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Abstract. Although pervasively deployed, sensors are currently neither highly 
interconnected nor very intelligent, since they do not know each other and pro-
duce only raw data streams. This lack of interoperability and high-level reason-
ing capabilities are major obstacles for exploiting the full potential of sensor da-
ta streams. Since interoperability and reasoning processes require a common 
understanding, RDF based linked sensor data is used in the semantic sensor web 
to articulate the meaning of sensor data. This paper shows how to derive higher 
levels of streamed sensor data understanding by constructing reasoning know-
ledge with SPARQL. In addition, it is demonstrated how to push these infe-
rences to interested clients in different application domains like social media 
streaming, weather observation and intelligent product lifecycle maintenance. 
Finally, the paper describes how real-time pushing of inferences enables prove-
nance tracking and how archiving of inferred events could support further deci-
sion making processes. 

1 Introduction 

Since centuries everyone get used to sensors in the form of classical thermometers 
that measure temperatures. Nowadays, more sophisticated sensors monitor all kinds 
of physical world phenomena and they are pervasively deployed, e.g. in cars as acce-
leration detector, at the door as movement alarm, in the office as smoke detector and 
in watches as health monitoring sensors. Some of these sensors are enhanced with 
spatial, temporal and concept annotations to enable high-level reasoning and these 
sensors are integrated into the semantic sensor web as they are accessible via the 
internet. Since sensor networks provide a digital interface to real world phenomena, 
they are part of the internet of things [7] paradigm. Unfortunately, these sensors are 
not very intelligent by themselves and are not interconnected, because they produce 
only raw time series data and the process of combining multiple sensors to identify 
high-level inferences is not yet very common. In addition, the delivery of sensor infe-
rence streams is based on the pull model where it is necessary to actively monitor the 
streams. This paper describes how to lift raw sensor data to more expressive layers 
that can be understood both by machines and humans and it describes how to push 
relevant inferences to interested parties for further processing. 

Therefore, this paper combines the following different technologies to form a sen-
sor data processing network that creates, pushes and archives inferences from sensor 
data streams:  
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1. Executing continuous SPARQL queries [3] over streamed sensor data. 
2. Deriving high-level inferences [20] from raw stream data with SPARQL  
3. Pushing [13] these inferences to interested clients with sparqlPuSH. 
4. Create an archive that accepts and manages stream inferences. 
5. Preserving RDF based inferences during ontology evolution. 

The remainder of the paper is structured as follows. The next section provides a 
characterization of sensor networks, semantic sensor data streams, data stream man-
agement systems and describes the sensor data pyramid containing different layers of 
data relationships. Section 3 presents a system architecture that enables generating, 
pushing and archiving annotated sensor data along the different levels of the sensor 
data pyramid and applies this architecture to different application domains. The last 
section concludes with a description of future work.  

2 Sensors 

A sensor is a device with small memory, reduced computing capacities and limited 
power supply that measures an observable physical quantity or environmental condi-
tion like temperature (thermal), sound (acoustic), vibration (seismic), visual light, 
infrared light, pressure, magnetism, radar, pollutants or motion (e.g. traffic). A sensor 
monitors a feature of interest (e.g. a product or lake) and reports observations as value 
of some property representing a quality of a feature obtained using a specified proce-
dure. Sensors vary in terms of the sampling frequency and the amount of data they 
produce. For example, a thermometer may output a single byte and may be sampled 
every few seconds whereas a video camera that assists with reversing may output 
several megabytes per second. A sensor data stream is a continuous and timely or-
dered sequence of observations. A sensor network consists of multiple spatially dis-
tributed autonomous sensor devices. A sensor network allows that many sensors coo-
perate and interact with each other. In the semantic sensor web, measured sensor data 
is described by knowledge representations languages like the Resource Description 
Framework (RDF) [15]. In order to express such semantics, concepts from widely-
used vocabularies and data from the Linked Open Data [5] cloud is used to allow 
machine interpretation [2]. Special Data Stream Management Systems (DSMS) con-
nect to and monitor one or more stream sources. A DSMS will not archive permanent-
ly generated stream data. Such streamed data will rather be processed directly by 
executing continuous queries which are used to produce alarms if some events occur. 
In addition, a DSMS is used to build aggregated and semantic annotated data from 
raw stream data. To do so, a DSMS must lift raw sensor data to higher layers of un-
derstanding to support both human and machine interpretation. The sensor data py-
ramid is a model that illustrates these different layers. 

2.1 Sensor Data Pyramid 

The sensor data pyramid [17] that is depicted in figure 1 is a concept for modeling 
relationships between sensor data, information, knowledge and wisdom.  
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Fig. 1. The sensor data pyramid includes four different layers including raw sensor data, feature 
metadata and ontology metadata.  

In the pyramid, data and associated concepts build information. If meaning is at-
tached to information (e.g. semantic annotation) then knowledge is created. Finally, a 
human being can have insight into knowledge to gain wisdom. Data at the lower le-
vels will arrive with higher frequency than on higher levels and higher layers have 
more expressiveness than lower layers. 

2.2 Streams of Stream Inferences 

Raw stream data that is lifted to higher expressive layers (e.g. via ontology annota-
tions) build new streams (e.g. RDF streams) that serves as input for other consumers. 

 
Fig. 2. Raw stream data is lifted to more expressive layers which is then used as input for other 
stream consumers. 

For example see figure 2: rule 1 reads facts (triples) from two different sensors and 
a database (triple store) to create new facts. These newly created facts (fact 4) are the 
input for another rule 2 that itself leads to an action.  

2.3 Stream Inference Pushing and Archiving Architecture 

The  sparqlPusH  approach  [13] broadcasts changes made to RDF data in real-time to 
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clients as Atom or RSS feeds. The system architecture of sparqlPuSH consists of 
publishers, hubs and subscribers that can be combined to form a network of multiple 
actors. The publisher is the source of updates and the hub pushes the newly published 
data to multiple interested clients that have previously been registered. This architec-
ture can be extended with regard to the data (inferences rather than updates) that is 
broadcasted. In such a stream inference pushing and archiving architecture the 
workflow is executed in two different steps: 

Registration. First, the client registers the inference query at the endpoint of the pub-
lisher. The publisher redirects the request to the hub and the client registers for a spe-
cific feed published by the hub. 

Broadcasting. Second, the publisher executes continuous queries over streams and 
the publisher executes the sensor data pyramid loop (see below). If registered infe-
rence queries generate new results, a notification is sent to the hub. The hub itself 
broadcasts these inferences to registered feed clients.  

 
Fig. 3. The broadcasting of inference streams to subscribers after the subscribers has been 
registered at the hub. 

The DSMS handles large amounts of streaming data and executes an endless sen-
sor data pyramid processing loop (figure 3). While executing this loop, the DSMS 
pushes new inferences to well known hubs which broadcast these inferences to inter-
ested clients. Since the DSMS does not archive all data, one of the clients includes a 
long-term archive that archives and preserves important facts.  

Sensor Data Pyramid Loop. The DSMS execute a sensor data pyramid loop that 
includes reading, analyzing, annotating, reasoning and pushing of stream data. This 
loop contains the execution of continuous queries like C-SPARQL [3], the generation 
of inferences and the pushing of newly annotated stream data. In other words, each 
time new stream data arrives at the DSMS, rules (inference queries) are executed.  
The SPARQL CONSTRUCT pattern allows expressing such rules because the 
WHERE clause is the condition that must be fulfilled by current available facts and 
the CONSTRUCT pattern allows to express the reasoned facts. These reasoned facts 
are then being used as stream input for other rules. The DSMS will push the infe-
rences to a hub which broadcasts the inferences to clients. One potential client is a 
long-term archive that archives specific observation events. 

The endless sensor data pyramid loop is executed in the DSMS. The loop reads mul-
tiple  sensor  streams, mine and correlate sensor data, annotate one or more streams 
with semantics, pushes these streams, reason over newly generated facts and pushes 
potential new generated inferences 
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while true do 
  readSensorStreams(); 
  mineData(); 
  annotateSensorStream(); 
  pushSemanticStream(); 
  infer(); 
  pushInferenceStream(); 
end   

Inferences for Decision Making Processes. The archive client collects all inferences 
and their provenance. Once all this data has been collected, it can be used by a human 
to make decisions which can be assisted by machine readable rules. 

Preserving Stream Inferences. The inference stream consists of RDF statements that 
use a specific version of an ontology. These vocabularies evolve over time and arc-
hived inferences are only consistent with a specific ontology version. The archive 
must be able to handle this ontology evolution (threat of semantic obsolescence) by 
migrating inference instances via ontology mapping. In addition, an inference archive 
must also have data integration facilities to cope with the heterogeneity of ontologies 
that describe sensors and sensor data streams. 

3 Example Use Cases 

In this section several example use cases from different application domains (social 
media, weather observation and engineering) are described in more detail. 

3.1 Social Media Data 

Although semantic streams originating from social media do not monitor physical 
phenomena, they can also be used to infer new knowledge. Microblogging sites like 
Twitter generate streams of short messages. Unfortunately, these streams are not an-
notated with semantics. Therefore, services described in [18] and [10] and [21] or the 
ShreddedTweet [19] service can be used to enhance twitter messages to include RDF 
triples for “hashtags”. Those RDF triples can then be used to infer knowledge (inter-
ests, activity profile and social network analysis) about message posters. 

3.2 Weather Observations 

One  example  for  the  combination  of multiple sensors in weather observation is a 
temperature sensor and a wind speed sensor. Both sensors can be used to calculate the 
wind chill factor. Another example which is described below makes use of a rain and 
temperature sensor to derive higher-level knowledge about occurrences of potential 
freezing rain. In this scenario, the following RDF data (in N3 representation) is 
created  after  reading raw stream data. Here, a sensor delivered a concrete value for 
rain of 0.2 cm in the last hour and a current temperature of minus 1.1 degrees. 

42



After reading the data streams, the following data is attached with semantic information and 
pushed as new stream (to save space, the prefixes have been left out). 

ex:obsveration a obs:WheatherObservation ; 
      obs:degreesCelsius "-1.1"^^xsd:double ; 
      obs:rain "0.2"^^xsd:double ; 
      obs:time "2010-06-20 22:30:03.0" .   

These facts can be used to infer new facts. That means, after producing the above 
semantic stream, the following SPARQL CONSTRUCT query can be used to infer 
new facts. 

Rule to infer freezing rain which occurs if the temperature is below zero and if rain has fallen. 
The CONSTRUCT pattern creates new facts if the condition in the WHERE clause is fulfilled 

CONSTRUCT { obs:freezingrain prov:where geo:hagen .     
            obs:freezingrain prov:why ex:reason .     
            obs:freezingrain prov:when ?time .     
            ex:reason obs:degreesCelsius ?temp .     
            ex:reason obs:rain ?rain . }  
WHERE { ?s obs:degreesCelsius ?temp .     
        ?s obs:rain ?rain .     
        ?s obs:time ?time .   
        FILTER ( ?rain > 0 && ?temp < 0) } 

If the condition in the WHERE clause applies, new facts will be created that in-
clude the inference provenance.  According to [9] the following metadata are of inter-
est while creating observations: Where is the geographical location of the captured 
data? When did the observation begin and when did it end?  What was measured? 
How the observation was executed (instruments)? Who is the originator of the data? 
To describe this provenance, the W7 provenance model [14] can be used to attach 
provenance to specific events. The following code shows the inferred facts. 
A freezing rain inference attached with provenance information produced from a 
SPARQL CONSTRUCT rule 

ex:reason 
      obs:degreesCelsius "-1.2"^^xsd:double ; 
      obs:rain "1.2"^^xsd:double . 
obs:freezingrain 
      prov:when "2010-06-20 22:30:03.0" ; 
      prov:where geo:hagen ; 
      prov:why ex:reason .  

3.3 Sensors in Product Lifecycle Management 

Product  lifecycle  management  (PLM)  systems  allow the management of product 
related information for the complete lifecycle of a product from its conception 
through design and manufacturing to service and disposal. During product operation 
and service valuable data can be obtained from products by using sensors [16] [1]. 
Sensors enable to continuously monitor the conditions of a product.  If such data is 
broadcasted, it can be collected and shared as PLM data among lifecycle actors. Data 
obtained from sensors during product operation can be used to detect needs for main-
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tenance, service or repair in advance. After broadcasting such conditions, spare parts 
can be ordered and service personnel can be scheduled. In addition, sensor data help 
to proactively identify and report conditions before a failure occurs. Other functional 
aspects of collecting product data from sensors include:  

Product Tracing. Products may be equipped with low cost radio frequency identifi-
cation (RFID) and wireless communication that enable automated tracking and trac-
ing the origin, location, movements, physical properties, environmental conditions 
and usage history of a product. The tracing of products help to fight counterfeit prod-
ucts. 

Product Diagnostics. Modern vehicles contain multiples sensors that monitor various 
aspects of the engine’s operation, such as thermometers or fuel flow rate which are 
not only interesting for the driver but also for the service company. Such data can be 
broadcasted in real-time or collected in a memory to be passed later to a remote node. 
In addition, product diagnostics data improve the way that products are recycled when 
they arrive to their end-of-life.  

Product Manufacturing Processes. Sensor data can help to improve existing busi-
ness processes and help to adapt processes in real time. By giving real-time product 
status information, manufacturing procedures can be improved. For example, the car 
sensor data can be broadcasted to the vehicle manufacturer. If the vehicle manufactur-
er could collect such real-use information from a big amount of cars, maintenance 
scheduling can be planned more efficiently. 

Another notion of sensor enriched products is intelligent products [11] that collect 
usage information and react on it proactively. Intelligent products can be divided into 
three categories: an intelligent product should at least be able to manage its own in-
formation given by sensors, RFID-readers (information handling aspect). A more 
intelligent product is a product which can report (problem notification aspect) when 
there is a problem (e.g. temperature is too high). Finally, the most intelligent product 
is the product which can completely manage its own life (decision making aspect). 

4 Conclusions and Outlook 

This paper presented a system architecture that combines different technologies in 
order to enable sensor stream processing together with ontology representations and 
standard SPARQL inference formalisms to derive high-level understandings of raw 
streamed sensor data.  It has been described how reasoning is achieved in the seman-
tic sensor web with standard technologies like RDF based linked data and continuous 
inference queries based on the SPARQL CONSTRUCT pattern. In addition, this pa-
per described how inferences are pushed to interested clients via sparqlPuSH technol-
ogy. Then, three different example use-cases where described in more detail from 
social media, weather observation and engineering.  

Future research will be targeted to the analysis of systems with similar capabilities 
and the evaluation of possibilities to integrate the described solutions into existing 
systems. Further investigations include evaluation of other rule languages like RIF 
(Rule Interchange Format) or XChange. [6], N3Logic [4] or ECA-Rules [12]. In addi-
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tion, research will be executed how decision rules can be formulated and executed 
that help decision making [22]. Further investigations will also include the integration 
of ontology mappings into archive systems the preserve ontology based stream infe-
rences. Finally, while several ontologies exists that describe sensors and sensor obser-
vation [8], domain specific sensor knowledge ontologies (e.g. product monitoring) are 
missing. For example, a common vocabulary for product lifecycle metadata is re-
quired which is necessary to support exchanging of PLM data during whole product 
lifecycle.  
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