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Abstract: To date, there are no systems that can identify symbolic music in a generic way. That is, it should be 
possible to associate the countless potential occurrences of a certain song with at least one generic 
description. The contribution of this paper is twofold: First, we sketch a generic model for music 
representation. Second, we develop a framework that correlates free symbolic piano performances with such 
a knowledge base. Based on detected pattern instances, the framework generates hypotheses for higher-level 
structures and evaluates them continuously. Thus, one or more hypotheses about the identity of such a 
music performance should be delivered and serve as a starting point for further processing stages. Finally, 
the framework is tested on a database of symbolic piano music. 

1 INTRODUCTION 

Imagine you visit a hotel lounge with a piano-player 
playing. If you know the performed song in general, 
you will probably recognize it, although you may 
have never heard the song that way before. 
Commonly, such musicians play by ear, that is, 
without any score. Thus, an interpretation of the 
very same song often differs substantially from one 
performance to another. How can we identify such 
music automatically? First, we want to give an 
overview about related works and how they may fit 
to our aim: 

So-called audio fingerprinting systems, e.g. 
(Mohri, 2007), represent a large corpus of recent 
music identification research. These systems abstract 
from the technical realization of the very same song 
by reducing the representation to salient acoustical 
properties. However, music recognition is restricted 
to already recorded and preprocessed songs. Even 
slight alterations such as common deviations of live 
performances are not detected. 

More recently, audio fingerprinting is 
generalized by proposals, which attempt to correlate 
a musical score with possible recordings, e.g. 
(Montecchio, 2009). This research is usually 
denoted as music synchronization. These approaches 
are strongly tied to the score representation. Mainly, 
this holds only for classical music, which is often 
interpreted newly based on only one existing score. 

Due to this dependence, higher musical deviations or 
structural modifications are not possible with these 
systems.  

Some proposals attempt to derive the structure of 
a musical piece by finding self-similar segments, 
e.g. (Bello, 2009). However, similar music segments 
can show a wide range of modifications in a variety 
of musical parameters, such as instrumentation, 
tempo, dynamics, ornamentation, musical patterns, 
and even recording conditions. These approaches are 
based on a marginalization of those changes. Thus, 
they work only best for musical parts that do not 
change too much, such as in classical music. 
Another problem is the extraction of high-level 
features to describe musical content adequately. One 
approach that is based on high-level features uses 
chroma indexing for music identification (Miotto, 
2008). However, using only one feature is not 
sufficient to describe the many facets of musical 
changes. 

The key idea of this paper is to combine both 
ideas of music synchronization and structural 
analysis for music identification. Both concepts have 
to be extended in order to handle those facets of 
music that are usually altered when played by a bar 
pianist, such as structural modifications, which 
cover arbitrary repetitions of certain parts like 
refrains, removal of parts like strophes, addition of 
free intros, intermezzi, or endings. Parts of music 
can even be combined with different partial or even 
full musical entities. Such medleys are played very 
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often at piano bars. But most challenging are 
alterations of musical content: The same piece of 
music can be played at different styles, e.g. bossa, 
swing, or even as a waltz, which usually results in 
considerable rhythmic changes. Music can be 
reharmonized to make it sound more interesting. For 
the same reason, parts of music are often transposed. 
Finally, even melody can be changed more or less 
by alteration, addition or removal of tones. 

2 GENERIC REPRESENTATION 

Based on inherent musical knowledge a bar pianist 
knows how to play and how to accompany a melody 
in a certain style. To simulate the other way around 
we have to model music in a generic way that allows 
for a high degree of variability. Basis of our model 
is an elementary music description - the so-called 
lead sheet. A lead sheet contains the melody of a 
musical piece and defines harmonic context through 
abstract chord symbols. A skilled pianist knows, 
how to elaborate this information and present the 
music in a certain style, for instance as samba. We 
decompose such a representation into a sequence of 
patterns with musical meaning, so-called motifs. An 
very simple example for the well-known spiritual 
“When the saints go marching in” is given in Figure 
1: 

 
Figure 1: Patterns of ”When the saints”. 

The second pattern is a repetition of the first one. 
General rules for identifying patterns involve expert 
knowledge in the musical domain and are beyond 
the scope of this paper. For computational 
approaches see (Pearce, 2008). 

Adjacent notes are difference-coded in time and 
space, because pattern can be transposed or 
stretched in time. 

2.1 Structural Coding 

The serialization of patterns within a structure is 
done by delta-coding again. This time we use the 
difference between the first notes of adjacent 
patterns in space and time. Applied on “When the 
saints” we get the following structure s1: 
s1: {p1 <0, 1.0> p1 <0, 1.0> p2 <4, 2.125> p3 <0, 2.0> p4} 

The first value after each pattern represents the 
spatial difference in semitones, the second value 
denotes the time difference. This note-length-
notation codes a quarter note as 0.25, an eighth as 
0.125 and 2.125 means two wholes plus an eighth. 
Structure s1 describes only the melodic content of 
“When the saints”. Within our model, an entire 
piece of music is represented by a special template. 
Such a template is usually associated with one or 
more melodic structures, a harmony representation 
and additional parameters.  

Applied on “When the saints” we get a generic 
template t1 for that song, which consists of the 
melodic structure s1 and a non-detailed chords 
representation c1. Model components are best 
illustrated by a tree-like representation. Edges are 
marked by delta-shifts in time and space. 

 
Figure 2: Generic template of ”When the saints”. 

The melodic content of Figure 1 is usually 
associated with “When the saints”. Actually, this is 
only the refrain. The strophe is shown in Figure 3: 

 
Figure 3: Strophe and patterns ”When the saints”. 

This strophe could be modeled as structure s2: 
s2: {p3 <0, 2.0> p5 <0, 2.0> p3 <0, 2.0> p6} 
As you can see, components p3 and p4 are reused 
again. Now, we can create another structure s3, 
which consists of s2 and s1. Then, we create a new 
template t2, which integrates s3 and a new harmony 
structure c2. The resulting template t2 is depicted in 
simplified form in Figure 4. Finally, we have got 
two generic representations of the song, with and 
without strophe. This should reflect real world 
scenarios, where both representations can be valid. 
By marking structural edges with a meaning tag 
(not visualized), we can express common musical 
meaning of structures, such as “refrain”.  
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Figure 4: Template of “When the saints“ with strophe. 

3 RECOGNITION 

Modeling music by a hierarchy of structures, which 
represents a sequence of generic music patterns at 
the lowest level, is the foundation of the music 
identification framework. If we want to identify an 
arbitrary song, we have to correlate it with a 
corresponding generic music template. Primarily, 
this process consists of two steps: First, we have to 
identify all existing pattern instances. Second, we 
have to structure these pattern instances and 
hierarchize the determined structure instances 
recursively. During this step repetitions of structure 
instances should be automatically detected and 
handled adequately. Ideally, after finishing step two 
an instance should be correlated with a top-level 
structure and therefore, can be associated with a 
generic music template. Let us examine these steps 
in more detail: 

3.1 Recognition of Pattern Instances 

For each tone of a music file we match each pattern 
of our database and try to find all occurrences of that 
pattern within a search-range. This range is 
determined by the estimated beat of the 
corresponding region plus a defined tolerance range. 
Although there are some heuristics for most likely 
melody placements, it is necessary to consider each 
occurrence of a pattern at this step. If our brain 
knows a certain pattern, it does not have to be very 
salient to recognize it (Dowling, 1986). Of course, 
this step will usually result in a vast amount of false 
hits. 

During the pattern recognition process, which is 
purely bottom-up, we cannot decide, whether a 
detected pattern instance is really perceived. 
Unfortunately, the denser a sound mixture is, the 
more patterns will be detected and most of them will 
be irrelevant. However, we can use some heuristics 
and rate a pattern instance by perceptual salience 

and similarity with the pattern template. Some 
essential criteria are presented as follows: 

Patterns can be stretched or expanded in time. To 
compensate for the varying length we normalize a 
pattern instance with its length. Then, we evaluate 
both absolute positions of tones within a pattern 
instance and relations of adjacent tones. 

Let p be a detected pattern instance (a sequence 
of tones) and P the corresponding pattern template, 
pi and Pi are the i-th tone of p and P, n is the number 
of pattern tones. timepi and timePi are timestamps of pi 
and Pi. The rating of positions rpos is defined as 

(1) 

Each rating is normalized within range [0, 1]. A 
value 1 means the best possible rating. Analogously, 
we get the rating of relations rrel by evaluating the 
relation of time differences between adjacent notes: 

(2) 

Both ratings can only be evaluated while n > 2. 
How salient is a pattern instance compared with 

simultaneous events? On the one hand, we check, 
whether the events of a pattern instance are more 
salient than simultaneous events and on the other 
hand, we assess the spatial position of a pattern 
instance. Very often, a melodic pattern forms the top 
voice. Generally, it should be isolated from 
surrounding events to become perceived dominantly. 
That is, top or lowest voice is separated better than a 
middle voice, but harmonic simultaneous events 
contribute more evidence for such a hypothesis. 
Let t denote a sequence of tones in same time range 
of p, tj is the j-th tone of t; m is number of tones in t. 
For t and p t)p=� has to be valid. velpi and velti are the 
velocity values of pi and ti. Rating of salience rsal is 
defined as 

 
Let top be the number of tones in p, which form the 
top voice and low the number of components of the 
lowest voice. Rating of place rplace is then defined as 

 
 (3) 

 With this definition, the upper voice is better  
rated than the lower voice and the highest rating is 
only possible with monophonic pattern instances. 
An important criterium for assessing the bottom-up 
quality of a pattern instance is the number of events 
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numevents that interfere with the perception of the 
ideal template of an instance. That is for two 
adjacent tones, how many perceivable events are 
positioned around an imaginary line between both 
tones. Due to space constraints the algorithm is not 
detailed here. We suppose this number as given and 
define the corresponding rating revents as follows: 
 

 
 (4) 

These single ratings are individually weighted and 
combined as the pattern instance rating rp: 
 

 (5) 

 
Concluding this step, we have got a set of potential 
pattern instances, which are rated according to the 
likeliness of being perceived. Nevertheless, patterns 
that show a worse rating than competing ones, could 
be perceived due to context. This decision can be 
made at the next stage at the earliest.  

3.2 Predicting Higher-level Structures 

For a homogeneous definability patterns respective 
pattern instances are considered structures and 
structure instances of level 0 by now. 

For each detected structure instance, we know, in 
which higher-level constructs it is contained. Thus, 
we try to find evidence for these higher-level 
structures by attempting to detect instances of all 
remaining components. Within this step, we get 
more or less complete sequences of structure 
instances that belong to a hypothesized structure. 
Again, we have to rate these sequences of 
components regarding completeness, perceptual 
salience and similarity with the predicted structure. 

Structural integrity is characterized by the 
relative onset and the length of components within a 
structure. Again, we compare sequences of detected 
component instances with the predicted structure. 

Let s be a predicted structure instance and S the 
corresponding structure. Then, si and Si denote the i-
th component of s respective S, |s| is the number of 
detected components in s and |S| the number of 
component structures in S. timesi and timeSi are the 
timestamps of si and Si; b denotes the b-th 
component sb, which is the foundation for 
hypothesis formation. Onset rating ronset compares 
the relative start times of components between 
instance and template. Roughly, it corresponds to 
rpos. This time, however, component instances may 

not be complete. For missing components, bounds 
are extrapolated on basis of sb. Otherwise, they are 
ignored and not evaluated: 
 

 (6) 

 
The length rating rlen compares the relative 

lengths of components. Components may have a 
correct onset but last too short or too long. This 
measure differentiates the onset rating further. To 
streamline the formula, we define  

and 

.  

(7) 

The transposition rating rtrans evaluates the spatial 
coherence of detected components. Due to being 
gestalts, a component can be transposed. Usually, 
transpositions of a whole tone or a semi tone 
happen. With many popular songs, the final strophe 
or refrain is transposed one tone up to create more 
tension. Besides, many endings repeat final patterns 
several times while transposing them up and down. 
We define the deviation regarding the relative 
transposition of components as 

 
The transposition rating rtrans is then defined as 

 

(8) 

We have to combine these distance measures to 
evaluate the overall validity of a predicted structure. 
This rating can not be better than the average rating 
of its components. Therefore, we have to weight the 
total structural rating rs with the average rating of 
each individual component rating ri. 
 

 
 (9) 
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“hypothesized”. In further processing stages such 
segments can be examined deeper and 
multidimensional similarity can be computed. 

3.3 Handling Repetitions 

An important aspect of music is repetition. The 
entire piece of music can be repeated as a whole. 
However, more challenging are arbitrary repetitions 
of partial structures such as refrains, or even parts at 
a smaller scale. Our model defines a parameter for 
the general repeatability of a structure. Structures 
with a meaning such as “strophe” or “refrain” are 
automatically assigned to a probability value of 1. 
For structures without a special meaning, this value 
can be in the range of 0 to 1. Structures at the lowest 
level, i.e. patterns should usually have a repetition 
probability of 0. 

If this probability value is greater than 0 for a 
detected instance, we have to collect possible 
instances of the same structure, which may follow 
within a defined tolerance range. If we find one or 
more repetitions of a component, we create a virtual 
instance that integrates those components. Virtual 
repetition instances are evaluated like a non-
repeating component. Thus, if musical structures are 
played more than actually intended, this situation 
will be automatically resolved by now.  

For each of the resulting structure instances, we 
repeat this process and predict of the next level, try 
to find evidence for their components, rate them, and 
finally instantiate or reject them. That is, we repeat 
steps 3.2 and 3.3 until the highest level of the 
template database is reached. Ideally, this process 
should finally result in one or more sequential 
structure instances, which cover the entire music. 

4 RESULTS & CONCLUSIONS 

At the moment, our template database contains 150 
songs, most of them jazz standards, the remaining 
are folk songs, christmas carols, pop and rock songs. 
For these songs, we collected 352 midi-files of piano 
performances. The midi-files have been either 
picked up from the Internet or were specifically 
recorded by some persons, who work either as music 
lecturers or play at piano bars occasionally. Besides 
song selection, no restrictions were made. The music 
contributors should play given songs the “usual 
way”, which means that normal listeners should be 
able to recognize the song. However, free 
improvisations of a theme were possible and 
performed frequently, indeed. Let us demonstrate 

the performance of our framework with some 
examples: 

Figure 5 shows the results of recognizing an 
instance of “Yesterday” by The Beatles. Depicted 
are top-level structure instances and their 
components recursively. The corresponding melody 
notes are highlighted by green dots. The specific 
rating of structure instances is visualized by color 
intensity. 

 
Figure 5: Recognition of “Yesterday“. 

In this particular case, all patterns could be detected 
and meaningfully structured. The uncorrelated 
regions at the begin and at the end correspond to a 
free introduction and a free ending. Two special 
features should be highlighted: First, our template of 
“Yesterday” is modeled in form AABA, which is 
detected in the upper instance 1484. However, 
within the midi-file the last BA section is repeated, 
which results in the form AABABA. The framework 
automatically detects a repetition of substructure 
1464 and derives an additional instance 1484 of 
“Yesterday” with a repeated refrain. Second, within 
the refrain, the pianist sometimes transposes melodic 
parts one octave up or down. Without the model-
inherent decomposition of a melody into structures 
of elementary patterns this refrain had not been 
detected at all.  

Figure 6 shows an instance of the lullaby “Guten 
Abend, gut’ Nacht” by Johannes Brahms, which 
after free introduction is played twice: 

 
Figure 6: Recognition of a Brahms’ lullaby. 

Again, our framework automatically detects the 
repetition and creates an additional integrating 
instance. However, more interesting are the hatched 
regions, which correspond to pattern instances 368 
and 369 respectively. For these patterns, no direct 
evidence could be found. Thus, they are 
hypothesized based on context. Our framework 
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provides these regions and additional information, 
such as predicted bounds or beat positions to further 
processing stages. In the second pass of the lullaby, 
the melody is located between upper and lower tones 
and is not easy to recognize for human listeners. The 
framework detects this structure even without the 
need of creating hypotheses for any parts. 

How can we evaluate the overall performance of 
our hypothesis generator? Due to the high degree of 
possible musical alterations, an adequate evaluation 
is no easy task. How can we rate improvisations? 
How should we rate missing repetitions of an 
already detected structure? How can medleys of 
refrains or partially detected structures be evaluated? 
We decided to consider only those regions of a 
music file, for which sequential structures should be 
found ideally. Then, we count the number of really 
detected structures, which have to be normalized by 
a weight regarding its duration within an instance. 
Additionally, each predicted or detected structure 
has to be examined regarding correct bounds. 
Finally, we get a percentage of correct coverage. 

This coverage-measure shows some advantages: 
Parts of music, which cannot be detected inherently, 
such as free intros, intermezzi, improvisations, or 
endings do not affect the rating. If a repetitive or 
composed structure cannot be correlated entirely but 
one or more of its higher-level components are 
detected, that structure will not be rejected. That is, 
each example from Figures 6 and 7 would get 
coverage of 1.0, which means that all detectable 
sections have been recognized correctly. Of course, 
each covered region gets an additional similarity 
rating as illustrated in Section 3.2. 

To automatize the evaluation of our midi-file 
collection, we manually identified all contained 
templates or high-level structures and their ranges. 
This information has been added as metadata to the 
database. For all 352 test files we got an average 
coverage of 0.55. This result is characterized by a 
high deviation. A lot of music had coverage of 1.0 
but many files showed no coverage at all: 

Table 1: Coverage of test files. 

Kind of coverage Number 
of songs 

Percent
age 

Average 
coverage 

Full coverage 119 34 % 1.0 

Partial coverage  143 41 % 0.52 

No coverage  90 25 % 0.0 

Total 352 100 % 0.55 

Due to the high degree of melody-alteration 
especially jazz piano music showed a bad 
performance. At the moment, our predictive 
algorithms are based on exact pattern matching 
techniques. Therefore, the groundwork for 
successful creation of hypotheses was insufficient in 
some cases. For most of these unrecognized files, we 
could manually adjust some accuracy parameters 
and increase the recall at the expense of precision. 

To get more results, the overall need of 
computation time and memory grows exponentially 
in most cases. It would be pointless to broaden the 
search at this development stage. The quality of the 
structure prediction will most likely improve if 
hypothesized components could be evaluated by 
future similarity processing stages. At this time we 
parameterized our system by optimizing the tradeoff 
between computation time and recall while getting 
precision as high as possible. Indeed, for top-level 
prediction, precision equals one for the entire 
database.   

Further work should complete the framework 
conceptually first. That is, integrating similarity 
measures for chords, chord progressions and 
melodic alterations into the framework. Next, to 
improve pattern recognition, recent matching 
techniques should be extended to “fuzzy” matching. 
Using a more contour-oriented representation of 
melody would compensate slight variations such as 
altered or missing tones, e.g. playing a motif in 
minor instead of major. Finally, by implementing 
symbolic extraction algorithms, the framework 
should be able to guide even an audio identification 
process. 
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