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Abstract: The ease of movement of people inside a public space is highly impacted by the public space layout itself. 
For example, the flow of a large number of people should be smooth in a well designed public space such as 
a stadium or hospital. In extreme cases, people might crush to death during emergency evacuations in 
poorly designed spaces. It is vital that design takes into account the smooth flow of pedestrians. In this 
paper we describe an initial exploration in using models of pedestrian flow combined with heuristic search 
to assist in the automatic design for spatial layout. A two-way pedestrian flow system is simulated and 
heuristic search techniques (genetic algorithm, simulated annealing and hill climbing) are used to find 
feasible spatial layouts based upon the generated statistics with promising results. 

1 INTRODUCTION 

Pedestrian flow is an integral part of spatial layout 
design. The spatial layout of public space has an 
enormous impact upon the ease with which people 
can move. There are a number of projects that have 
used pedestrian simulation to test pedestrian routes 
for airport terminal floor plans, stadium plans, 
shopping malls, and galleries (Batty et al., 2003, 
Dijkstra and Timmermans, 2002, Pan et al., 2006, 
Smedresman, 2006, Zhu et al., 2008). Based on the 
previous works, a computer simulation of pedestrian 
movement was identified as a useful method to help 
designers to understand the relation between spatial 
layout and human behaviour. It is vital that spatial 
layout design takes into account the smooth flow of 
pedestrians which will demonstrate how appropriate 
traffic control can effectively address congestion and 
safety issue. Pedestrian flow is going to be simulated 
by using the concept of cellular automata (CA). This 
approach is taken because CA presents a simple 
local rule describing the behaviour of each 
automaton that can create an approximation of actual 
individual behaviour (Dijkstra and Timmermans, 
2002). Evolutionary algorithm search method is 
preferred for this study because of its principle of 

artificial selection: the process involves randomly 
mutating a large number of individuals, ranking 
them, selecting the best, and iterating over and over 
again. According to Smedresman, 2006, they are 
particularly adept at sifting through large search 
space as in floor plan design domain to find 
solutions that may not intuitively present 
themselves. 

Spatial layout is one of the most challenging 
phases of architectural design, and this type of 
problem is an NP-hard class which belongs to a 
complex combination optimization (Charman et al., 
1994, Honda and Mizoguchi, 1995). In other words, 
algorithm for solving this problem needs a very long 
running time and a great storage space when the 
scale of the problem is large. For solving 
combinatorial optimization problem, effective 
methods include genetic algorithm, simulated 
annealing and hill climbing. 

In this paper, we compare simulated annealing 
(SA) and hill climbing (HC) with updates that 
involve simple genetic algorithm (GA) operators in 
order to find solutions to a room layout. This 
involves walls/obstacles randomly distributed in a 
10-by-10 grid with two types of pedestrian moving 
inside the space: one moving from left-to-right and 
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another one moving right-to-left based upon the 
cellular automata model of  Yue et al., 2007. The 
aim of the experiments is to compare and understand 
how fast and effective the algorithms can generate 
(not simply refine as in Smedresman, 2006) 
automatic solutions to the spatial layout problem by 
using statistics generated from cellular automata 
pedestrian simulations. 

2 METHODOLOGY 

The experiments involve applying simulated 
annealing (SA), hill climbing (HC) and a form of 
repeated SA that is updated with genetic algorithm 
(GA) operator (SA-GAO) to solve the spatial layout 
problem. It is not feasible to have a full GA 
implementation due to the very complex fitness 
function involving several pedestrian simulations. 
The methods analysed in this paper have been run 
using a pedestrian movement model developed by 
Yue et al., 2007. They proposed two pedestrian 
movement models on a square lattice for small 
system based on cellular automata (CA), i.e. two-
way pedestrian flow and four-way pedestrian flow. 
They introduced a technique to simplify tactically 
the process into the interaction of four dynamic 
parameters, which can reflect the pedestrian 
judgment on the surrounding conditions and decide 
the pedestrian's choice of action such as moving 
ahead, stopping to wait, position exchange, lane 
switching, back stepping, etc. In this paper, the two-
way pedestrian flow system is simulated and studied 
using the Dynamic Parameters Model from Yue et 
al., 2007 to consider direction split and pedestrians’ 
walking preference. 

In this model, pedestrian choose to wait or move 
according to the corresponding transition payoff 
based on four parameters: 

 Direction-parameter indicates the cell’s degree 
of approximation to the pedestrian destination; 

 Empty-parameter indicates whether the cell is 
occupied or empty; 

 Forward-parameter describes the proportion of 
empty cells in the field ahead of his or her target 
position; 

 Category-parameter describes the proportion of 
the number of empty cells and pedestrians 
homogenous with the subject in his or her direction 
of destination in the field around his or her target 
position. 

2.1 Hill Climb and Simulated 
Annealing 

The pseudocode for our implementation of this 
approach is listed in Figure 1. 

Figure 1: Pseudo-code for the Hill Climb and Simulated 
Annealing. 

In order to set this as a HC, the starting 
temperature is set to zero. Note that the fitness here 

Input: Number of iterations, iteration, 
and a random starting layout, startrep, 

starting temperature, temperature 
 

oldrep = startrep; 
 

Apply 10 pedestrian simulations to 
generate statistics, stats 

 
fit = fitness(stats) 

 
bestfit = fit 

 
for  loop = 1:iteration 

 
rep=oldrep; 

 
Apply move operator to rep 

 
Apply 10 pedestrian simulations to 

stats 
 

newfit = fitness(stats); 
 

dscore = newfit-fit 
 

if ((bestfit < newfit) OR 
(rand(0,1) <e(dscore/temperature)) 

 
bestfit = newfit 

 
oldrep = rep; 

 
else 

 
rep = oldrep; 

 
end if 

 
temperature = temperature*0.9 

 
end for 

 
Output: rep 
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uses the statistics generated from 10 repeated runs of 
the CA pedestrian simulation. This is done to ensure 
that one simulation does not result in a ‘lucky’ 
fitness score for one layout based upon the starting 
positions of the pedestrians. 

2.2 Move Operator 

The move operator, shown in Figure 2, takes into 
account the size of the simulation grid and randomly 
moves one object a fraction of this distance 
(determined by the parameter changedegree). The 
result of the move is then checked to see if the new 
coordinates are within the bounds of the grid and do 
not result in the object overlapping with others. The 
operator is defined fully in Figure 2, where 
unidrnd(min,max) is a uniform discrete random 
number generator with limits of min and max. 
 

 

Figure 2: Pseudo-code for Move Operator. 

2.3 Fitness Function 

The fitness function is calculated based on the 
statistics that are generated using the pedestrian 
simulation. The statistics take the form of a 3x3 
matrix, leftstats, representing the sum of decisions 
for left-moving pedestrians and a similar decision 
matrix for right-moving pedestrians, rightstats. 
Therefore, the middle cell in each grid represents 
how many times the pedestrians decided to stay in 
the same cell as last time. As we wish to encourage 
free flow we wish to increase the fitness for layouts 
that results in many cases of left moving pedestrians 
moving left and right moving pedestrians moving 
right, whilst penalising the fitness of any decisions 
where the left-moving pedestrians move right and 
vice-versa. For example, consider the two stats 
matrices for left and right pedestrians. It is clear that 
the leftstats reflect a ‘good’ result as the pedestrians 
have generally moved in the desired direction more 
often whereas for rightstats this is not the case. 
 

3 1 1  3 3 2 
5 3 0  2 2 2 
3 2 2  2 3 1 
leftstats  rightstats 

Figure 3: Left and Right statistics – describe as 3x3 
matrix. 

In general, we wish to maximise the first column 
in leftstats and the third column in rightstats whilst 
minimising the other statistics (shaded in the 
example, Figure 3). Therefore, we use the following 
fitness function: 

 

rightfitness = sum (rightstats(3,1:3))-sum(rightstats(1,1:3) 
 

leftfitness = sum (leftstats(1,1:3))-sum(leftstats(3,1:3) 
 

fitness = rightfitness + leftfitness 
 

Higher fitnesses should reflect simulations 
whereby pedestrians have moved in the direction 
that they wish more often. 

2.4 SA Genetic Algorithm Operators 

We extend our work by using GA-style operators. A 
full GA implementation is not feasible due to the 
very complex fitness function involving several 
pedestrian simulations. Therefore, we extend our 
work by using GA-style operators on the results of 
multiple starts of SA. The initial ‘parents’ are 
selected from the best (selection are made based on 
more consistent fitnesses value with a good final 
layout which is 9.000 or above) solutions generated 

Input: Size of simulation grid, W, size 
of object, sizobj, current x-coordinate, 

oldx, current y-coordinate, oldy 
 

Set the degree of change to make based 
upon a fraction of the grid size: 

changedegree=W/2; 
 

Choose a random object in the grid, i 
 

[oldx,oldy] = current x and y 
coordinates of object i 

 
xchange = unidrnd(-changedegree/2, 

changedegree/2) 
 

ychange = unidrnd(-changedegree/2, 
changedegree/2) 

 
if ( (oldy+ychange) and (oldx + xchange) 
is within grid boundary AND new object 

position does not overlap another object 
taking into account sizobj) 

 
    newx=oldx+xchange; 

 
    newy=oldy+ychange; 

 
end if 

 
Move object i to position [newx, newy] 

 
Output: newx, newy 
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from a number of SA experiments. We 
experimented with different style of combination for 
two ‘parents’ that more or less act like uniform 
crossover. In the crossover operation, two new 
children are formed by exchanging the genetic 
information between two ‘parent’ chromosomes. 
Multipoint crossover defines crossover points as 
places between loci where an individual can be split. 
Uniform crossover generalizes this scheme to make 
every locus a potential crossover point. A crossover 
mask, the same length as the individual structure is 
created at random and the parity of the bits in the 
mask indicate which parent will supply the offspring 
with which bits.  

Consider the following two parents with 10 
binary variables each: 

Parent1 1 1 1 1 1 1 1 1 1 1 

Parent2 2 2 2 2 2 2 2 2 2 2 

For each variable, the parent who contributes its 
variable to the children is chosen randomly with 
equal probability. Here, children 1 is produced by 
taking the bit from parent 1 if the corresponding 
mask bit is 1 or the bit from parent 2 if the 
corresponding mask bit is 2. Children 2 is created 
using the inverse of the mask, usually. 

Mapping 1 2 1 1 2 2 2 1 1 2 

After crossover the new individuals are created: 

Children1 1 2 1 1 2 2 2 1 1 2 

Children2 2 1 2 2 1 1 1 2 2 1 

3 RESULTS 

The experiments involved running HC, SA and SA-
GAO on the problem of trying to arrange 10 pre-
defined objects in a 10x10 grid with 5 ‘left’ 
pedestrians and 5 ‘right’ pedestrians. Each algorithm 
was run 10 times and the learning curves were 
inspected. The final fitnesses and quality of the 
layouts were then investigated. Finally, some 
inspection of sample simulations on the final layouts 
was carried out to look for interesting 
characteristics.  

3.1 Summary Statistics 

Table 1: Summary statistics of final fitness. 

Method Min. Max. Mean Std. Dev. 
SA1 3.846 9.790 7.615 1.854 
SA2 4.786 9.938 8.085 1.477 
HC 6.992 9.276 8.586 0.724 

Table 1 shows the minimum, maximum and mean 
values for the final fitness of each algorithm over ten 
experiments, where SA1 represent SA with initial 
temperature of 1.0 and SA2 represents a temperature 
of 0.2. The statistical values of HC show the 
robustness of the solutions with the standard 
deviation of 0.724. The standard deviation is 
relatively low, which indicates that HC is among the 
most consistent approach in finding a good solution 
(the mean is also higher). However, the maximum 
value is less than SA2 indicating that the SA can 
sometimes escape some of the local optima. 

 

Figure 4: Distribution of Final Fitness for each Search 
Method. 

Figure 4 shows the final fitness distribution for 
each search method. From Table 1 and this figure, it 
is clear that the distribution of the fitnesess for the 
SA algorithms for both temperatures is spread more 
than for the HC. SA is sometimes empirically better 
at avoiding local minima than hill-climbing though 
HC is the most consistent approach based on Table 
1. 

 

Figure 5: Max, Min and Mean learning curves for SA 
temperature = 1.0. 

 

Figure 6: Max, Min and Mean learning curves for SA 
temperature = 0.2. 
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The graphs in Figures 5 and 6 show the best, 
worst and mean learning curves for the SA 
algorithm over 10 reruns with two initial starting 
temperatures. The total iteration for every learning 
curve is 500 iterations. These curves characterise the 
typical SA with noisy search at high temperatures in 
the early phases followed by smoother learning in 
the later stages. It seems the higher starting 
temperatures result in more diverse final fitnesses. 
This could be due to the fact that the fitness 
landscape is very noisy and difficult to negotiate, 
resulting in many local optima. 

 

Figure 7: Max, Min and Mean learning curves for HC. 

However, the HC curves in Figure 7 show far 
less variations in final fitness that is surprising. 
Despite the mean final fitness of HC being better 
than SA, it is clear that the SA does indeed escape 
sub-optimal local peaks in the fitness on some 
occasions with the maximum final fitness being 
higher than HC. Clearly this is likely to be due to 
HC techniques exploiting the best available solution 
for possible improvement but neglecting exploring a 
large portion of the search space (Michalewicz & 
Fogel, 2000). Additionally, the higher starting 
temperature for SA seems to result in better 
solutions but at the expense of greater variance in 
the final fitness.  

We then expanded our work to SA-GAO. Four 
different mappings were run and each was run 10 
times. Seven ‘parents’ were selected from the 
consistent resulting solutions of previous SA 
experiments where each of their fitness values is 
9.000 or above. The highest ‘parent’ fitness is 
10.048 as shows in Table 2. 

Table 2: Selected ‘parents’ and their fitness value for SA-
GAO experiments. 

Parents Fitness 
Parent1 9.382 
Parent2 10.048 
Parent3 9.010 
Parent4 9.124 
Parent5 9.780 
Parent6 9.438 
Parent7 9.414 

Table 3: ‘Children’ with highest fitness values generated 
from SA-GAO of four different combinations. 

Mapping Max. Fitness 
1122211222 10.434 
1112221112 10.460 
1112111211 10.398 
1212121212 9.672 

 
Table 3 shows different mappings of uniform 

crossover and the highest fitness value of the 
children for each combination. The fitnesses of the 
‘children’ scored better compared to the ‘parents’ 
highest fitness value. This implies that recombining 
the best of the SA solutions can indeed improve the 
overall layout without having to implement a full 
GA which would not be feasible for such an 
expensive fitness function. 

Table 4: ‘Children’ with highest fitness values generated 
from SA-GAO of one hundred random combinations. 

Mapping Max. Fitness 
2122112111 9.642 
2212221212 Child1: 9.714,  

Child2: 9.476 
1211122122 9.178 
2121221121 9.846 
2121122212 9.322 
2221121212 9.092 
2212211112 9.656 
2122112111 9.466 
1121111221 9.046 
2122211111 9.200 
2122222111 9.378 
1222211122 9.112 

 
We next tried to experiment with one hundred 

random combination of mappings. The highest 
fitness of the children is 9.846 as shown in Table 4 
generated from ‘2121221121’ mapping. Note that 
mapping ‘2212221212’ generates both ‘child1’ and 
‘child2’ with good fitness (higher than 9.000). This 
result shows that it may be necessary to run quite a 
large number of recombination of parents to ensure 
improved fitness. It may also imply that further 
mutations are required to fine-tune these new 
solutions. 

3.2 Exploring the Final Layouts 

We now explore some of the characteristics of the 
final layouts discovered by the algorithms. The 
blue/down arrows in figure 8 (a)-(e) represent the 
final positions of wall layout; 500 iterations using 
SA, HC and SA-GAO algorithm. Meanwhile, the 
black and pink arrows represented left and right 
pedestrians moving in each ways. From Figure 8 (a) 

0

5

10

1

1
6
8

3
3
5

HC 
mi
n

USING UNIFORM CROSSOVER TO REFINE SIMULATED ANNEALING SOLUTIONS FOR AUTOMATIC DESIGN
OF SPATIAL LAYOUTS

377



 

and (b), we can see clearly that the bad layouts are 
generated from the series of lowest fitness. The 
higher the fitness, the better the layout as in Figure 8 
(c), (d) and (e). Notice in 8 (a) (the lowest fitness for 
SA with starting temperature of 0.2) the large wall 
created by the objects on the right were blocking any 
left-right movement. It may be that more complex 
operators are required to escape from this point. The 
lowest scoring HC in Figure 8 (b) features a long 
wide corridor in the centre which results in an 

“almost dead end” at the left. Notice the completed 
“corridor” in Figure 8 (c) from left to right with a 
width of 1 cell allowing free flow of both left and 
right pedestrians. Also note the alternative routes. 
Figure 8 (d) shows the highest scoring layout of HC 
with the existence of single cell corridors allowing 
some free flowing movements. Finally, notice in the 
Figure 8 (e) for the highest fitness of SA-GAO that 
there are two “corridors” at the top and bottom of 
the final layout. 

 

                
(a) SA (temperature = 0.2) Final layout with lowest fitness of 4.786.         (b) HC final layout with lowest fitness of 6.992. 
 

                  
(c) SA (temperature = 0.2) Final layout with highest fitness of 9.938.  (d) HC final layout with highest fitness of 9.276. 

 
(e) SA-GAO final layout with highest fitness of 10.460. 

Figure 8: (a)-(e). SA, HC and SA-GAO final layouts.  

ICEC 2010 - International Conference on Evolutionary Computation

378



4 CONCLUSIONS 

In this paper we explored using pedestrian flow 
simulations combined with heuristic search to assist 
in the automatic design for spatial layout planning. 
Using pedestrian simulations, the activity of crowds 
can be used to study the consequences of different 
spatial layouts. 

Based on the results that have been observed in 
this paper, we have demonstrated that simple 
heuristic searches appear to deal with the NP-hard 
spatial layout design problem to some degree, at 
least on the very much simplified problem addressed 
here. Both SA and HC are able to automatically find 
adequate solutions to this problem when 
incorporated with the pedestrian simulator. 
Moreover, the solution is further improved when we 
paired ‘parents’ and apply a GA style operator using 
our method SA-GAO. Whilst it is not guaranteed 
that the optimal solution will be found, this does not 
mean that useful and unexpected designs cannot be 
learnt using these types of approaches. Indeed, the 
real positive outcome of the experiments here is that 
we found certain characteristics that may not have 
been immediately expected. We have found several 
key results: 

 The highest fitnesses produced useful layouts, 
passageways (diagonal or horizontal) and clustered 
objects. These demonstrably show smoother flow 
when running the simulations and exploring the 
statistics of movement; 

 SA has more variations in final fitness. Whilst 
HC cannot ‘escape’ local optima, SA does 
sometimes manage to do this with better final 
solutions. In general, the distribution of final 
fitnesses is higher for SA though more adventurous 
solutions are explored; 

 SA-GAO generated better solutions compared 
to SA solutions: the SA-GAO children show higher 
fitnesses than their parents. This implies that 
solutions with lower fitnesses may still offer useful 
information and when these are recombined in a 
constructive way, they generate better overall 
layouts than if no recombination is used. 

We feel that approaches that combine heuristic 
search with simulation should offer the ability to 
find novel design solutions in more complex design 
layouts with larger spaces, more objects, different 
constraints and different pedestrian goals. In general, 
we found that SA-GAO treats combinations of two 
existing solutions as being ‘near’, making the 
‘children’ share the properties of their parents, so 

that a  child of two good solutions is more probably 
good than a random solution as in HC and SA. 

Future work will involve extending our work by 
make use of real world data to validate the 
discovered layouts. We have access to large amounts 
of pedestrian flow data in existing public buildings 
and private offices. We will use the data to further 
test our algorithms on layouts discovered from more 
complex real-world spaces. 
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