
IMPROVING THE WORKFLOW OF SEMANTIC WEB PORTALS
USING M/R IN CLOUD PLATFORM

Seokchan Yun, Mina Song, Hyun Namgung, Sungkwon Yang, Harshit Kumar and Hong-Gee Kim
Biomedical Knowledge Engineering Lab, Seoul National University, Seoul, Korea

Keywords: Semantic Web Portal, RDF Data Processing, Cloud Computing, M/R.

Abstract: Semantic Web Portals (SWPs) provide web services supporting searching, sharing and exchanging of
information using semantic web techniques. The pre-existing SWP construction workflow based on current
RDF store has limited scalabilities for processing the large volumes of semantic data. In this paper, we
propose M/R (M/R) based modules usable in each step (e.g., data storing, reasoning, and accessing) of the
workflow to reduce overall processing time and cost. The proposed modules lesson burdens of each step by
exploiting an M/R cluster which is easily enlargeable with use of a cloud computing platform.

1 INTRODUCTION

Recently, expanding use of semantic web derives an
evolution of Semantic Web Portals (SWPs) (Lei,
2006). The SWPs are yet in its infancy, and, there
could be several different definitions (Lausen, 2005)
(Staab, 2000). We concentrate on some features of
the SWPs that are based on semantic web
technologies, and support searching, sharing and
exchanging of information (Hartmann, 2003).
Because of the limited scalability of currently
developed semantic web data management systems,
accomplishing the efficient workflow for building a
SWP with a large volume of semantic dataset has
some difficulties (Guo, 2005). There are some recent
research for solving scalability issues that are
embodied with an employment of massive
computation environments like M/R (Dean, 2008),
supercomputers, and parallel computing. But, such
approaches are committed to a specific task only like
a reasoning (Urbani, 2009) (Weaver, 2009).

Figure 1: SWP Construction Workflow.

We focus on improving a general workflow of the
SWPs with employment M/R execution environment
which is easily usable with use of a commercial
cloud computing service. Our ongoing project is
devoted to provide improved methods to archive
each step of the workflow. We assume this work
will help creations of SWPs by lessening the
burdens to build them.

2 THE WORKFLOW OF SWPS

Firstly let us depict a general picture of SWPs.
Although there could several different points of view,
we might find a general workflow of them based on
the definition of a SWP as information providing
service based on semantic web technology.

Figure 1 shows usual steps for a SWP
construction. The SWP are equipped with a set of
conceptual basis given through in form of ontology
that provides the background knowledge and
supports the presentation of information with
semantics with in formalism. The workflow for the
construction of SWP has often limited to the size of
a data collection to be serviced. We can assume a
large size of data set that hardly be handled in a
single semantic data store with a real-time.

Between Providing and Storing: During provided
data set (written in RDF/OWL formats) is stored
into data storage, the storage usually creates
indexing structure for each single data unit, e.g.,

485Yun S., Song M., Namgoong H., Yang S., Kumar H. and Kim H..
IMPROVING THE WORKFLOW OF SEMANTIC WEB PORTALS USING M/R IN CLOUD PLATFORM.
DOI: 10.5220/0003142104850488
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2010), pages 485-488
ISBN: 978-989-8425-29-4
Copyright c
 2010 SCITEPRESS (Science and Technology Publications, Lda.)

RDF triples. The indexing techniques improve the
system's data storing and retrieving capabilities, but
it also increase storing time of the data. Some
benchmarks show that the data storing of several
million triples takes several hours to even days by a
type of RDF storages (Bizer, 2009).

Between Storing and Reasoning: The main
burden of here will be large amount of time
spending for reasoning from the stored data, and,
that could be partially solved by M/R based
Reasoning approaches (Urbani, 2009). The other
point we are focused here is duplication of the same
resource which have different identifier. Large size
of data from distributed sources deteriorates the
situation enlarging reputation rate. The reputation
increases time and complexity of the Reasoning
work.

Between Reasoning and Accessing: The
answering time of current data storages is also quite
insufficient, especially for large size of data set.
Almost every storages sometime fails to deliver an
answer for a quite complex query within a stipulated
response time like few seconds. The late response
time makes the SWPs are barely responsible to
user’s demand within guaranteed stability. The
benchmark also shows that the query time is very
long by the type of RDF storages (Bizer, 2009)

3 FILLING GAPS WITH M/R

In this section, we describe solutions for filling
above gaps through M/R programming of which
nature is proper to pre-processing work on very huge
size of data in the SWP construction work. Also
each proposed modules are developed to solving
problems of data loading, duplication of resource
and late query answering for supporting a real-time
portal service that is equipped with RDF storages.

3.1 Improving Data Storing

When semantic data set are provided, a store takes
them into a pre-processing phrase. Then, it parses
and splits incoming data written as a set of
RDF/OWL statements into atomic data units, RDF
triples which are collections of subject, verb and
object sometimes with the source of the triple
(namely a graph or domain). Data storage stores the
triples with employed index systems, e.g., B tree and
Bitmap, for providing fast accesses on each RDF
triple data.

Providing the data set cannot guarantee the pro-
processed for the storing phrase. Then, randomized
sequences of triple incomings will increase a time

for index construction. Parsing the RDF/OWL
statement is also a reason of late data storing.
Therefore we can be noticed that the time spends of
storing work can be reduced by incoming of
previously parsed and sorted triples in advance.

Figure 2: The M/R module for ‘Before Storing’.

Therefore, our first modules will deliver a set of
sorted triple assertions before Storing work. Figure 2
depicts M/R program which fulfils the requirement.
When a set of RDF Statement are provided, the first
M/R job parses each triples and split it into triple
assertions written in a simple expression schema like
N-triple. Then, each Mapper of the second M/R
work takes the spited triples as values of Key-Value
pair. The Key of each triple is decided by the
required sequence of the triples set, for example,
GSPO (Graph-Subject-Predicate-Object). The nature
of the M/R framework makes the Key selection can
deliver the sorted triples in corresponding to the
sequence at the end of execution.

3.2 Improving Data Reasoning

For the Reasoning work, duplications of the same
data resource are increasing an overload of the work.
Various data sources of the service can promises
large service usability and plentiful information, but,
they also accompany with reputations of the same
data (Resource) even if they share the same ontology.
Resource reputations which mean entity

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

486

semantically same with different identifiers are
frequently occurring among the information
resources. Information integration removing the
resource reputations reduces a reasoning overhead
by relieving reputations of data and complexity of
data graph.

Therefore, the second module of our work
supports the information integration based on M/R.
Table 1 includes an example which shows how the
information integration is possible through M/R.
Before execution of M/R, bold-style values are
designated as a key whereas the statements become
values of Key-Value pairs of M/R. Each key for
each statement is marked to support a simple
characteristic based integration strategy (Naumann,
2006). The same data resource holding the same key
which consists of Class and some key features are
sent to the same reducer to be treated as a resource.

Table 1: Key Selection for Information Integration.

Map (Key: ex:name+ ex:debutYear)

<ex:Author rdf:about=“ex/a3”>
<ex:name>Harshit</ex:name>
<ex:debutYear>1988</ex:debutYear >
 <ex:nationality>UK</ex:nationality>
</ex:Author >
<ex:Author rdf:about=“ex/a4”>
 <ex:name>Harshit</ex:name>
 <ex:debutYear>1988</ex:debutYear>
 <ex:publish rdf:resource=”ex/a6” />
</ex:Author >

Reduce

<ex:Author rdf:about=“ex/a4”>
 <ex:name>Harshit</ex:name>
<ex:debutYear>1988</ex:debutYear>
<ex:nationality>UK</ex:nationality>
<ex:publish rdf:resource=”ex/a6” />
</ex:Author >
<ex:Author rdf:about=“ex/a4”>
 <owl:sameAs rdf:resource=“ex/a3” />
</ex:Author >

3.3 Improving Data Accessing

The final gap filling we are dealing with are formed
as query pre-processing. If we consider the query
answering time of current semantic data
management system, actual user accessing need be
directed to an index, or cache server not the data
store. Therefore, this module provides a very fast
SPARQL answer preparation supporting a quick
build of the index server.

The preparation of SPARQL can be invoked by
a seed query which shows reflex a user interface of

SWP. The pre-processing phase takes as input a
queries and generates a collection of answer set
which will serve as an index for seed queries and
also for a set of queries semantically similar to seed
queries, termed as extended query. The execution of
M/R will deliver answer sets for those seed and
extended queries which cover semantic extension of
possible query in a SWP user interface.

We can make the workflow for the answer set
derivation with four M/R executions and a simple
seed query as following:

Select ?title WHERE {
?b rdf:typeof ex:Book
?b ex:title ?title}.)
Each RDF file goes to one mapper; output from

the 1st M/R is a set of triples in turtle format. Let the
set of triples be termed as (1).

T = {t1,t2,….tn} (1)

Each triple ti has turtle format (s,p,o). The output
from 1st M/R goes as input to 2nd M/R which
generates C(n,k) number of triples, called as tuples.
The tuple file further goes to 3rd M/R that filters and
produces a reduced set of tuples, called as reduced
tuples. The last and 4th M/R partition the reduced set
of tuples and generate partitioned answered sets.

The number of tuples from 2nd M/R depends on
the number of triple patters in the WHERE clause of
seed query. If there are k triple patterns in the
WHERE clause of seed query, each ti in T is
concatenated with other (n-1) triples with no
repetition in order, producing a tuple of length k.
This set is termed as (2) and * is a concatenation
operator. This step was carried out to compute join
of tuples.

Tktuple = <ti * tj*…*tk-1> (2)

Furthermore, 3rd M/R eliminates unrelated tuples
from Tktuple producing a set of proper tuples, let this
set be Rktuple. A proper tuple is a one in which
subject (t1) == subject (t2)…==subject (tk) or object
(t1) = subject (t2)… and so on. We call the set Rktuple
as reduced set because set Rktuple has less number of
tuples compared to Tktuple.

When an example seed query has 2 triple
patterns in the WHERE clause, the 2nd M/R will
create C(n,2)=n*(n-1)/2 tuples from T. The example
in Figure 2 has n=13, cardinality of T2tuple will be 78.
The tuples in set T2tuple are further filtered by 3rd
M/R using the following condition: if subject (t1) ==
subject (t2), which will result in x number of tuples
in R2tuple.

Now that we have a reduced tuple set R2tuple, 4th
M/R partitions it and indexes each partitioned
answer set based on attributes in the WHERE clause

IMPROVING THE WORKFLOW OF SEMANTIC WEB PORTALS USING M/R IN CLOUD PLATFORM

487

of SPARQL query and semantically similar
attributes. Semantically similar attributes are
generated by the M/R module. Each partitioned
answered set is stored in a separate file with unique
key value for direct access.

4 USE CASE - SEMANTIC MUSIC
SERVICE

This section describes the example of SWP
construction with our proposed M/R execution
modules. We developed a semantic music service
and the data navigator browsing a music metadata
with a FLEX based user interface. When user types
a keyword, it can be accessed in musical entities
such as artist, album and song and some metadata
including artist’s birth day and release date of album
or song as Fig.3.

Figure 3: Semantic music service.

In this implementation, we applied only improved
data storing process to reduce processing time of
making RDF triple indexes. Firstly, we gathered a
music database supplied by KBS (Korea
Broadcasting System), an open API crawling from
madiadb.com database and RDF formatted
Musicbrainz dataset. We covered 8 million songs
from MusicBrainz and 1 millon from KBS and
ManiaDB, 0.5 million artist profiles and 1 million
albums including each relationships data.

From these dataset, we made over 10 million
RDF files based on the simple music ontology
(http://wiki.musicontology.com) and generated over
200 million triples using ten Hadoop instances of the
iCube cloud(https://www.icubecloud.com) platform
made by NEXR in South Korea.

In the future, we will implement proposed
modules for helping reasoning and data accessing

steps and evaluate our workflow compared with pre-
existing methods. Also, the other important issues
involving massive computation like pre-raking of
answer set will be dealt with in this project.

ACKNOWLEDGEMENTS

This work was supported in part by MKE & KEIT
through the Development of Independent
Component based Service-Oriented Peta-Scale
Computing Platform Project.

REFERENCES

Lei, Y., Uren, V., Motta, E., 2006. SemSearch: A Search
Engine for the Semantic Web, In proceeding of
European Semantic Conference 2006.

Hartmann, J.; Sure, Y.; Volz, R.; Studer, R., 2003.
Extended OntoWeb.org Portal, OntoWeb Deliverable
6.4

Lausen, H., Ding, Y., Stollberg, M., Fensel, D., Hernández,
R., Han, S., 2005. Semantic web portals: state-of-the-
art survey Export, Journal of Knowledge
Management, Vol. 9, No. 5, 2005.

Staab, S., Angele, J., Decker, S., Erdmann, M., Hotho, A.,
Maedche, A., Schnurr, H., Studer, R., Sure, Y., 2000.
Semantic Community Web Portals. The International
Journal of Computer and Telecommunications
Networking archive. Volume 33, Issue 1-6, 2000.

Bizer, C., Schultz, A., Berlin SPARQL Benchmark, 2009
(BSBM), http://www4.wiwiss.fu-
berlin.de/bizer/BerlinSPARQLBenchmark

Dean, J., Ghemawat, S., 2008. MapReduce: Simplified
data processing on large clusters, Communications of
the ACM, v.51 n.1, January 2008.

Guo, Y., Pan, Z., Heflin., J., 2005. LUBM: A Benchmark
for OWL Knowledge Base Systems, Journal of Web
Semantics 3(2), 2005.

Urbani, J., Kotoulas, S., Oren, E., Harmelen, F., 2009.
Scalable distributed reasoning using MapReduce. In
proceeding of ISWC 2009.

Weaver, J., Hendler, J., 2009. Parallel materialization of
the finite RDFS Closure for Hundreds of Millions of
Triples, International Semantic Web Conference 2009.

Naumann, F., Bilke, A., Bleiholder, J., Weis, M., 2006.
Data fusion in three steps:Resolving schema, tuple,
and value inconsistencies, IEEE Data Eng. Bull., 2006.

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

488

