
DYNAMIC DISCOVERY OF WEB SERVICES USING MOBILE 
AGENTS 

Gaurav Tiwari, Rahul Agrawal, Shakti Mishra and Dharmender Singh Kushwaha  
CSED, MNNIT, Allahabad, India 

Keywords: Web services, Mobile agent, Web service discovery. 

Abstract: Although UDDI has been extensively been promoted for discovery of web services, it fails to provide many 
features like service provider validation, semantics lookup, Quality of Service Metadata, trust establishment 
etc. We propose a mobile agent based approach to the discovery of web services. The mobile agent 
framework is implemented using Java Agent Development Framework. The experimental results show that 
the mobile agents reduce the need for bandwidth as only data transfer required is that of the mobile agent 
itself. Since the mobile agents have all the data within themselves they need not communicate with other 
system. This also reduces the load on the system and makes the system fault tolerant. 

1 INTRODUCTION 

Web services are typically application programming 
interfaces (API) or web APIs that can be accessed 
over a network, such as the Internet, and executed on 
a remote system hosting the requested services Web 
services provide the potential of implementing the 
real world business functionality, because of its 
flexible and adaptable framework. This flexibility 
has allowed Web services to become part of many 
existing application environment and has been one 
of the reason behind their popularity (Erl, 2008). 
Web services required an Internet-friendly and 
Extensible Markup Language (XML) compliant 
communication format that could establish a Simple 
Object Access Protocol (SOAP) standardized 
messaging framework.  

Web services provide access to software systems 
over the Internet using standard protocols. Web 
Services Description Language (WSDL) is a 
specification defining how to describe web services 
in a common XML grammar (Cerami, 2002). 
Microsoft, IBM and Ariba proposed UDDI 
(Universal Description, Discovery, and Integration, 
2000) to describe a standard for an online registry, 
publishing and dynamic discovery of web-services 
offered. Microsoft and IBM proposed WSDL as an 
XML language to describe interfaces to web-
services registered with a UDDI database (Lu et al., 
2002). 

Publishing a Web service involves creating the 
software artifact and making it accessible to 
potential consumers. Optionally a provider can 
explicitly register a service with a Web services 
registry such as UDDI or publish additional 
documents intended to facilitate discovery such as 
Web Services Inspection Language (WSIL) 
documents. The service users or consumers need to 
search Web services manually or automatically. 

Discovery of web services can be carried out in 
various ways and one of the way is to accomplish 
this by using dynamic acting entities as mobile 
agents. A mobile agent is a composition of computer 
software and data which is able to migrate from one 
computer to another autonomously and continue its 
execution on the destination computer (Miraikar, 
2006).  

When a mobile agent decides to move, it saves 
its own state, transports this saved state to the new 
host, and resumes execution from the saved state. 
Mobile agents are active entities that are free to 
migrate between computers at any time during their 
execution (Ketel, 2009). It makes these entities a 
powerful tool for implementing distributed 
applications in a computer network. Web-services 
are registered with some public registries, intelligent 
mobile agents might migrate from one service 
registry to another to find desirable web-services as 
specified by a user. Letizia (Lieberman) is a user 
interface agent that assists a user browsing the 
World Wide Web based on the user's profile. 

497Tiwari G., Agrawal R., Mishra S. and Singh Kushwaha D..
DYNAMIC DISCOVERY OF WEB SERVICES USING MOBILE AGENTS.
DOI: 10.5220/0003143604970500
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2010), pages 497-500
ISBN: 978-989-8425-29-4
Copyright c 2010 SCITEPRESS (Science and Technology Publications, Lda.)



 

We have designed and implemented a framework 
based on mobile agents for the discovery of web 
services. A bunch of mobile agents migrate from one 
machine to other collecting information about web 
services and reporting them.  

2 PROPOSED ARCHITECTURAL 
FRAMEWORK 

We propose a mobile agent based approach to the 
discovery of web services. Our approach has three 
major sections.  

• The first deals with the discovery of web services 
and reporting them.  

• The second deals with publishing the web 
services. 

• Finally, the third deals with handling incoming 
requests for finding the best possible web service 
from all the available services. 

2.1 Components of Architecture 

Service Requester. It is the node that issues request 
for a certain type of service according to its 
requirements and it would include any or all of a list 
of parameters like service name, type and number of 
inputs, return type etc.  

Request Optimizer. It tries to deliver the most 
similar web service matching the given requirement.  

Service Broker. It is the repository of all the web 
services. There can be more than one service brokers 
in the system.  

Web Service Provider. Web service providers 
(WSP) actually publish the web services.  

Web Service Repository. The web service 
repository is kept in the form of a relational 
database. The following are the fields of the 
database are Hostname, Service name, Function, 
Input, Output, Install date, Discovery date and Report 
date. 

Controller Agent. The controller agent is 
responsible for the creation and management of other 
mobile agents. It is also responsible for determining 
the course of migration of the agents. 

2.2 Functions of Mobile Agents 

The mobile agent performs three functions: 

1. First, it sends query to all machines for the list of 
web services installed and compares this list with 
the list that it already has discovered or the 
changes that have been done to the old ones.  

2. Second, when the agent reaches one of the 
designated nodes, it reports the collected data 
(list). 

3. The agent would also collect performance data 
about the nodes. This includes performance 
metrics like network load, physical memory, 
processor usage so that the service requests could 
be matched with the most efficient machine on the 
network. 

The migration of the agent is managed by a controller 
agent. The controller agent would act as the 
scheduler for deciding the migration of agents. 

2.2.1 Discovery & Reporting of Web 
Services  

Identifying Web Services. The mobile agent 
searches the local system for the installed web 
services & scans the interface where the WSDL of 
the web services are published.  

Collecting Performance Data. The agent also 
collects performance Metrics. These performance 
metrics would help the request optimizer to find the 
best match for an incoming request.  

Report the Web Services. When the agent arrives 
at the designated node for the reporting of web 
services, it updates the local database.  

2.2.2 Publishing a New Web Service & 
Updating Existing Web Service 

The node deciding to publish a new web service 
would first create its description using the standard 
WSDL and develop the corresponding 
implementation for the service, thereby publishing 
the description.  

2.2.3 Finding the Closest Match to the 
Discovery Request 

The service broker has the list of all the web services 
with it. It matches it with the best possible service 
that it has in its repository. If there are more than 
one web services matching the request, the service 
broker can reply back with a list of all of these 
services to the requester. However, the broker can 
break the tie on the basis of the performance criteria 
collected by the agent.  

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

498



 

2.3 Migration 

The mobile agent uses the services of the Controller 
Agent (CA) in order to decide the next machine to 
migrate to. It calls the Controller Agents scheduling 
algorithm with its current location. The controller 
agents decide the next location of the calling agent 
(fig. 1). 

 
 

Figure 1: Migration of Mobile Agents. 

Round Robin Migration. Under this scheme the 
agent sequentially migrates through each and every 
node in the system one by one (Fig.2). 
 

 
 

Figure 2: Round Robin Algorithm for Migration of Mobile 
Agents. 
 
Most Active Next Migration.  This migration 
algorithm (Fig.3) visits the most active nodes more 
than the less  active node. The controller agent 
maintains a count of the web services created and/ or 
modified by all the machines. To select the next 
destination, the controller agent uses a priority 
queue. To avoid starvation, relatively higher weight 
should be given to time since last visit. 

3 TOOLS AND FRAMEWORKS 
USED 

We have used Apache Axis, which is an open source, 
XML based Web service framework. It consists of a 
Java and a C++ implementation of the SOAP server, 
and various utilities and APIs for generating and 

deploying Web service applications. The mobile 
   

 
Figure 3: Most active Next Migration Algorithm. 

agent framework is implemented using JADE (Java 
Agent Development Framework) fully implemented 
in Java language.  

3.1 Creation of JAVA Web Service 

In our proposed system, a Web Service is a JAVA 
Class. The public functions of the class would be 
available when the service is published. 

3.2 Deployment of Web Service 

Once the WSDL and Web Service are ready, we 
create a deployment descriptor. The deployment 
descriptor describes the method to deploy the web 
service. In the deployment descriptor, we allow or 
disallow routines in the web service. 

4 EVALUATIONS 

For each set of values, we have calculated the 
average delay. To simulate different sequences of 
events such as installation, discovery time and 
reporting time, we take different number of nodes to 
manage varying number of agents.  

4.1 Computing Effect of Number of 
Agents on the Average Delay 
between Installation and Discovery 
Time of Web Services 

We observe from fig. 4 that as the number of 
machines increase, the candidates for inspection by 
the mobile agent increases. We can see that the 
increase in number of machines causes the average 

Global: priorityArray[ ]. 
Initialize priority Array with all having zero 

priority. 
MOST ACTIVE NEXT(currentid,locationlist) 
{ 
   //update priorityArray 
   For each location in location list 
         Find the percentage of recent change                 
         performed by it 
         Calculate the time since any agent had  
          last visited the node 
         update the priority in the priorityArray 

destinationID=index with maximum priority 
return destination ID 
}

ROUNDROBIN-next-destination 
(currentnodeID,locationlist) 
{ 
       next-destinationID = curentnodeID+1; 
       next-destinationID%=sizeof(locationlist) 
       return next-destinationID     

} 

DYNAMIC DISCOVERY OF WEB SERVICES USING MOBILE AGENTS

499



 

delay between installation and discovery time of the 
web services to increase. As the number of agents 
increase, the workload for one agent decreases. As 
the agents work asynchronously and parallel, the web 
services are discovered in shorter span of time. 

 
Figure 4: Effect on number of agents on the average delay 
between installation and discovery of web services. 

4.2 Average Delay between Installation 
and Reporting Time of Web 
Services 

We observe from fig. 5 that as the number of 
machines where the data has to be reported increase, 
the agent would have to stop at more location to 
submit the data. This causes an increase in the 
average delay between installation and report time. 

 
Figure 5: Effect on number of agents on the average delay 
between installation and reporting of web services. 

4.3 Average Delay in Installation and 
Discovery 

We observed from fig. 6 that as the number of web 
services increases, the agent requires more time to 
check for the new services or the changes in the old 
ones. Thus, the average delay increases as there are 
more services to be checked and reported. 

 
Figure 6: Effect on total number of web services on the 
average delay in installation and discovery. 

5 CONCLUSIONS 

This paper presents the mobile agent based approach 
to the discovery of web services. Although UDDI has 
been extensively been promoted for discovery of web 
services, it fails to provide many features like service 
provider validation, semantics lookup, Quality of 
Service Metadata, trust establishment etc. We have 
shown that the mobile agents reduce the need for 
bandwidth as only data transfer required is that of the 
mobile agent itself. We have also shown that the 
mobile agent based system is fault tolerant. As there 
are more than one mobile agent in the system, even if 
some fail the others could complete the task and 
would not allow the system to go down. Thus the use 
of a mobile agent based approach is a good 
alternative to the conventional approach using 
centralized servers to report web services. 

REFERENCES 

Bellifemine, F, et Al. JADE A White Paper. 
Pautasso, C., Limitations of SOAP, WSDL, UDDI. 

Computer Science Department, Swiss Federal Institute 
of Technology. 

Gengler, B., 2001. UDDI Has Problems . Computer Fraud 
& Security. Volume 2001, Issue 8 

Chapell, D., article_who_cares_uddi.html. 
http:// www.davidchappell.com/articles/ 

Lu, S., Dong M. and  Fotouhi, F., 2002.The Semantic Web 
opportunities and challenges for next-generation, Web 
applications ”, Information Research, Vol. 7 (4) 

Lieberman, H. Letizi An Agent That Assists Web 
Browsing. 

Erl, T., 2008. Service-Oriented Architecture. Pearson 
Education 

Cerami, E. , 2002. Web Services Essentials, O’Reilly  
Miraikar, Z., 2006. Resource and Service Discovery for 

Mobile Agents Platform. 
Ketel, M. 2009. A Mobile agent Based Framework for 

Web Services”, IEEE Internet Computing V. 10(3), pp. 
58-65. 

KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development

500


