
MITIGATION OF LARGE-SCALE RDF DATA LOADING WITH
THE EMPLOYMENT OF A CLOUD COMPUTING SERVICE

Hyun Namgoong1, Harshit Kumar1,2 and Hong-Gee Kim1
1Biomedical Knowledge Engineering Lab, Seoul National University, Seoul, Korea

2Department of Computer Science, University of Suwon, Hwaseong, Korea

Keywords: RDF data store, Data warehouse, Cloud computing service, Sesame.

Abstract: An expanding need for interoperability and structuralization of web data has made use of RDF (Resource
Description Framework) plentiful. To guarantee a common usage of the data within various applications,
several RDF stores providing data management services have been developed. Here, we represent a
systematic approach to solve a late latency problem of data loading of the stores. It enables a fast loading
performance for very large size of RDF data, and it is proven with an existing RDF store. This approach
employs a cloud computing service and delegates preparation works to the machines which are temporarily
borrowed at little payment. Our implementation for a native version of the Sesame RDF Repository was
tested on LUBM 1000 University data (138 million triples), and it showed a local store loading time of 16.2
minutes with additional preparation time on a cloud service taking approximately an hour, which can be
reduced by adding supplemental machines to the cluster.

1 INTRODUCTION

As a key technology in representing interlinking data
with heterogeneity, RDF (Resource Description
Framework) is becoming a common way to publish
structured data throughout the web (Bizer, 2007).
Although there are difficulty and inefficiency in
RDF data processes, the efforts for expansion of
uses of the data expression formats are still evolving.
The possibility of interoperability and inference are
competitive edges of RDF data.

Providing an interactive querying service on
RDF data has been a huge research issue in the
Semantic Web research area. Several RDF stores
have been developed during past years (Erling,
2007)(Broekstra, 2002)(Liu 2005). The stores
evaluating a SPARQL query by retrieving stored
triples recently met a scalability issue with an
expansion of RDF data.

The point of this paper is focused on bulk data
loading in the RDF data stores. Loading a large
amount of data is an essential task that stores usually
meet at the initial time. Preparation works like
assigning unique IDs for each unique value and
building index systems, e.g., B tree and Bitmap
precedes in the stores to boost data access speed
during querying. Those works are time consuming

process and it is hard to coordinate with multiple
machines. Therefore, a scaled loading capability
within a reasonable time is one of the issues for the
improvement of RDF store, because, their poor
performance obstructs the use of web-scale
knowledge bases such as conspicuously evolving
linked data (Bizer, 2007).

This paper introduces a systematic approach
employing a cloud computing service which takes a
local store’s preparation works for mitigating bulk
data loading. This paper depicts how the loading
preparation works can be translated to a series of
batch processes to be handled in a MapReduce
cluster which can be easily usable with computing
resources of cloud computing service.

2 RELATED WORKS

There are several RDF stores developed by semantic
web research groups being widely employed for
handling RDF data. Representative systems like
Sesame, Virtuoso, and Jena provide RDF data
management services with their own data storing
schema. The performances of a repository are
measurable with test data sets and sample queries of
widely known Semantic web repository benchmarks

489Namgoong H., Kumar H. and Kim H..
MITIGATION OF LARGE-SCALE RDF DATA LOADING WITH THE EMPLOYMENT OF A CLOUD COMPUTING SERVICE.
DOI: 10.5220/0003142204890492
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2010), pages 489-492
ISBN: 978-989-8425-29-4
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)

like LUBM (Guo, 2005) and SP2B (Schmidt, 2008).
Current benchmarks show a many number of queries
can be dealt with in nearly real time with some
heuristic methods like query optimizations (Schmidt,
2008). However, in a point of data loading, the
stores are still suffering from insufficient
performance which is a great bottleneck in use of
RDF stores. It is involved with even several
gigabytes data. and, it is getting worse in a linier
scale with increasing size of data

Cloud Computing Services are a recent trend
which introduced the concept of the borrowing of
computing resources from the web. Web based
service sites like Amazon and Google opened their
idle resources to public users. A service user can
borrow some of their computing resources to process
a large-scale data that recalls a massive amount of
computation.

By adapting a cloud computing service for
helping a part of data loading process, the proposed
system makes the RDF stores relieved from a burden
of the data loading. The borrowed machines in the
cloud computing service handle the preparation
works, and they hand over the pre-processed RDF
data to the RDF stores, so that, the store can load it
easily. This paper explains an implementation of
those preparation works using MapReduce
framework which provides black box interface for
archiving a batch data processing work with the
multiple machines network-wired.

MapReduce (Dean, 2008) is a programming
model and an associated implementation for
processing and generating large data sets. Users
specify a map function that processes a key/value
pair to generate a set of intermediate key/value pairs,
and a reduce function which merges all intermediate
values associated with the same intermediate key.
The computation takes a set of input key/value pairs,
and produces a set of output key/value pairs.

3 SACE

We implemented ‘with Cloud Version’ of Sesame
Native Store named SACE (Sesame Sail with a
Cloud Computing Environment). The
implementation consists of a realization of multi-
machine works of a cluster constructed on the
Amazon Web Service and a simple manipulation on
Sesame as a local store.

The multi-machine work is designed as a serial
execution of five steps. An execution of such
processes prepares four internal data files for a
Sesame local store, three value encoding related files

explained above plus a namespace file. Sorted triple
files corresponding to the sequences of triple indexes
are also provided after the final step.

Figure 1: Designed Processed on a Cloud Computing.

Figure 1 describes those five steps for the
preparation helping Sesame’s loading process. Each
step is executed by the rented machines from a cloud
computing service that is depicted as squares. The
whole processes are done with three MapReduce
(M-R) works, single machine work and a multi-peer
work.

 Step #1. Parsing & Splitting Input RDF Files

RDF Parsing does not play a huge part from the
viewpoint of time consumption. Less than 1 percent
from the whole overload occupied by the job as
described previously. Although, this work does help
the loading process of a local server, it is still
required to perform the other jobs in a cloud service.
This work is designed as a type of M-R
programming. The mappers charging the distribution
of data to the reducers are equipped with a Jena RDF
parser. Each mapper parses a series of input files
shared by a master peer and splits them into triples
in parallel to be sent to the reducers. A random
integer is made to evenly distribute those triples to

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

490

multiple numbers of reducers. The reducers deliver a
single file including whole triples. The namespaces
of each are specially gathered using a specified key
value to be sent to a specific reducer.

 Step #2. Unique Value Identification

At Step 2 all values occurring in a whole triple from
Step 1 are extracted as unique values. Execution of
this step can be archived with a characteristic of M-
R. When a value is assigned as a key for the M-R
process, the value is sent to a reducer which only
deals with the same values as that value. The only
code executed in reducers is omitting its key once
disregard values. A list of unique values is the
output of this step.

 Step #3. Unique ID Assignment

Step 3 is need for the preservation of the ID of the
decoding files. This process is designed to be
handled by a single computing machine so as not to
suffer the problems of multiple peer synchronization
during the assignment of an ID for each value. Three
decoding files, the value data, hash-id, value-id files
and the namespace file are provided with unique
values from the previous step during this step. The
unique value hash-id is also made, so that, triples
can be translated into a set of IDs. Hash code based
on segmentation of these data is required for quick
access to them.

 Step #4. Triple Translation

All triples should be translated into ID based
triples to be provided as a sorted triple set
corresponding to triples index options. To archive
translation work in the multiple peers in parallel, the
value hash-id file is delivered to the machine
involved in this step. Using the hash-id pair file,
every triple is rewritten as a set of IDs.

 Step #5. Triple sorting

The final step is the sorting that arranges ID based
triples in sequential order. This step works similarly
to the second step. The different selections of a key
value were added to make diversely sorted triples
corresponding to the triple index sequences.

4 EXPERIMENTAL RESULT

This section describes two experimental results 1)
expected times for the execution of designed M-R
processes. 2) loading time in a local store with pre-
processed RDF data.
 There is a trade-off between cost and performance,

in M-R processes. Because, the time spents of these

processes are also dependent on the number of
machines employed from the cloud computing
service. We try to describe a brief benchmark result
that includes the overall tendencies rather than a
definitive benchmarking of the processes which is
not much critical issues. Therefore, some
unrespectable and short times for operation transfers,
as well as machine configuration and data
transmission times are omitted, and the time spent
for each step is described.

The elapsed times for each step are depicted in
Figure 2. The graph shows the result of step 1, step 2,
step 4, and step 4, respectively. It is tested for the
following numbers of nodes, 5, 10, 20, 40, and 80.
With 80 nodes of computing machines for LUBM
1000 univ data, step 1 takes about 35 minutes, 2.5
minutes for step 2, a minute for step 4, and 9
minutes for step 5. Step 4 handled by a single
machine takes about 17 minutes for the data. The
process of step 4, sorting encoded triples, requires
several executions for each distinct order, so, this
step takes relatively much more time than step 2.

2. A 2. B

2.C 2.D

Figure 2: Benchmark Times for Steps 1, 2, 4, and 5.

Also, a payment for the use of the cloud
computing service is a criterion to judge the
practical usefulness of this approach. For each size
of data (500 univ, 1000 univ), about 8$ and 16$ are
charged, respectively. The payment was calculated
with the multiplication of a standard cost for a
medium size of High-CPU On-Demand Instances
($0.20 per hour and a number of marked machines
plus one for a master. An employment of many
machines shows a sustained scale by the
enlargement of the number of nodes because of
decreasing whole data process time.

As described, after the process at the cloud
computing service, the rests of loading process need

MITIGATION OF LARGE-SCALE RDF DATA LOADING WITH THE EMPLOYMENT OF A CLOUD COMPUTING
SERVICE

491

be archived at the local store. In the provided
implementation with Sesame, the construction of the
B tree needs to be archived at the local store. As we
described, ordered triples data will help the
construction task fast.

To get the experimental results of the local RDF
store’s work, we made a revision on the Native
version of Sesame. The revised Sesame reads value
storing files handed over by a master node of the
M/R cluster. Then, it executes pre-processing on
behalf of the store. The environment is as follows:
Ubuntu 2.24.1 of Linux, CPU: Intel quad core 2.8GH,
Memory: 3.5GB Samsung, HDD: 500GB S-ATAII
(7200 rpm) with single partition, Java SDK 1.6 version,
JVM Heap Size: Minimum 1024 MB, Maximum 2048
MB.

Figure 3: Benchmark Times in Local Store.

The result in the Figure 3 shows very fast
loading time on the data set from LUBM 50 univ ~
1000 univ. It only takes about 16 minutes for 138
million triples (1000 univ) with higher TPS rates.

Also, for extremely large sized data sets which
include non realistic numbers of triples, it also
shows a reasonable loading time. A passable process
time on a cloud computing service for those sizes of
data could be archived similarly with the computing
times we have shown.

Figure 4: Very Large-Scale Benchmarks in Local Store.

5 CONCLUSIONS

We presented the practical approaches to
dynamically reduce large-scale RDF data loading

with the aid of a cloud computing service.
Experimental results giving insight on the overall
time spent are also provided a conversion from a
single machine-based job to multiple machine work.
For such conversions, M-R programming and simple
parallel processing are embodied. The
implementation for a native version of Sesame RDF
Repository delivers a very fast loading time marked
a local store loading time of 16.2 minutes with
additional preparation time on a cloud service,
which can be lessened by adding supplemental
machines.

ACKNOWLEDGEMENTS

This work was supported in part by MKE & KEIT
through the Development of Independent
Component based Service-Oriented Peta-Scale
Computing Platform Project.

REFERENCES

Bizer, C., Cyganiak, R., Heath, T., 2008. How to Publish
Linked Data on the Web, Available at:
http://www4.wiwiss.fu-berlin.de/bizer/pub/
LinkedData Tutorial/20070727/.

Broekstra, J., Kampman, A., Harmelen., F., 2002.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema, International
Semantic Web Conference (ISWC 2002).

Guo, Y., Pan, Z., Heflin., J., 2005. LUBM: A Benchmark
for OWL Knowledge Base Systems, Journal of Web
Semantics3.

Schmidt, M., Hornung, T., Küchlin, N., Lausen, G.,
Pinkel, C., 2008. An Experimental Comparison of
RDF Data Management Approaches in a SPARQL
Benchmark Scenario, International Semantic Web
Conference (ISWC 2008).

Schmidt, M., Hornung , T., Küchlin, N., Lausen, G.,
Pinkel, C., 2008. An Experimental Comparison of
RDF Data Management Approaches in a SPARQL
Benchmark Scenario, International Semantic Web
Conference (ISWC 2008).

Liu, B., Hu, B., 2005. An evaluation of RDF storage
systems for large data applications, In Proceedings of
the First International Conference on Semantics,
Knowledge and Grid.

Erling, O., and Mikhailov, I., Towards Web-Scale RDF,
Available at: http://virtuoso.openlinksw.com/
dataspace/dav/ wiki/Main/VOSArticleWebScaleRDF.

Dean, J., Ghemawat, S., 2008. MapReduce: simplified
data processing on large clusters, Communications of
the ACM, v.51.

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

492

