7 ٨ ¬P5 ٨ ¬P8 ٨ ¬P9 

i9:  P7   P6 ٨ ¬P5 ٨ ¬P8 ٨ ¬P9 
i10: P8    P9 ٨ ¬P5 ٨ ¬P6 ٨ ¬P7 
i11: P9   P8 ٨ ¬P5 ٨ ¬P6 ٨ ¬P7 

The implication list integrates fact implications, for 
instance: site 1 contains one location: id_L1=1, two 
product id_P=1, id_P=2 and id_C in [1, 2, and 3]. 
The implication list depends on the semantic of the 
application.  
If we have the following fact implication list:  

 i12: P13 P1 ٨ P2 ٨ P5 ٨ P10 
 i13: P14  P2 ٨ P3 ٨ P6 ٨ P7 ٨ P11 
 i14: P15  P1 ٨ P2 ٨ P3 ٨ P4 ٨ P8 ٨ P9 

We will obtain the corresponding fact minterm 
predicates list: 
 m1: Id_P=1 ٨ Id_P=2 ٨ Id_L=1 ٨ Id_C IN 

[1,2,3]  ٨ Id_R=1 
 m2: Id_P=2 ٨ Id_P=3 ٨ Id_L=2 ٨ Id_L=3 ٨ 

Id_C IN [4,5,6] ٨ Id_R=2 
 m3: Id_P=1 ٨ Id_P=2 ٨ Id_P=3 ٨ Id_P= 4 ٨ 

Id_L= 4 ٨ Id_L=5 ٨ Id_C IN [7,8,9] ٨ Id_R=3 

3.2 DW Fragmentation Phase 

The fragmentation phase consists, first, in 
fragmenting the dimension table according to the 
minterm predicate list (Primary horizontal 
fragments). Then, we use a semi-join (α) operation 
between dimension primary horizontal fragments 
and the fact table to generate horizontal derived 
fragments. Table 1 contains the primary horizontal 
fragments list of the previous example.  

Table 1: Primary Horizontal fragments. 

 

After applying derived horizontal fragmentation on 
table Sales, we obtain the following derived 
horizontal fragment list: 1F , 2F and 3F

 1F = α(Sales, R1) ∩ α(Sales,P1) α
(Sales,P2)     
       ∩ α(Sales,L1) ∩ α(Sales,V1). 

2F = α(Sales,R2) ∩ α(Sales,P2) ∩  
             α(Sales,P3) ∩ α(Sales,L2) ∩  
            α(Sales,V2).

3F = α(Sales,R3) ∩ α(Sales,P1) ∩ 
                    α(Sales,P2) ∩ α(Sales, P3) ∩  
                    α(Sales,P4) ∩ α(Sales,L3)∩  

                   α(Sales,V3). 

3.3 Allocation Phase 

There are three possible allocation strategies: simple  
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fragment allocation, allocation with fragment 
replication and allocation with some studied 
fragment replication. 

We take as an example the fragments uses 
frequency matrix. The columns present horizontal 
fragments, rows represent the three sites of the 
company, and each cell contains the frequency of a 
fragment uses. 

 

3.3.1 Simple Allocation Strategy 

Each fragment is allocated into the site where it is 
the most frequently used. This option is generally 
chosen when the accesses cost between the 
organization sites does not have negative impact on 
the DW performance. The corresponding allocation 
matrix is given bellow.  

 

The columns present primary horizontal fragments 
of dimension tables. The columns R1, R2 and R3 
present primary horizontal fragments of the 
dimension table Region. L1, L2 and L3 present 
primary horizontal fragments of the dimension table 
Location. P1, P2, P3 and P4 present primary 
horizontal fragments of the table Product. F1, F2, F3 
present derived horizontal fragments of the fact table 
Sales. The matrix rows represent the three sites of 
the company. Each cell contains the state of each 
fragment on the corresponding site. A indicates that 
a fragment is allocated on a site. O indicates that a 
fragment is out or non-existing on a site. U indicates 
that a fragment is used or accessed by a site but it’s 
not replicated in it. 

3.3.2 Allocation with Replication Strategy 

In this strategy, each fragment is allocated where it 
is used. We opt for the local data accesses rather 
than the data remote accesses. The corresponding 
allocation matrix is given bellow.  

 

3.3.3 Allocation with some Studied 
Replication Strategy 

In this strategy, each fragment is allocated where it 
is the most frequently used and replicated into sites 

in which the data remote accesses cost is elevated. 
The corresponding allocation matrix is given bellow.  

 
To evaluate generated fragments, we conduct 
numeric and experimental studies. Numeric studies 
are based on the adaptation of the known objective 
function developed in (Chakravarthy, 1992). 
Experimental studies are based on distributing a real 
DW by using the data set of the APB1 Benchmark 
(OLAP Council, 1998). 

4 DW FRAGMENT EVALUATOR 

Our first strategy to evaluate DW fragments is to use 
a cost model. Each fragment is evaluated by its local 
processing cost and remote one on each site. It is 
supposed that there are no data redundancies 
between fragments. Fragments are allocated to sites 
where they are the most used. DW Fragment 
Evaluator (DWFE) computes the processing cost of 
each fragment. The Fragment Evaluator (FE) is 
given by: 

2
R

2
M EEFE +=                                  (1) 

Where 2
ME is the local horizontal fragment access 

cost and 2
RE is the remote one. 

4.1 Local Fragment Access Cost 

The local horizontal fragment access cost 2
ME  is the 

first component of the DWFE. As an adaptation of 
the work presented by Chakravarthy in 
(Chakravarthy, 1992), 2

ME  is given by: 

            (2) 

Where M is the total number of fragments; T is the 
total number of transactions in the site c; itcS  is the 
number of rows in Fi   accessed by a transaction t at a 
site c; tcq  is a frequency of an application t at a site 
c and ni  is the total number of rows contained in a 
fragment Fi. This component uses the square-error 
criterion as given by Jain in (Jain, 1988) for data 
clustering. The objective here is to obtain a fragment 
which minimizes the square error for a fixed number 
of fragments. This criterion assigns a penalty factor 
whenever local rows are accessed in a particular 
fragment. (Chakravarthy, 1992)  

4.2 Remote Fragment Access Cost  

The  remote  horizontal  fragment access cost 2
RE  is 

)]n/S1(S*q[E iitc
M

1i
T

1t itctc
2
M ∑ ∑= = −=
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the second component of the DWFE. For each 
transaction running on a fragment, we compute the 
ratio between the number of remote rows to be 
accessed by a transaction t and the total number of 
rows in each remote fragment. The remote 
horizontal fragment access cost which is an 
adaptation of the work presented by Chakravarthy in 
(Chakravarthy, 1992) is given in the following 
equation: 

                    (3) 

 

Where:          is the number of relevant remote row 
access in fragment k accessed remotely with respect 
to a fragment i  by a transaction t at a site c;        is 
the total number of rows in fragment k accessed 
remotely with respect to a fragment i by a 
transaction t. 

We use the DWFE to measure the performance 
of a fragmentation schema. A lower DWFE value 
means fewer penalties and thus; better performance.  
We take as an example the following row numbers 
(Table 2). We use this example to computes the 
DWFE for each fragment. 

Table 2: Row sets on each site. 

 

To allocate each fragment, we test three cases: (1) 
fragmentation with full copy resides on site 1; (2) 
fragmentation with one copy resides on every site 
and (3) fragmentation with some fragment 
replication. We present in table 3, table 4 and table 5 
the local access cost and a remote access cost of 
each table. 

Table 3: CASE 1: Fragmentation, full copy resides on 
site 1. 

 
 

Table 4: CASE 2: Fragmentation copy resides on each 
site. 

 

In case 1, the fact table is centralized in one site, the 
remote access cost is very high. In case 2, each 
fragment is replicated there where its frequency of 
use is positive. The remote access cost is always 
equal to 0, because the fragment is locally accessed 
by the decision support system. The Local access 
cost is very high for the sales table because this one 
is generally characterized by a huge number of rows. 
Consequently, replicating the fact table in each site 
is not a good option. 

Table 5: CASE 3: Fragmentation with some replication. 

 

In case 3, we remark that all local access costs are 
fewer than the case 2 because just some fragments 
are replicated.  

We can deduce that if an organization is 
distributed geographically and if its decision support 
system is disseminated on several distant sites, it is 
more interesting to adapt DDW architecture since it 
gives better performance. In figure 2, we present the 
FE values for the three cases. It is clear that 
fragmentation with some fragment replication gives 
lower costs than fragmentation with full copy resides 
on site 1 and fragmentation with one copy resides on 
every site. 

 
Figure 2: Fragment allocation strategies comparison.  
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5 EXPERIMENTAL 
EVALUATION 

We have conducted an experimental study to 
evaluate our proposal. We have used the dataset from 
the APB1 benchmark (OLAP Council, 1998). The 
star schema of this benchmark has one fact table 
Actvars (33 323 400 tuples) and four dimension 
tables (Figure 3): Prodlevel (9 900 tuples), Custlevel 
(990 tuples), Timelevel (24tuples) and Chanlevel (10 
tuples). We have considered a workload of 36 
queries with 27 selection predicates. We have 
conducted experiments using Oracle 11g. The data 
set of APB1 benchmark is created and populated 
using generator programs offered by APB1. We use 
three machines having the same following 
characteristics. Intel Core2Duo, 2 Gb of memory. 

 
Figure 3: Star schema of the benchmark APB1 Sale 
activity star schema. 

5.1 APB1 Dataset Benchmark 
Decentralization 

We give bellow the complete and minimal predicate 
list to the dimension table (We replace the attributes 
Product_I and Customer_I  by sequential numbers to 
simplify the tasks of decentralization): 

 

By applying the predicate construction technique, 
we obtain the following fact minterm predicate list:  
PM1: P7^P8^P9^P16^17^18^25^26^27 
PM2: P1^P2^P3^P10^P11^P12^P19^P20^P21 
PM3: P4^P5^P6^P13^P14^P15^P22^P23^P24 

We take as an example the following fragment uses 
frequencies matrix: 

 

According to the fragment uses frequencies matrix, 
we generate the fragment allocation matrix using the 
simple allocation technique. 

 
Finally, we allocate the various fragments into three 
remote sites. The sites communicate through a 
virtual Private Network using a tunneling protocol. 
We use a workload of 36 queries that we execute to 
a centralized APB1 benchmark. We see in figure 4 
that remote access increases the execution time of 
applications especially those whose users are 
geographically distant. Then, we execute the same 
workload into APB1 benchmark dataset distributed 
using our DW fragmentation and allocation 
approach.  

5.2 Discussion  

DDW architectures support multiple geographically-
distributed business divisions. It allows each 
business division to have its own extraction, 
transformation, loading tools and multiple data 
marts. The central DW stores corporate-wide data 
and all components are synchronized across the 
DDW environment using a global metadata 
repository.  

Queries workload can be classified into two 
categories: specific queries and general queries. 
Specific queries describe local needs (example: 
analyze sales amount by product of site 1). General 
queries describe needs of the whole company sites  

 
Figure 4: Specific queries execution time. 

(example: compare sales amount by product of all 
the company sites). In figure 4, we present specific 
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queries execution time. Results show that DDW 
gives better performance for all the specific queries 
compared to the centralized context. Summed 
specific queries execution time is reduced by 82%.  
In figure 5, we present general queries execution 
time. Results show that DDW gives better 
performance for some general queries but not for 
others. For query 1 (sales analysis by product by 
year) and query 5 (sales analysis by quarter by year), 
the execution times are elevated compared to the 
centralized context. The specificity of those queries 
is that they are based on JOIN operations between 
all fragments localized at different distant 
geographical sites. In this case, the execution time is 
elevated compared to a CDW however the summed 
general queries execution time is reduced by 76%. 

 
Figure 5: General queries execution time. 

6 CONCLUSIONS 

The design of DDW is an optimization problem 
requiring solutions to several interrelated problems 
including: data fragmentation, fragment allocation, 
and local optimization. Each problem can be solved 
with several different techniques, thereby making 
the distributed database design a very difficult task. 
Although there are many researches on the design of 
data fragmentation, most of them are focused on the 
centralized context and no considerations are given 
to the distributed allocation problem. Our work is 
considered one of the few dealing with data 
fragmentation and fragment allocation for the 
decentralization purpose. In this paper, we adapt a 
DW fragmentation approach using the predicate 
construction technique to generate the predicate list 
and the primary and derived horizontal technique to 
fragment dimension and fact tables. Then, we study 
three fragment allocation techniques into a 
distributed environment. First, we allocate fragment 
according to the simple allocation technique. Then, 
we replicate fragment there were they are used 

according to the fragment allocation with replication 
technique. Finally, we revise some fragment 
replication using the allocation with some fragment 
replication technique. After that, we conduct 
computing evaluation by using a DWFE and we 
compare the three fragment allocation cases. Finally, 
we implement our approach on a real DW. Results 
demonstrate that DW decentralisation gives better 
performance when data storage is distributed trough 
the company sites. But, the execution time for 
queries which are based on JOIN operations between 
all distributed fragments is higher than in a 
centralized context. As future work we intend to 
study OLAP distant queries optimization in a DW 
distributed context.  
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