
DESIGN OF A MODELLING LANGUAGE FOR SEMIOTICS
BASED AGENT SYSTEMS

Mangtang Chan
Department of Compute Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, PRC

Keywords: Semiotic agents, modelling language, semiotic framework, model-driven development.

Abstract: Semiotics has been used to describe computer programming and systems since 1960. The use of semiotics
in information system development has not yet been seen as a mainstream paradigm although a
methodology MEASUR has been established based on the semiotic framework. To evangelise the use of the
semiotic framework, this paper defines a modelling language which supports systems specification by
applying the Semantic Analysis and Norm Analysis methods in MEASUR. During the design of the
language, the Model-Drive Development approach is used as a reference and a meta-model of semiotic
agents is defined. The detail language constructs are presented and illustrated with an example of inter-agent
tracking.

1 INTRODUCTION

Discussion of relating semiotics to computers can be
dated back to as early as 1960’s when Zemanek
(1966) examines programming languages from the
viewpoint of semiotics. The three fields or
dimensions (the term used by Zemanek) of
semiotics: pragmatics, semantics and syntactics are
used to understand programming languages. A
programming language always has an interpreter,
could be human or computer that would execute the
program. The interpretation and whatever result
following would be the pragmatics, there is always
semantics about the signification of the program text
unless the programming language is not a
meaningful one, and syntactics would be the way of
how symbols or characters are combined to form the
language.

Andersen also presents semiotics as the
framework for understanding and designing
computer systems as sign systems, as targets of
interpretation (Andersen 1991). According to him, in
the total picture of a computer system, semiotic
activities could be found from the top down to the
very bottom of the system. A system could be
specified by a program text, a sign to the compiler or
interpreter which is also signs themselves. Program
execution is a process of interpretation of the
machine code by the computer processor. To the

programmer, the program text on one hand would be
transformed to assembly code and then to machine
code, on the other hand the program could also be
interpreted and new software concepts would be
created, such as statements, variables, lists, loops,
objects and modules. Repeated creation and
interpretation of programs would form a computer
system. This semiotic perspective from programs to
computer systems provided a logical extension of
the description proposed by Zemanek.

Stamper (2000) suggests a "new" direction for
systems analysis and design, and argues that existing
information systems analysis and design
methodologies since 1950 have been based on an
information flow paradigm which is data centric and
makes people think with a technical bias. He
proposes an information field paradigm - "An
information field is established by a group of people
sharing a set of norms". Norms are units of
knowledge expressed as rules based on which
subjects to whom the norms applied would act when
a certain sign occurred. He states that information
systems are organized behaviour with constant
interplay between signs (information) and norms
(knowledge). This paradigm leads to the theory of
information systems as social systems which is able
to underpin different kinds of systems with or
without the use of computers. Liu applies this
paradigm to information system engineering based
on the semiotic framework and the use of MEASUR,

95
Chan M.
DESIGN OF A MODELLING LANGUAGE FOR SEMIOTICS BASED AGENT SYSTEMS.
DOI: 10.5220/0003267200950102
In Proceedings of the Twelfth International Conference on Informatics and Semiotics in Organisations (ICISO 2010), page
ISBN: 978-989-8425-26-3
Copyright c© 2010 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

a set of norm-oriented methods for business systems
modelling and requirement specification for
information systems (Liu 2000; Stamper 1994).

The semiotic framework has not yet been seen as
a mainstream methodology in the software industry.
Barry & Lang (2001) conducts a survey covering
multimedia and Web development techniques, and
methodologies used in companies involved in large-
scale, in-house, data-heavy business applications.
The survey concludes that practitioners are not using
models cited in the literature or research work. This
could probably be explained by the fact that use of
the models demands in-depth understanding of
relevant knowledge and the lack of tools to map the
theoretical model to implementation. On the other
hand, commercial programming languages are only
applicable to a specific problem domain or
technology platform with limited portability and
they usually work at a low level of abstraction. This
paper aims at solving this dilemma by finding a
modelling technique that is based on a sound
theoretical framework but at the same time can be
easily understood and translated into proper
implementation of different types of real-life
applications in different problem domains as well as
technology platforms.

In the past few years, the Model Driven
Development (MDD) has gained substantial
attention among practitioners with the Unified
Modelling Language (UML) (OMG. 2009) from
OMG and the Specification and Description
Language (SDL) (ITU 2000) from ITU as two
prominent examples. A model is defined as a
collection of artefacts that describes the system
(Balmelli, et al. 2006). An artefact is defined as any
item that describes the architecture, ranging from
diagram, document or specific language designed for
the description. MDD uses the technique of
abstraction to handle complex system modelling. A
system model can be looked at from different
viewpoints and abstraction levels. An abstraction or
model level is therefore a subset of the overall model
that presents a particular focus of the system.
Specification of a system with a design language is a
representation in the form of a model consisted of
different language constructs. The language
constructs are based on lower level models (meta-
models) and the specification has to be translated
into implementation which is also another kind of
model. This series of model transformations is the
essence of model-driven development. Our work is
an attempt to evangelise the use of semiotics in
information systems development and designing a
modelling language is a first step. The MDD

approach is also adopted because it is well
understood in the industry.

2 SEMIOTIC FRAMEWORK

2.1 MEASUR

The modelling language is based on the semiotic
framework and MEASUR. MEASUR as a
methodology provides five methods for information
systems development:
 Problem Articulation Methods (PAM) - to be

applied at the early stage of a project with the
aims to identify related agents and an action
course; to reveal the cultural behaviour; to
structure the problem into a main course action
and its surrounding collateral activities and to
identify norms that govern agent’s behaviour in
the system;

 Semantic Analysis Methods (SAM) - this is
basically the ontological dependency analysis to
explicate in a precise form the relationship
between words and appropriate actions used in
the system;

 Norm Analysis Methods (NAM) - this is to
specify the patterns of behaviour of the agents in
the form of norms in which responsibilities of
agents are defined, conditions in which some
actions can or cannot be performed by agents;

 Communication and Control Analysis - this is to
analyse communications between agents
identified by PAM through a classification of
messages into groups of informative,
coordinative and control according to the
intention of sender agent;

 Meta-Systems Analysis - this is to deal with the
meta-aspects of a project such as planning and
management.

Our work focuses on the modelling part and is
therefore based on the SAM and NAM.

2.2 Semiotics and the Information
Systems Development Cycle

Our aim is to use a semiotics based modelling
language to build information systems instead of
only perform the analysis and design. Liu describes
approaches of combining semiotics with other
system analysis and design techniques in going
through different stages of information systems
development with different activities. Table 1,
modified from Liu's work (Liu 2000), summarises

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

96

Table 1: Conceptual viewpoints in adopting semiotics for different stakeholders and IS activities.

IS activities Personnel
involved

Option 1 Option 2 Option 3

Conceptual Viewpoints

Requirement
analysis

Users, analysts Agents,
Affordances,
Norms

Agents,
Affordances,
Norms

Agents,
Affordances,
Norms

Systems
analysis

Analysts Agents,
Affordances,
Norms

Data flow diagram
(if structured
analysis
methodology is
used)

Agents,
Affordances,
Norms

Systems design Analysts,
developers

Agents,
Affordances,
Norms

Entity-
Relationships

Agents,
Affordances,
Norms

Systems
implementation

Developers Normbase Relational
database,
programming
languages, CASE
tools

Agents,
Affordances,
Norms

Systems
execution

Users,
maintenance
programmers

Normbase (as
e.g., relational
database)

Programs,
database or files

Agents,
Affordances,
Norms

the possibilities. The activities are requirement
analysis, system analysis, design, implementation
and systems execution. The conceptual viewpoints
used by different activities are compared for three
options: Option 1 described in the original work,
Option 2 to show the extreme case where totally
different methodologies and hence viewpoints are
used in different activities, and Option 3 which is the
option taken in our work. It could be noted that
Option 1 uses semiotics as the theoretical view point
throughout the activities until systems
implementation when Normbase is used. Normbase
is a software environment for managing norms and
agent semantics resulted from SAM. It is interesting
to note different types of stakeholders would use
different conceptual views in different activities in
Option 1 and 2. Because of the change in conceptual
view point, the implemented systems would not be
seen as agents functioning with the semiotic
principles. Our approach retains the use of the
semiotics view point in all activities and for all
stakeholders up to the point of systems execution.
We argue that this would offer advantages to all
stakeholders with the main one being that they can
understand each other by using a common model.
The result of this approach is that the software used

in systems execution are actually software agents
governed by norms.

2.3 Semiotic Agents

The term semiotic agent is not explicitly used in the
work of Stamper and Liu but has been found used by
Joslyn to model socio-technical organizations which
are defined as large number of groups of people
hyperlinked by information channels and interacting
with computer systems which in turn interacted with
a variety of physical systems (Joslyn & Rocha
2000). Semiotic agent is proposed by Joslyn as an
agent-based modelling technique to model and
simulate emergent decision structures in command
and control organization (e.g. 911/emergency
response systems). Design of these semiotic agents
is based on the reference and interpretation of sign
tokens. Characteristics of semiotic agent, according
to Joslyn, are:
 Capable of measuring a certain of part of the

environment and this perceived part of the
"world" gave the repertoire of behaviour and
hence its field of knowledge;

 Capable of evaluation of current status to judge
based on its own belief and determine its own
action;

DESIGN OF A MODELLING LANGUAGE FOR SEMIOTICS BASED AGENT SYSTEMS

97

 Able to access to a stable, decoupled memory
with which interactions with other agents can be
stored; the agent would use this memory in its
evaluation of action behaviour;

 Asynchronous in behaviour and would not
perform actions in constant time-steps with other
agents; it would respond to discrete-event clues
or follow a schedule of sequential interactions;

 Able to communicate by the creation,
transmission, receiving, storage and
interpretation of tokens based on the existence of
environmental tokens and regularities which
follow the laws of the environment and agent
rules;

 Able to share certain amount of knowledge
instead of relying on solely on individual rules or
knowledge bases.

Agents in the semiotic framework, although based
on organizational semiotics are essentially having
the same characteristics. We adopt the term semiotic
agents to refer to the software agents which are the
main building blocks in our model and systems
specified by the modelling language are therefore
multi-agent systems.

3 DEFINING THE MODELLING
LANGUAGE

3.1 The Meta Model

We name the modelling language SAME-ML
(Semiotic Agent Modelling Environment Mark-up
Language). Systems modelled by SAME-ML consist
of one or more environments which contain one or
more semiotic agents. The semiotic agents are
capable of concurrent execution. Each agent would
continuously look for signs in the environment from
its own perspective. The norms governing the
behaviour would be implemented by rule sets which
could be interpreted and checked with a rule engine.
Therefore the structure of a semiotic agent is defined
as a set of affordances implemented as functions,
methods or services depending on the implementing
technology; a set of signs, a set of rules and a rule
engine. The agent would continuously update the
sign set and assert it as facts (rule based system
terminology) to match against the rule set, the
processing is done by the rule engine which would
fire actions when certain rules are matched. Actions
are affordances of the agent. Figure 1 depicts the
abstract structure of systems produced by SAME-
ML.

Figure 1: Abstract structure of Semiotic Agents.

3.2 XML and XML Schema

We use Extensible Mark-up Language (XML) to
define SAME-ML. XML is a standard proposed by
W3C (World Wide Web Consortium) for describing
the structure of documents. The structural
information is marked by elements in the form of
tags with the format <tag> ... </tag>, known as the
open and close tags. Data are put inside the tags.
Properties known as attributes can also be specified
for the tag, such as <tag attribute="value">.
Elements can further be included within an element
to form any hierarchical structure. By looking at the
enclosing tags and according to their defined
meaning, the data can be categorized and processed.
The main difference between XML and other mark-
up languages (e.g. the HTML - Hyper Text Mark-up
Language used in Web pages) is that the meaning of
the tags is extensible (Zisman 2000). The
interpretation of the tags is not fixed but based on
another document that defines the meaning of tags.
By changing the document, different mark-up
languages can be defined for different application
domains. The definition document itself has to be
written in another language which serves as a data
definition language, schema language or meta-
language in the process of defining the mark-up
language. This definition document is in fact a
transcription of the meta-model for the language.
We choose XML Schema to specify the meta-model
of SAME-ML. XML Schema, also known as XSD
(XML Schema Definition), itself is an XML. The
whole specification of the meta-model is fairly
complex and we only use example SAME-ML to

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

98

show the language structure in the following
sections. More detail information about XML
Schema can be found in relevant literatures (P. V.
Biron &A. Malhotra. 2009; H. S. Thompson, D.
Beech & M. Maloney. 2009).

3.3 Detail Language Structure

3.3.1 The System

In classical semiotics, agents coexist together in an
organization interacting with each other and with the
environment. The organization can be regarded as an
information system. SAME-ML uses the highest
level element <system> to enclose all other sub-
elements. The system and the agents must be named
and the system must consist of at least one or more
agents.

<system name=" ">
 <agent name=" "> </agent>
 <agent name=" "> </agent>

</system>

3.3.2 Agents

In our meta-model, semiotic agents have one or
more affordances and the behaviour of each of them
is governed by a set of norms. At the level of
abstraction in SAME-ML, the details of affordance
would not be dealt with and would be left to the
implementation level. To reflect the steps in writing
the specification, a sequence is established for
defining the characteristics of agents, it is: signs,
affordances and norms. To specify an agent, there
must be a set of signs, at least one affordance and at
least one norm.

<agent name=" ">
 <signs> </signs>
 <affordance name="" description=""/>
 <affordance name=" " />
 <norm name=" " > </norm>

</agent>

3.3.3 Signs and Radical Subjectivism

One of the essential philosophical stances of the
semiotic framework, radical subjectivism, leads to
the concept of local perception of an agent where
only the signs that are of interest to the agent will be
included. The perception is then thought of as a set
of facts. The set of signs enumerates all facts that are
of interest to the agent. Because it is local, each

agent would have one and only one <signs> element
defined in it. The <fact> element can take three
possible forms: a simple definition that only
identifies the fact name and attaches a description;
the second and third form involve propagation of
fact changes to and from other agents according to
our meta-model. A fact can be changed as a result of
changes in other agents' facts (<watch>) or it could
induce changes to other agents (<watched-by>).
These two forms can be mixed together in one single
<fact> definition because of cascade propagation.

<signs>
 <fact name="A" description=" " />
 <fact name="B" description=" " >
 <watch agent="X"
 fact-name="AX" />
 </fact>
 <fact name="C" description=" " >
 <watched-by agent="Y"
 fact-name="CY" />
 </fact>
 <fact name="D" description=" " >
 <watch agent="Z" fact-name="DZ" />
 <watched-by agent="X"
 fact-name="DX" />
 </fact>
</signs>

In the above example, Fact A is a standalone fact.
Change of its value will not cause change to other
facts and no other fact value changes will change its
value. The fact B will have its value changed if the
value of fact AX defined in agent X is changed. In
other words, agent X is being monitored for its fact
AX. Fact C will cause change to fact CY defined in
agent Y. Finally, the value of the fact D will be
changed as a result of monitoring fact DZ and at the
same time, it is being monitored by agent X to
induce change to fact DX.

3.3.4 Norms

Format of application norms in SAME-ML is a
direct translation of classical semiotic norm.
<whenever> tag specifies the context in which this
norm is effective and the <condition> determines
whether the <action> should be taken and in what
way. The type attribute of the <deontic> is restricted
to the values of permitted, obliged and prohibited.

<norm name=" " >
 <description> </description>
 <whenever> </whenever>
 <condition> </condition>
 <deontic type="obliged" />
 <action name=" " />

DESIGN OF A MODELLING LANGUAGE FOR SEMIOTICS BASED AGENT SYSTEMS

99

</norm>

3.3.5 Environment and Agent
Characteristics

According to the meta-model, the environment is a
conceptual entity that corresponds to an
implementation realisation of a set of software
agents being executed within a boundary. The
boundary could be a computer or a program
depending on the actual implementation. Since the
grouping of agents into an environment is an
implementation consideration, it should be separated
out from the specification of other entities to provide
easy maintenance, for example, to produce an
alternative implementation solution by regrouping
agents without changing the definitions of agents.

<environment name=" " type=" ">
 <contain agent=" "
 think-time=" "
 init=" " initi-desc=" " />

 <contain agent=" "
 think-time=" "
 init=" "
 init-desc=" " />

</environment>

Other attributes in the <contain> tag are used to
specify other agent run-time parameters. <think-
time> determines the responsiveness of an agent is
one of these parameters. Furthermore, there may bet
some initialization procedures to be done before an
agent is instantiated to run. <init> specifies these
procedures. Like affordance, these initialization
procedures can only be expressed as algorithmic
details and should therefore be handled at the lower
level of abstraction. It is specified as a name, similar
to affordance. The <initialization-desc> provides a
description of the initialization procedure for
documentation purpose.

4 AN EXAMPLE

4.1 Inter Agent Tracking

The following example models action tracking
commonly found in many control and monitoring
systems. Consider three agents A, B and C in an
environment where B and C would track the action
of A. A generates events b and c randomly, and B
responds to event b while C responds to c. Events b

and c are signs exhibited by A in the environment,
but from the viewpoint of B, b is the only sign of
interest and the same applies to C. This example was
implemented by first identifying the capabilities of
the agents as:

 A - firing an event at random intervals in
milliseconds (with an odd number of
milliseconds resulting in an event b, and an
even interval giving an event c);

 B - responding to event b;
 C - responding to event c.
The norms are simple:
 A - if <random interval expires> <obliged>

<A> <generate event>
 B - if <event b occurs> <obliged> <print

a message>
 C - if <event c occurs> <obliged> <C> <print

a message>
The specification of this example is presented in

Appendix.

4.2 Code Generation
and Implementation

A SAME-ML specification contains all information
required to produce an implementation. Scripts
developed by tools such as XSLT and XQUERY
(Chamberlin 2002; Zisman 2000) can be used to
extract information from specifications to generate
executable codes. In our implementation, we have
developed Java code templates for different types of
agents, environments and fact classes. The building
of the prototype for the above example by
transforming the specifications to implementation
codes has been done manually. In the process, code
templates for the semiotic agents, their norms and
the environment were used. The algorithmic details
of the affordances were coded as methods of the
corresponding Java agent class derived from the
templates. Information required to instantiate a
prototype is extracted from the specifications.
Norms are translated to rules according to the
specifications. Although tools for automatic code
generation have not been completed in our work,
information defined in the SAME-ML specifications
and the code templates are sufficient to support full
code generation. By changing the information
extraction scripts and the templates, codes for
different implementation platform can be produced.

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

100

5 CONCLUSIONS

To enable SAM and NAM of the semiotic
framework for wider adoption, a modelling language
for semiotics based agent systems is defined with the
MDD approach used as a reference. Semiotics and
the semiotic framework are reviewed to define a
meta-model in which semiotic agent is used as the
main component. Application of the language to an
example of inter-agent tracking shows the adequacy
in specifying agent systems. The language has also
been used in other work of multimedia systems
modelling not reported in this paper. Two key
themes are regarded as the core of MDD: raising the
level of abstraction of the models to help designers
focusing on the problem on hand instead of the
programming details and increasing the level of
automation in the transformation of the model
specification to implementation. The design of
SAME-ML fits into these two themes well although
further work has to be done to achieve full
automation in implementation generation. Further
research is being done to investigate the
incorporation of other semiotic framework concepts
such as the role of agents and their ontological
dependence into SAME-ML.

REFERENCES

Andersen, P. B. (1991) Computer semiotics. Scandinavian
Journal of Information Systems, 3, pp. 3-30.

Barry, C. & Lang, M. (2001) A survey of multimedia and
web development techniques and methodology usage.
IEEE Multimedia, 8(2), pp. 52-60.

Biron, P. V., & Malhotra, A. XML schema part 2:
Datatypes. http://www.w3.org/TR/xmlschema-1 (last
accessed 2009)

Chamberlin, D. (2002) XQuery: An XML query language.
IBM Systems Journal, 41(4), pp. 597-615.

ITU. (2000) Z.100 SDL-92 specification and description
language. ITU.

Joslyn, C. & Rocha, L. M. (2000) Towards semiotic agent-
based models of socio-technical organizations.
Proceedings of AI, Simulation and Planning in High
Autonomy Systems (AIS 2000)Tucson, Arizona, USA.
pp. 70-79.

Liu, K. (2000) Semiotics in information systems
engineering. Cambridge, U.K., New York, Cambridge
University Press. ISBN 0521593352

OMG. Unified modeling language. http://www.uml.org/
(last accessed 2009)

Stamper, R. (1994) Social norms in requirements analysis:
An outline of MEASUR. In M. Jinotka, J. Goguen &
M. Bickerton (Eds.), Requirements engineering:
Social and technical issues. pp. 107-139 Academic

Press Professional Inc., San Diego, CA, USA. ISBN 0-
12-385335-4

Stamper, R. (2000) New directions for system analysis and
design. Enterprise information systems. pp. 14-39
Kluwer Academic Publishers. ISBN 0-7923-6239-X

Thompson, H. S., Beech, D. & Maloney, M. XML schema
part 1: Structure. http://www.w3.org/TR/xmlschema-
1 (last accessed 2009)

Zemanek, H. (1966) Semiotics and programming
languages. Communications of the ACM, 9(3), pp.
139-143.

Zisman, A. (2000) An overview of XML. Computing &
Control Engineering Journal, 11(4), pp. 165-167.

DESIGN OF A MODELLING LANGUAGE FOR SEMIOTICS BASED AGENT SYSTEMS

101

APPENDIX

<system name="AgentTracking"
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns='http://xml.netbeans.org/schema/sameMLSchema'
 xsi:schemaLocation='http://xml.netbeans.org/schema/sameMLSchema
 sameMLSchema.xsd'>
 <agent name="A">
 <signs>
 <fact name="RandomPeriod" />
 <fact name="Event">
 <watched-by agent="B" fact-name="Event" />
 <watched-by agent="C" fact-name="Event" />
 </fact>
 </signs>
 <affordance name="FireEvent" />
 <affordance name="GetRandomPeriod" />
 <norm name="Fire Event">
 <description>Create event</description>
 <whenever>running</whenever>
 <condition>random-period-expires</condition>
 <deontic type="obliged" />
 <action name="FireEvent" />
 <action name="GetRandomPeriod" />
 </norm>
 </agent>
 <agent name="B">
 <signs>
 <fact name="Event">
 <watch agent="A" fact-name="Event" />
 </fact>
 </signs>
 <affordance name="Respond" />
 <norm name="Repond to Event">
 <whenever>running</whenever>
 <condition>event occurs</condition>
 <deontic type="obliged" />
 <action name="Respond" />
 </norm>
 </agent>
 <agent name="C">
 <signs>
 <fact name="Event">
 <watch agent="A" fact-name="Event" />
 </fact>
 </signs>
 <affordance name="Respond" />
 <norm name="Repond to Event">
 <whenever>running</whenever>
 <condition>event occurs</condition>
 <deontic type="obliged" />
 <action name="Respond" />
 </norm>
 </agent>
 <environment name="main" type="application">
 <contain agent="A" think-time="500" init="none" />
 <contain agent="B" think-time="500" init="none" />
 <contain agent="C" think-time="500" init="none" />
 </environment>
</system>

ICISO 2010 - International Conference on Informatics and Semiotics in Organisations

102

