
UNIVERSAL EXTRA-FUNCTIONAL PROPERTIES REPOSITORY �
Model Overview and Implementation

Kamil Ježek
Department of Computer Science and Engineering, University of West Bohemia Pilsen

Pilsen, Czech Republic

Keywords: Extra-functional, Repository, Component, Services, Meta-model.

Abstract: The current Internet is still more used for accessing data through remotely invoked services. Although it
allows rapid development of new systems, it still has some limitations. This paper addresses extra-functional
properties that must be taken into account to develop systems concerning calls of remote services. Since the
services provide general functionality among worldwide applications, their extra-functional properties must be
also generally accessible. Hence this paper targets less explored area of exchanging extra-functional properties
via the Internet. For that reason we propose a model as well as an implementation of a universal repository
that stores and accesses extra-functional properties. Main contribution of such repository is that the services
use common extra-functional properties from one repository and thus different vendors work with the same
and compatible properties.

1 INTRODUCTION

Nowadays software systems still increase in their size
which is still more difficult to manage by traditional
means. Innovating techniques such as component
based programming or Service Oriented Architec-
tures (SOA) tend to prevent creation of monolithic
systems. They typically compose final systems from
verified parts. A fundamental of component program-
ming is to develop a system from pre-existing com-
ponents while SOA tends to let applications invoke
services available via the Internet. An idea of both
techniques is, however, to use pieces of third-party
functionalities.

Although SOA and components are reaching
theirs maturity, there are still issues that prevent users
to fully benefit theirs advantages. First of all, a
user must verify whether services and components are
compatible with the rest of the system. A consider-
able improvement of the verification process is tak-
ing extra-functional properties into account. As long
as the verification works with extra-functional prop-
erties, the verification more closely reaches user ex-
pectations.
�This work was supported by the Grant Agency of the

Czech Republic under grant number 201/08/0266 “Meth-
ods and models for consistency verification of advanced
component-based applications”.

A lot of approaches have been developed to deal
with extra-functional properties, but some issues have
not been addressed yet. The worldwide sharing of the
services must also consider a worldwide sharing of
extra-functional properties. There are a lot of issues
concerning semantics of extra-functional properties
and theirs values. Obviously, a functionality must re-
main correct among organizations. On the other hand,
extra-functional properties differ in different domains
and contexts – e.g. some values are important in one
domain, but vaguely important in another one. In ad-
dition, once vendors enhance their systems by extra-
functional properties, the properties must be under-
standable by all participating vendors.

1.1 Goal of the Paper

This paper first introduces our approach that ad-
dresses several issues concerning worldwide ex-
change of extra-functional properties. Namely we
propose (1) a model that allows to share extra-
functional properties among organizations and (2) a
model that deals with context dependency of extra-
functional properties. We second introduce a tool we
have implemented as a prove of the concept. The tool
aims at improving exchange of extra-functional prop-
erties among worldwide vendors.

The rest of this paper is organized as follows: Sec-

382 Ježek K..
UNIVERSAL EXTRA-FUNCTIONAL PROPERTIES REPOSITORY - Model Overview and Implementation.
DOI: 10.5220/0003118303820385
In Proceedings of the International Conference on Knowledge Management and Information Sharing (KMIS-2010), pages 382-385
ISBN: 978-989-8425-30-0
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)



tion 2 first overviews our previous work pressented
in rather formal terms and then overviews other ap-
proaches concerning extra-functional properties. Sec-
tion 3 introduces our approach presented as the meta-
model. In Section 3.4 we state some worth reading
details about the implementation.

2 RELATED WORK

This work has been based on more theoretical funda-
mentals we proposed in (Jezek et al., 2010). In that
paper we presented formalization of extra-functional
properties and system of registries that addresses
context-dependency of these properties. Although our
previous research was only for software components,
the approach is not restricted to components and is
ideally suitable also for SOA. A similarity of compo-
nents and SOA is obvious: components communicate
through services that may run in different computa-
tional environment.

A lot of other works create specialized languages
for writing extra-functional properties as an ordi-
nal source code. Let us name NoFun (Franch,
1998) that distinguishes between simple and derived
extra-functional properties, CQML (Aagedal, 2001)
that serves as a complete extra-functional language,
CQML+ (Röttger and Zschaler, 2003) that explic-
itly takes a runtime environment dependency into
account. Other rather specialized languages are:
HQML (Nahrstedt and Wichadakul, 2001), TADL
(Mohammad and Alagar, 2008), or SLAng (Lamanna
et al., 2003) specialized especially for service level
agreement. An advantage of such approaches is
that they develop an idea of what should an extra-
functional property stands for. On the other hand
they barely target context dependency of values and
exchange of extra-functional properties. Develop-
ing our approach, we consolidate typical features of
extra-functional properties into one general and uni-
fied repository of extra-functional properties.

In a field of components, there are some com-
ponent models that concern extra-functional proper-
ties as a part of their models. Let us name: Palladio
(Becker et al., 2009) that targets mainly performance
characteristics, Robocop (Muskens et al., 2005; Bon-
darev et al., 2006) for real-time characteristics, or Pro-
Com (Sentilles et al., 2009). An interesting idea in
ProCom are registries that stores EFPs. The main
reason for introducing registries is to gather attribute
types.

3 EXTRA-FUNCTIONAL
REPOSITORY TOOL

To achieve a comparability of extra-functional prop-
erties (EFPs), they must be unified. For that reason we
propose a repository that accesses common EFPs via
the Internet. Hence misunderstanding of EFPs mean-
ing is prevented as long as all participating organiza-
tions use EFPs from this unified repository. In ad-
dition, any third-party components and services may
be compared because they use the properties with the
same semantics.

3.1 Approach Overview

Figure 1 overviews a general mechanism of the ap-
proach. All software parts communicate via the Inter-
net. At this point, we have added a generally acces-
sible repository of EFPs. All systems and their sub-
parts must use only EFPs from the repository. It is
a noticeable improvement that prevents any usage of
incompatible properties. Once the properties are fixed
in the repository they have the same meaning among
worldwide vendors.

Each component or service assigns an EFP via its
name first, then concrete definition is looked up from
the repository when it is needed. It forces vendors to
use the same semantics for properties with the same
names.

3.2 User Roles

Figure 1 furthermore shows three roles of typical
users.

Figure 1: Overview.

There is a domain expert who role is to fill in the
repository. He defines existence of EFPs and states
their names, domain types and their comparing meth-
ods. Exact structure of EFPs we have already men-
tioned in (Jezek et al., 2010). We assume a per-

UNIVERSAL EXTRA-FUNCTIONAL PROPERTIES REPOSITORY - Model Overview and Implementation

383



domain repository, because there would be probably
impossible to consolidate EFPs through all domains.
We assume a set of domains (e.g. domain of schools,
automotive, libraries) instead.

Another role is a component developer who pre-
pares each component or service. He takes EFPs from
the repository and attaches them to services. Since all
component developers use properties from the same
repository, they attach compatible properties.

Finally, the role of a system architect represents a
user who composes a final system (composes compo-
nents or services). He uses EFPs to estimate behavior
of the final system. His expectations of the final sys-
tem are expressed in terms of the properties from the
repository.

3.3 Meta-model of EFPs Repository

Once extra-functional properties are used in world-
wide applications a heterogeneity of environments
must be taken into account. Addressing this hetero-
geneity we have developed a layered repository of
EFPs. We discus it in formal terms in (Jezek et al.,
2010). Figure 2 shows an implemented meta-model
of the repository that we call Registry.

Figure 2: Registry.

The class GR represents the top level storage of
EFPs – Global registry (Jezek et al., 2010). It stores
instances of EFPs. For that reason it contains EFPs
that are valid for a whole domain and distinguished
by names. Global registry does not contain concrete
values because they typically differ in different envi-
ronments.

The class LR is called Local registry (Jezek et al.,
2010) and encapsulates context dependent values ad-

dressing the heterogeneity of environments. Each
computational environment (e.g. mobile phones, lap-
tops, desktops, servers) must define its Local registry
with concrete values.

The class LrAssignment assigns values to EFPs
via names in Local registry. An assignment is a tuple
concerning an EFP, a name and a value (Ježek, 2010),
which assigns the value to the property by the textural
name.

Considerable benefit of the assignment of values
via textural names is that continuous intervals may
be divided into disjunctive sets of named intervals.
Hence values are considered as the same as long as
they belong to the same interval (e.g. let us assume
a property “response time“ with the named interval
f0;500gms in Local registry of small portable de-
vices. Then all concrete values as 100ms, 200ms or
300ms are considered as the same because they all
belong to one group).

The other advantage is that this solution encap-
sulates context-dependent values denoted by names.
The names do not change among environments while
concrete values differ. E.g. a value labeled as a “high“
concerns very different numbers for laptop comput-
ers and mobile phones. However a developer think in
more abstract terms (a meaning of “high” is obvious)
rather than depending on concrete numbers.

Finally, two classes LrSimpleValue and
LrDerivedValue denote assigned values for a
simple or a derived property respectively. They are
briefly explained in (Jezek et al., 2010) although their
distinction is not so important for this paper.

3.4 Implementation

As a prove of the concept we have implemented the
repository presented above.

To achieve an overall goal of the work we used
a client-server architecture to allow the accessibility
of the repository via the Internet. The server side ap-
plication is a MySQL database server that has been
selected as a storage of data. We have selected a
database system because it allows to modify access
rights, contains synchronization means, locks and a
lot of other features that are useful for the concur-
rently accessed repository.

The client side application is a Java fat client that
uses JFC Swing to create a graphical user interface.
The client uses JDBC driver to access the remote
database server.

A base skeleton of the application has been cre-
ated from the meta-model in Figure 2 and the business
logic has been added manually.

Let us note that the application is still a proto-

KMIS 2010 - International Conference on Knowledge Management and Information Sharing

384



type that is capable of editing EFPs by a domain ex-
pert via the graphical user interface, however we are
still working on a public interface that would provide
EFPs to other applications via remote sockets.

4 CONCLUSIONS

In this paper we have dealt with components and Ser-
vice Oriented Architecture. We have specifically tar-
geted exchange of extra-functional properties among
organisations.

We have proposed the universal repository of
extra-functional properties that is accessible via the
Internet. We have introduced an idea of how should
such repository work first, then we have introduced
the meta-model based on our previous work. Finally,
we have highlighted some aspects of the implementa-
tion we did as the prototype application.

Although we have developed the prototype ap-
plication, we still have open issues. In the future
we would like to add a public interface that accesses
extra-functional properties to remote systems.

Furthermore, there are some research issues that
have not been addressed yet. The system of Local
registries assumes that each feature assigns values for
all contexts. Unfortunately, in reality a lot of registries
may exist and it would be tedious work to prepare
values for each service and Local registry. A solution
may be functions (vy = f (vx);vy 2 LR1;vx 2 LR2;LR
is Local registry) that re-scale values automatically.

ACKNOWLEDGEMENTS

At this point of the paper, we would like to thank
to students J. Chlad, L. Vlček, T. Sojka, J. Ryšavý,
L. Koloušková M. Bečvář, M. Štulc, J. Šváb, T.
Pokrývka for the implementation of the presented
prototype.

REFERENCES

Aagedal, J. Ø. (2001). Quality of Service Support in Devel-
opment of Distributed Systems. PhD thesis, University
of Oslo.

Becker, S., Koziolek, H., and Reussner, R. (2009). The pal-
ladio component model for model-driven performance
prediction. Journal of Systems and Software, 82(1):3
– 22. Special Issue: Software Performance - Modeling
and Analysis.

Bondarev, E., Chaudron, M. R., and de With, P. H. (2006).
Compositional performance analysis of component-

based systems on heterogeneous multiprocessor plat-
forms. In Proceedings of Euromicro conference on
Software Engineering and Advanced Applications,
pages 81–91. IEEE Computer Society.

Franch, X. (1998). Systematic formulation of non-
functional characteristics of software. In Proceedings
of International Conference on Requirements Engi-
neering (ICRE), pages 174–181.

Ježek, K. (2010). A complex meta-model for extra-
functional properties concerning common data types
their comparing and binding. In Second World
Congress on Software Engineering (WCSE 2010).
(submitted to review).

Jezek, K., Brada, P., and Stepan, P. (2010). Towards context
independent extra-functional properties descriptor for
components. In Proceedings of the 7th International
Workshop on Formal Engineering approches to Soft-
ware Components and Architectures (FESCA 2010).

Lamanna, D. D., Skene, J., and Emmerich, W. (2003).
Slang: A language for defining service level agree-
ments. Future Trends of Distributed Computing Sys-
tems, IEEE International Workshop, 0:100.

Mohammad, M. and Alagar, V. S. (2008). TADL -
an architecture description language for trustworthy
component-based systems. In ECSA ’08: Proceedings
of the 2nd European conference on Software Architec-
ture, pages 290–297. Springer.

Muskens, J., Chaudron, M. R., and Lukkien, J. J. (2005).
Component-Based Software Development for Embed-
ded Systems, chapter A Component Framework for
Consumer Electronics Middleware, pages 164–184.
Springer Verlag.

Nahrstedt, G. and Wichadakul, Y. (2001). An xmlbased
quality of service enabling language for the web.

Röttger, S. and Zschaler, S. (2003). CQML+: Enhance-
ments to CQML. In Bruel, J.-M., editor, Proc. 1st
Int’l Workshop on Quality of Service in Component-
Based Software Engineering, Toulouse, France, pages
43–56. Cépaduès-Éditions.

Sentilles, S., Stepan, P., Carlson, J., and Crnkovic, I. (2009).
Integration of extra-functional properties in compo-
nent models. 12th International Symposium on Com-
ponent Based Software Engineering (CBSE 2009),
LNCS 5582.

UNIVERSAL EXTRA-FUNCTIONAL PROPERTIES REPOSITORY - Model Overview and Implementation

385


