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Abstract: The signaling molecule human interleukin-3 (IL-3) is responsible for promoting the growth of a wide range 
of hematopoietic cell lineages in the bone marrow. In this study, we apply an in silico mutagenesis 
technique to investigate the effects of single amino acid substitutions in the IL-3 protein on cell proliferation 
activity. The computational mutagenesis, which utilizes the IL-3 protein structure as well as a knowledge-
based, four-body statistical potential, empirically quantifies environmental perturbations at the mutated 
residue position in IL-3 and at all neighboring positions in the folded structure. In particular, mutated 
position perturbation scores alone are capable of characterizing IL-3 residues grouped by physicochemical, 
functional, or structural properties. Additionally, these scores elucidate an IL-3 structure–function 
relationship based on a collection of 630 single residue replacements for which activity changes were 
experimentally measured. A random forest classifier trained on this dataset of experimental mutants, whose 
respective feature vectors include environmental changes at the mutated position and at six nearest 
neighbors in the IL-3 structure, achieves 80% accuracy and outperforms related state-of-the-art methods. 

1 INTRODUCTION 

Human interleukin-3 (IL-3) is a short-chain, bundled 
four-helical cytokine that is produced primarily by 
activated T-cells and acts in the bone marrow to 
promote the growth of most precursor blood cell 
lineages (Bagley et al., 1996, Feng et al., 1996, 
Klein et al., 1997, Olins et al., 1995). It is a 
relatively small signaling protein consisting of 133 
amino acid residues (Figure 1A) that most closely 
resembles granulocyte-macrophage colony 
stimulating factor (GM-CSF) and IL-5, both of 
which also possess four-helical bundles and belong 
to the same family of short-chain cytokines (Bagley 
et al., 1996, Feng et al., 1996). Unlike the other 
members of this family, a short fifth α-helix is also 
apparent in the IL-3 structure (Feng et al., 1996, 
Klein et al., 1997). Cell proliferation activity is 
initiated via the binding of IL-3 by a heterodimeric 
IL-3Rα/Rβ transmembrane receptor on target cells 
(Bagley et al., 1996, Klein et al., 1997). IL-3 
specifically binds the Rα receptor subunit with low-
affinity, and it otherwise displays no affinity for the 
Rβ chain; high-affinity IL-3 binding requires both 

receptor subunits and the formation of an IL-3-IL-
3Rα/Rβ ternary complex (Bagley et al., 1996, Klein 
et al., 1997). Signal transduction is subsequently 
mediated by the Rβ receptor, whereby tyrosine 
phosphorylation of the Rβ cytoplasmic domain by 
JAK2 kinase is followed by induction of the STAT5 
transcriptional pathway (Bagley et al., 1996, Feng et 
al., 1996, Klein et al., 1997). 

A solution structure has been determined for a 
multiply substituted and truncated variant of human 
IL-3 consisting of residue positions 14 – 125 (Feng 
et al., 1996). The NMR coordinates, deposited into 
the Protein Data Bank (PDB) under accession code 
1jli (Berman et al., 2000), provide a minimized 
average structure obtained from a family of 25 
convergent structures with an average backbone 
root-mean-square deviation of 0.88±0.15 angstroms 
(Feng et al., 1996). Although a total of 14 residue 
changes were introduced into the truncated protein 
in order to make it sufficiently soluble and stable for 
NMR studies, a cell proliferation assay revealed the 
variant to be fully active (Feng et al., 1996). 
Additionally, the results of saturation (Olins et al., 
1995) and site-directed (Bagley et al., 1996) 
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mutagenesis experiments on IL-3 have been reported 
in the literature, whereby cell proliferation assays 
were used for measuring the activity associated with 
a total of 630 single residue substitutions in the 
native protein. The synthesized IL-3 mutants were 
subsequently categorized based on their degree of 
activity relative to that of the wild type protein.  

In this study, we implement a computational 
mutagenesis procedure for representing mutants of 
human IL-3 due to single amino acid replacements. 
The method utilizes a coarse-grained depiction of 
protein structure as a collection of constituent amino 
acid residue Cα coordinates in 3-dimensional (3D) 
space. For each structure, the points serve as vertices 
for a 3D tetrahedral tiling known as a Delaunay 
tessellation (de Berg et al., 2008); hence, every 
tetrahedron identifies a quadruplet of residues at the 
vertices. Initially, a large and diverse set of protein 
structures is tessellated, from which an amino acid 
four-body potential is subsequently developed based 
on statistical analysis of the residue quadruplets 
collectively generated by the tetrahedra. Next, we 
describe the in silico mutagenesis technique and how 
its application to a protein such as IL-3 requires both 
tessellation of its 3D structure and use of the four-
body statistical potential. For each single residue 
replacement in IL-3, the method quantifies ensuing 
environmental perturbations at the mutated position 
and at structurally nearby positions that form a local 
neighborhood as identified by the tessellated protein 
structure. As will be shown in this manuscript, these 
perturbation scores elucidate IL-3 structure-function 
relationships and are valuable for developing a 
predictive model of mutant IL-3 activity based on 
implementation of a random forest classifier. 

2 MATERIALS AND METHODS 

2.1 Experimental Data 

Theoretically, there are a total of 19 × 112 = 2128 
possible single residue substitutions that can be 
introduced into positions 14 – 125 of the available 
human IL-3 structure. The principal dataset for this 
study contains 630 of these IL-3 mutants, 
representing amino acid replacements distributed 
throughout the primary sequence of the protein at all 
but 12 positions. Biological activity of these 
experimentally synthesized IL-3 mutants was 
determined via cell proliferation assays that 
measured the incorporation of [3H] thymidine into 
either AML193.1.3 (Olins et al., 1995) or TF-1 
(Bagley et al., 1996) erythroleukemic cell lines.  

 
Figure 1: (A) Ribbon diagram of human interleukin-3 (IL-
3) based on PDB accession code 1jli (Pettersen et al., 
2004). (B) Delaunay tessellation of IL-3 using Cα vertices 
generates a convex hull of tetrahedral simplices. 

Mutant IL-3 activity was reported as a 
percentage of the wild type (wt) protein, 
summarized by the following categorical 
distribution: 27 “increased activity” mutants (> 
100% wt), 373 “full activity” mutants (20 – 100% 
wt), 75 “moderate activity” mutants (5 – 19% wt), 
and 155 “low activity” mutants (< 5% wt). As a two-
class system of IL-3 mutants, we consider the 
following subsets: 400 that are “unaffected” 
(“increased” and “full” combined) and 230 that are 
“affected” (“moderate” and “low” combined) by 
their respective residue substitutions. 

2.2 Delaunay Tessellation and the 
Four-Body Statistical Potential 

The Delaunay tessellation of a set of points P = {x1, 
x2, x3, …, xN} in 3D Euclidean space yields a convex 
hull of space-filling, non-overlapping, irregular 
tetrahedra whose combined vertices consist of 
precisely all elements of P (Figure 1B). Two 
adjacent tetrahedral simplices in a tessellation may 
share a triangular face (three out of four points in 
common), a linear edge (two points in common), or 
a single vertex. Provided that no three points of P 
are collinear, no four points are coplanar or on the 
same circle, and no five points are on the same 
sphere, there exists a unique Delaunay tessellation of 
P (de Berg et al., 2008). The technique is applied to 
a protein structure by initially abstracting to points 
the constituent amino acids, which for this study are 
selected to be the Cα atomic coordinates, to yield a 
coarse-grained representation of the protein. Each of 
the simplices in the ensuing protein structure 
tessellation objectively identifies at the vertices a 
quadruplet of structurally nearest neighbor amino 
acid residues. To ensure only biochemically feasible 
quadruplet interactions, all protein structure 
tessellations are modified by the removal of edges 
longer than 12 angstroms (Figure 2A). Delaunay 
tessellation implementations and visualizations, and 
all subsequent data analyses are performed using a  
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Figure 2: (A) Delaunay tessellation of IL-3 subject to an 
edge length cutoff of 12 angstroms. (B) Subset of 14 
tetrahedral simplices that share the Cα vertex of amino 
acid residue D21 (enlarged relative to the others). There 
are a total of 11 other vertices among these simplices, and 
the residues they represent form the neighborhood of D21. 
(C) Rmut vector for the D21S mutant of IL-3. The nonzero 
EC value at position 21 is the residual score of the D21S 
mutant, and the other 11 nonzero EC scores identify the 
D21 neighborhood positions. 

combination of Qhull (Barber et al., 1996), Matlab 
(Version 7.0.1.24704 (R14) Service Pack 1), and an 
ad hoc suite of Java and Perl codes. 

The amino acid building blocks of proteins form 
a K = 20 letter alphabet A. The number of r = 4 letter 
subsets (quadruplets) of A that can be enumerated, 
assuming permutations of four letters in a quadruplet 
do not constitute new subsets but that a quadruplet 
may contain repeats of the same letter, is given by 
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These conditions reflect the facts that ordering is not 
taken into account when four amino acids are 
identified at the vertices of simplices in protein 
structure tessellations, and that the same amino acid 
may appear multiple times in a protein chain and in 
structurally close proximity to form the vertices of a 
simplex. Since on average only a few hundred 
simplices and their respective quadruplets are 
encountered when a single protein is tessellated, a 
diverse dataset of 1417 high-resolution protein 
structures with low sequence and structure similarity 
was selected for tessellation using the PISCES 
server (Wang and Dunbrack, 2003) in order to 
reliably calculate simplicial nearest neighbor relative 
frequencies of occurrence fijkl for all 8855 possible 

quadruplets (i, j, k, l) in protein structure space. A 
rate expected by chance for the quadruplets is 
obtained from the multinomial reference distribution 
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In the above formula, an represents the proportion of 
amino acids of type n in the 1417 tessellated protein 
structures, and tn is the number of occurrences of 
amino acid n in the quadruplet. Through an 
application of the inverse Boltzmann principle from 
statistical mechanics (Sippl, 1993), a knowledge 
based statistical potential of quadruplet interaction is 
given by the log-likelihood score sijkl = log (fijkl / 
pijkl), and the collection of 8855 quadruplet types 
together with their respective scores defines the 
four-body statistical potential (Carter et al., 2001). 

2.3 Computational Mutagenesis 

With the Delaunay tessellation of the human IL-3 
protein structure, the four-body statistical potential 
can be used to assign a score to each of the 
constituent tetrahedral simplices equivalent to that of 
the amino acid quadruplet identified at its four 
vertices. Since each amino acid vertex is generally 
shared by a number of adjacent tetrahedral 
simplices, the residue participates in multiple nearest 
neighbor quadruplets. All amino acids represented at 
the other vertices of these simplices collectively 
form a neighborhood of that shared residue, and any 
position in a protein structure tessellation rarely has 
fewer than six neighbors (Figure 2B). Although 
amino acids positions in the neighborhood are all 
structurally near their shared residue in 3D 
Euclidean space, they are often distant from the 
shared residue in primary sequence. For an amino 
acid at primary sequence position i in the protein, 
the residue environment score qi is defined as the 
sum of scores of all tetrahedral simplices that share 
its Cα vertex (Carter et al., 2001, Zhang et al., 2008). 

The environment scores of all amino acids in the 
native protein can be arranged to form a 3D-1D 
potential profile (Bowie et al., 1991) vector Qwt = 
<q1, q2, q3, …, qN>, where the translation i = i – 13 
has been applied to the residue positions 14 – 125 of 
the human IL-3 structure, and N = 112. A similar 
profile Qmut can be obtained for any IL-3 mutant due 
to a residue substitution at some position j, by first 
replacing the identity of the amino acid accordingly 
at the vertex representing position j in the 
tessellation, and then recalculating all the residue 
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environment scores. However, the only environment 
scores that are actually altered occur at the mutated 
position j and at those that form its neighborhood in 
the tessellation. The difference Rmut = Qmut – Qwt = 
< EC1, EC2, EC3, …, ECN> is a sparse mutant vector 
that quantifies relative environmental changes or 
perturbations ECi = qi,mut – qi,wt  at every residue 
position i in the protein due to the mutation (Carter 
et al., 2001, Zhang et al., 2008). Since the only 
nonzero EC components of Rmut occur at mutated 
position j and at positions in its neighborhood, 
important local effects of a mutation are effectively 
modelled; however, long-range consequences at 
structurally distant protein positions are excluded 
(Figure 2C). We refer to the ECj component in the 
vector Rmut at the mutational epicenter j as the 
mutant residual score, due to its significance as a 
summary measure of the relative change in mutant 
IL-3 sequence-structure compatibility from that of 
the native protein. Finally, a comprehensive 
mutational profile (CMP) for IL-3 is a vector 
obtained by calculating at each position the mean of 
residual scores associated with all 19 amino acid 
replacements, where each component is a CMP 
score for the corresponding position (Carter et al., 
2001, Zhang et al., 2008). 

Conformational changes are effectively 
accounted for by this computational mutagenesis, 
both implicitly, through the four-body potential and 
the perturbation vectors Rmut, and explicitly, due to 
the use of only coarse-grained Cα representations of 
structures and the fact that Delaunay tessellations are 
robust to small shifts in the Cα coordinates. Hence, a 
solved structure for every human IL-3 mutant is not 
required, and tessellation of the only available IL-3 
structure suffices. Moreover, these conditions 
suggest that despite the fact that this IL-3 structure 
contains 14 residue changes, its tessellation can be 
used to represent that of the wild type protein by 
altering the identities of the amino acids at the 
corresponding vertices to those found in the native 
IL-3 protein. With these initial alterations, Qwt can 
then be computed for wild type IL-3, followed by 
3D-1D potential profiles Qmut and perturbation 
vectors Rmut for all single residue mutants. 

2.4 Random Forest Classification and 
Evaluation of Performance 

A feature vector is generated for each single point 
human IL-3 mutant whose input attributes 
(independent variables or predictors) include the 
mutated position number, the identities of the native 
and replacement amino acids at the mutated 

position, the residual score (i.e., EC score at the 
mutated position), and the EC scores at the six 
nearest neighborhood positions ordered nearest to 
farthest based on 3D Euclidean distance of each 
neighbor from the mutated position. Next, we 
include the ordered amino acid identities at the six 
nearest neighbors as well as their ordered primary 
sequence locations relative to the mutated position 
(i.e., difference between neighbor and mutated 
position numbers). Finally, the following input 
attributes are added as feature vector components: 

(1) The computed mean volume and mean 
tetrahedrality for the set of Delaunay simplices that 
utilize the mutated position as a vertex; 
(2) The secondary structure {H, helix; C, coil} at 
the mutated position; 
(3) Depth {S, surface; U, undersurface; B, buried} 
at the mutated position (tessellation-based surface 
accessibility). Surface positions participate as one 
of three vertices defining a triangular facet for 
exactly one tetrahedron in the tessellation. 
Undersurface positions are defined as non-surface 
positions that share an edge with a surface 
position. All other positions are buried; 
(4) A count of the number of simplex edges the 
mutated position shares with surface positions 
(zero by definition for buried positions). 
The mutant IL-3 activity class defines the output 
attribute (dependent variable) associated with each 
feature vector. 

The supervised classification scheme that we 
employ for this study is an implementation of Leo 
Breiman’s random forest (RF) algorithm (Breiman, 
2001), available as part of the WEKA suite of 
machine learning tools (Frank et al., 2004). The RF 
algorithm incorporates a bagging (bootstrap 
aggregating) procedure to train an ensemble of 
classification trees, and predictions are based on a 
majority vote. The split at each node encountered in 
the growing trees is based on a fixed-size random 
subset of the predictor attributes. Also, though all 
trees are unpruned, the algorithm does not overfit 
regardless of the number of selected trees. 
Generally, the RF algorithm performs better than 
other supervised classification methods (Bordner, 
2008, Qi et al., 2006). We fix the adjustable RF 
parameters in this study at 100 trees, and 5 input 
attributes are randomly selected for splitting at each 
tree node. 

RF performance on the dataset of IL-3 mutant 
feature vectors is evaluated by using stratified 
tenfold cross-validation (10 CV), leave-one-out 
cross-validation (LOOCV), and stratified random 
split (66% of dataset for model training and 34% for 
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testing). Given TP (TN) = total number of correctly 
predicted “unaffected” or “U” (“affected” or “A”) 
mutants and FN (FP) = total number of respectively 
misclassified mutants, the overall accuracy is 
defined as Q = (TP + TN) / (TP + FN + FP + TN). 
For the “unaffected” class, S(U) = sensitivity = TP / 
(TP + FN) and P(U) = precision = TP / (TP + FP), 
while for the “affected” class, S(A) = TN / (TN + 
FP) and P(A) = TN / (TN + FN).  Finally, the 
balanced error rate (BER) and balanced accuracy 
rate (BAR), calculated as BER = 0.5 × [FN / (FN + 
TP) + FP / (FP + TN)] and BAR = 1 – BER, 
Matthew’s correlation coefficient (MCC), given by 

,
FP)FN)(TNFP)(TNFN)(TP(TP

FNFP-TNTP  MCC
++++

××
=  

and area (AUC) under the receiver operating 
characteristic (ROC) curve provide alternative 
measures that are especially useful for unbalanced 
classes. A chi-square test can be applied to assess 
MCC statistical significance, where the test statistic 
is given by χ2 = M × MCC2 (M = number of 
predictions) with one degree of freedom (Baldi et 
al., 2000). An ROC curve is a plot of true positive 
rate (sensitivity) versus false positive rate (1 – 
specificity), and AUC is equivalent to the non-
parametric Wilcoxon-Mann-Whitney test of ranks 
(Fawcett, 2003). An AUC value near 0.5 suggests 
the trained model will not perform better than 
random guessing, while a value of 1.0 indicates a 
perfect classifier. 

3 RESULTS AND DISCUSSION 

3.1 Human IL-3 Structure-Function 
Relationships 

We begin by generating perturbation vectors Rmut 
for all 2128 mutants of human IL-3 due to single 
residue substitutions at positions 14 – 125, from 
which residual scores are obtained for the 630 
mutants of IL-3 with experimentally classified 
activity. Next, a mean residual score is calculated for 
the IL-3 mutants in each of the four activity 
categories and reflects a clear trend (Figure 3A), 
whereby increasingly detrimental effects on 
structure (i.e., decreasing mean residual scores) are 
associated with higher levels of functional 
impairment (i.e., diminished levels of activity). 
Moreover, based on six separate t-test applications, a 
statistically  significant  difference  exists  between  

 
Figure 3: Human IL-3 structure-function correlation based 
on (A) four mutant activity categories and (B) two 
functional classes (C / NC = conservative / non-
conservative amino acid substitutions). 

mean residual scores associated with each pair of 
activity classes in Figure 3A (p < 0.05 in all cases). 

The mutants in each class of Figure 3A are 
further categorized based on whether the residue 
replacements are conservative (C) or non-
conservative (NC) relative to the native amino acids, 
and mean residual scores are computed for each of 
these subgroups. With the 20 amino acids clustered 
into six groups as {(A,S,T,G,P), (D,E,N,Q), 
(R,K,H), (F,Y,W), (V,L,I,M), (C)} based on 
similarities in physicochemical properties, intraclass 
residue replacements are considered conservative 
while interclass substitutions are non-conservative 
(Dayhoff et al., 1978). Note that the overall trend is 
driven by NC mutations, since C substitutions 
minimally impact sequence-structure compatibility 
regardless of the impact on activity. All results based 
on four mutant activity categories are identically 
replicated when we consider the case of two 
(unaffected / affected) functional classes (Figure 
3B), as defined in the Materials and Methods, and 
the difference in mean residual scores for this class 
pair is also statistically significant (p < 0.0001). 

We alternatively consider distribution of the 630 
experimental IL-3 mutants in a contingency table  
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Figure 4: (A) CMP – potential profile correlation plot for 
IL-3 segregates residues by polarity. (B) Effective 
discrimination of the functional and structural roles carried 
out by groups of IL-3 amino acid positions. 

based on their activity (out of four classes) as well as 
their residual scores. Using two categories of 
residual scores (negative, non-negative), a chi-
square test applied to the resulting 4×2 table leads us 
to reject the null hypothesis that no association 
exists between activity level and residual scores (p < 
0.01). Based on four residual score categories 
(interval boundaries at -0.5, 0, and 0.5), a 4×4 table 
is generated that yields a similar result (p < 0.0001). 

3.2 Classification of Human IL-3 
Residue Positions 

A strong inverse correlation (R2 = 0.86) exists 
between the CMP profile for human IL-3, obtained 
by averaging the residual scores of all amino acid 
replacements at each position, and the 3D-1D 
potential profile of the protein, which provides an 
environment score for each position (Figure 4A). By 
separately averaging residual scores of the non-
conservative (NC) and conservative (C) substitutions 
at each position, a modified NC-CMP profile is 
computed that is equally inversely correlated with 
the 3D-1D potential profile (R2 = 0.87) and reflects 

the significant contribution of NC substitutions, 
while a markedly diminished correlation is observed 
with the modified C-CMP profile (R2 = 0.42). The 
plot in Figure 4A for 112 residue positions of human 
IL-3 reveals a clustering according to polarity, with 
the vast majority of the charged and hydrophobic 
amino acids occupying quadrants 2 and 4, 
respectively, and polar residues scattered within a 
relatively close range of the origin. 

In total, 16 residue positions in human IL-3 have 
been determined to be involved in binding to the IL-
3R cell surface receptor: S17, N18, D21, E22, T25, 
G42, E43, Q45, D46, M49, R94, P96, R108, F113, 
K116, and E119 (Bagley et al., 1996, Klein et al., 
1997). Additionally, based on solvent accessible 
surface area (http://curie.utmb.edu/getarea.html) 
calculations, the 24 positions most buried in the IL-3 
structure consist of 18 hydrophobic residues, with 
the remaining six amino acids being either charged 
or polar. We characterize each of these three groups 
based on both the mean of the residue environment 
scores (MRES) of the positions in the group, as well 
as the mean of the mutant residual scores (All, C, 
NC) for all 19 residue replacements at all positions 
in the group combined (Figure 4B). Figure 4B 
clearly shows that our computational 
characterization effectively distinguishes these 
functional and structural groups of amino acid 
positions from one another. 

3.3 Prediction of Human IL-3 
Activity Changes 

As detailed earlier in the Materials and Methods, we 
first derive feature vectors for all 2128 mutants of 
human IL-3 due to single residue substitutions at 
positions 14 – 125, each of which includes only 
seven of the EC components selected from the 
corresponding perturbation vector Rmut as well as 
other predictors. In particular, we first consider 
feature vectors for the 630 experimental mutants of 
IL-3, each of which also has an output attribute 
classifying activity as either “unaffected” or 
“affected”. Performance of the random forest (RF) 
algorithm on this training set is evaluated based on 
running ten iterations each of 10-fold cross-
validation (CV) and 66/34 stratified random split, as 
well as leave-one-out CV (LOOCV), with relatively 
consistent results across all three testing methods 
(Table 1). All MCC values are statistically different 
from zero (p < 0.0001), indicating that predictions 
are notably more correlated with the data compared 
to random guessing. Table 1 also reveals that our 
method outperforms by wide margins those of the 
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SIFT (http://sift.jcvi.org/) (Ng and Henikoff, 2006) 
and SNAP (http://cubic.bioc.columbia.edu/services/) 
(Bromberg and Rost, 2007) state-of-the-art servers 
that utilize information derived from multiple 
sequence alignments. Since our model does not 
incorporate evolutionary information, it serves as an 
orthogonal approach that is complementary to these 
other methods. 

Table 1: RF model performance and comparisons with 
other methods. 

Method Q MCC BER AUC 
10-fold 

CV* 
0.79±0.01 0.54±0.01 0.23±0.01 0.83±0.01

66/34 
split* 

0.79±0.02 0.53±0.05 0.24±0.02 0.84±0.02

LOOCV 0.80 0.55 0.23 0.83 

SIFT 0.59 0.26 0.37 --- 

SNAP 0.68 0.33 0.33 --- 

* average over ten iterations. 

 
Figure 5: (A) Distribution of 10-fold CV RF prediction 
performance over 1,000 permutations (random shuffles) of 
the mutant IL-3 activity class labels. (B) Learning curves. 
Error bars represent ± 1 std. dev. from the mean. 

For a systematic approach to assessing the 
statistical significance of our results in Table 1, we 
generate 1,000 activity class label permutations 
(random shuffles) and calculate the 10-fold CV 

performance in each case based on the RF algorithm. 
The distributions of MCC and BAR accuracy 
measurements (Figure 5A) are narrowly centered 
around zero and 0.5, respectively (MCC = 0.00 ± 
0.04, BAR = 0.50 ± 0.02), with no permutation 
accuracy near those obtained using the original 
arrangement of the class labels (Table 1: MCC = 
0.54 ± 0.01, and BAR = 1 – BER = 0.77 ± 0.01), so 
the p-value for predictive power is less than 0.001. 

Next, we undertake a detailed evaluation of the 
LOOCV predictions on the 630 mutants of human 
IL-3 in order to assess the strengths and weaknesses 
of our methodology. In particular, the approach 
performs best when polar and charged amino acids 
are replaced with apolar residues, and vice versa, 
while the least accurate predictions occur with 
residue substitutions of the same polarity (Table 2).  
Additionally, although overall accuracy (Q) for 
surface position mutations appears to surpass that of 
buried positions (Table 3), contradicting 
observations noted by other researchers (Bromberg 
and Rost, 2007, Capriotti et al., 2006), the surface 
mutations constitute a smaller percentage of the 
dataset, and their lower correlation coefficient 
(MCC) suggests those correct predictions may be 
more biased toward one activity class at the expense 
of the other. Finally, there are nearly twice as many 
mutations in helices as there are in coils, and the 
helix mutation predictions are more accurate. 

Table 2: LOOCV prediction performance based on side 
chain polarities of the native and new amino acids at the 
mutated position. 

native / new 
Polar Apolar Charged 
Q MCC Q MCC Q MCC

Polar 0.71 0.16 0.85 0.47 0.80 0.24 
Apolar 0.84 0.69 0.70 0.39 0.88 0.76 
Charged 0.83 0.65 0.90 0.80 0.59 0.18 

Table 3: LOOCV prediction performance based on depth 
and secondary structure. 

Depth Q MCC % 
Buried 0.78 0.56 42 
Undersurface 0.77 0.50 27 
Surface 0.84 0.48 31 
Secondary Structure Q MCC % 
Helix 0.80 0.58 64 
Coil 0.79 0.48 36 

% refers to the proportion of IL-3 mutants in the dataset. 

In order to assess the influence of dataset size on 
trained RF model performance, learning curves are 
provided in Figure 5B. We begin by applying RF 
learning and 10-fold CV to each of 10 stratified 
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random samples of 100 dataset mutants, where each 
subset is selected from among all 630 experimental 
human IL-3 activity mutants, and mean performance 
and standard deviation (std. dev.) is calculated. 
Subsequent iterations involve incrementing by 50 
mutants the size of the sampled datasets. The 
learning curves do not appear to reach plateaus as 
they approach the full dataset size of 630 mutants, 
suggesting that the current RF model may be 
improved upon by enlarging the training set through 
possible future availability of experimental activity 
data for additional IL-3 mutants. 

The CfsSubsetEval attribute evaluator program in 
WEKA is a tool for identifying the most influential 
feature vector attributes (Frank et al., 2004). The 
method evaluates various subsets of the attributes for 
how highly correlated the predictors in each subset 
are with the unaffected / affected activity classes 
while also displaying low intercorrelation with one 
another. The BestFirst search program in WEKA is 
concurrently used to select the subsets for evaluation 
based on a greedy hill-climbing approach, whereby 
starting with a random selection of attributes, a bi-
directional search ensues in which all possible 
additions or deletions of single attributes are 
examined at each step (Frank et al., 2004). The 
procedure is augmented with backtracking, whereby 
a maximum of five consecutive, non- improving 
attributes are allowed. The following ten attributes 
are identified as the most highly ranked predictors: 
position number; residual score; EC scores at the 
second, third, and fifth nearest neighbors; primary 
sequence locations of the fourth and sixth nearest 
neighbors relative to the mutated position; amino 
acid identity at the sixth nearest neighbor to the 
mutated position; mean volume; and mean 
tetrahedrality. These ten attributes span the diversity 
of predictors considered in this study, underscoring 
the importance of the collective set of features. 

Finally as an important practical application, we 
employ the RF model learned from the entire 
training set of 630 mutants of human IL-3 in order to 
predict the unaffected / affected class memberships 
of all remaining 1498 uncharacterized single residue 
IL-3 mutants. In particular, we form a test set that 
contains feature vector input attributes for the 1498 
mutants of IL-3 that remain to be predicted, each of 
which has an unknown unaffected / affected activity 
class output attribute. Based on the signals encoded 
by the  input  attributes of their  feature vectors, the  

 
Figure 6: Human IL-3 mutational array (red = unaffected, 
green = affected, white = self-substitutions; darker colors 
= experimental, lighter = predicted; boxed numbers = 
receptor binding, shaded = hydrophobic core, both shaded 
and boxed = buried charged / polar). 

RF model generates a class prediction for every IL-3 
mutant in the test set. All experimental and predicted 
IL-3 mutants are pooled into the array shown in 
Figure 6, which concisely summarizes overall 
protein mutational patterns. Columns represent 
residue positions in IL-3, and rows represent the 20 
possible amino acid replacements, arranged from top 
to bottom in order of increasing hydrophobicity 
(Kyte and Doolittle, 1982). Notably, at nearly all 
receptor-binding positions for which a number of 
amino acid substitutions are known to affect activity, 
predictions match experimental IL-3 mutant data. 

4 CONCLUSIONS 

This study demonstrates the utility of a 
computational mutagenesis methodology, based on 
implementations of a four-body potential and the 
Delaunay tessellation of protein structure, for 
modeling single residue replacements in the human 
interleukin-3 (IL-3) cytokine. For each IL-3 mutant, 
the approach quantifies environmental perturbation 
at the mutated position (i.e., the residual score) and 
at all positions in its neighborhood, as defined by the 
tessellation of the IL-3 protein structure. Published 
experimental data include relative changes in cell 
proliferation activity for 630 single residue 
substitutions of IL-3, representing nearly 30% of all 
such mutants in the protein. An IL-3 structure-
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function relationship is elucidated with this 
collection of mutants by comparing their residual 
scores (measures of relative changes to sequence-
structure compatibility) with their relative activity 
changes (measures of relative functional changes). 
More generally, residual scores are also useful for 
naturally clustering IL-3 amino acid positions based 
on their polarity, as well as for distinguishing 
residue groups based on their functional or structural 
roles. The experimental IL-3 mutants are 
subsequently represented as feature vectors, with 
input attributes that include the residual score, 
ordered perturbation scores for the six structurally 
closest positions in the local neighborhood of the 
mutated position, and additional components based 
on sequence and structure, as well as an activity 
category (unaffected / affected) output attribute. This 
collection of feature vectors is used to train a 
random forest classifier, which displays up to 80% 
accuracy for mutant IL-3 activity prediction and 
outperforms other well-known methods. To assist 
researchers in prioritizing future IL-3 mutagenesis 
experiments, activity predictions based on the 
trained model are provided for all 1498 unexplored 
single residue IL-3 mutants. 
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