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Abstract: Mel-frequency cepstrum based features have been traditionally used for speech recognition in a number of
applications, as they naturally provide a higher recognition accuracies. However, these features are not very
robust in a noisy acoustic conditions. In this article, we investigate the use of bio-inspired auditory features
emulating the processing performed by cochlea to improve the robustness, particularly to counter environmen-
tal reverberation. Our methodology first extracts robust noise resistant features by gammatone filtering, which
emulate cochlea frequency resolution and then a long-term modulation spectral processing is performed which
preserves speech intelligibility in the signal. We compare and discuss the features based upon the performance
on Aurora5 meeting recorder digit task recorded with four different microphones in a hands-free mode at a real
meeting room. The experimental results show that the proposed features provide considerable improvements
with respect to the state of the art feature extraction techniques.

1 INTRODUCTION

A significant trend in ubiquitous computing is to fa-
cilitate the user to communicate and interact naturally
with concerned applications. Speech is an appealing
mode of communication for such applications. The
human-machine interaction using automatic speech
processing technologies is a diversified research area,
which has been investigated actively (Kellermann,
2006; Droppo and Acero, 2008).

Speech acquisition, processing and recognition in
a non-ideal acoustic environments are complex tasks
due to presence of unknown additive noise, reverbera-
tion and interfering speakers. Additive noise from in-
terfering noise sources, and convolutive noise arising
from acoustic environment and transmission channel
characteristics contribute to a degradation of perfor-
mance in speech recognition systems. This article ad-
dresses the problem of robustness of automatic speech
recognition (ASR) systems due to convolutive noise
by modeling techniques performed by cochlea in hu-
man auditory processing system.

The influence of additive background noise on the
speech signal can be expressed as

y(n) = x(n)+ n(n) (1)
wherey(n) is the degraded speech signal,x(n) rep-

resents the clean signal,n(n) is the additive noise,
which is uncorrelated with the speech signal and un-
known. Different techniques have been proposed
based on voice activity detection based noise estima-
tion, minimum statistics noise estimation, histogram
and quantile based methods, and estimation of the
posteriori and a priori signal-to-noise ratio (Woelfel
and McDonough, 2009). In Ephraim and Cohen
(Ephraim and Cohen, 2006), various approaches to
speech enhancement based on noise estimation and
spectral subtraction are discussed. Apart from the sta-
tionary background noise, another important source
of degradation is caused by reverberation produced in
acoustic environment. The speech signal acquired in
a reverberant room can be modeled as convolution of
the speech signal with the room impulse response,

y(n) = x(n)∗ h(n) (2)
wherey(n) is the degraded speech signal,x(n) repre-
sents the clean signal,h(n) is the impulse response
of the room. The impulse response depends upon
the distance between the speaker and the microphone,
and room conditions, such as movement of people
in the room, clapping, opening or closing doors, etc.
Thus extracting robust features which can handle var-
ious room impulse responses is a complex and chal-
lenging task. A variant of spectral subtraction has
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been proposed in (Habets, 2004) to enhance speech
degraded by reverberation.

In general to improve robustness of the noisy
speech, processing can be performed at signal, fea-
ture or model level. Speech enhancement techniques
aim at improving the quality of speech signal cap-
tured through single microphone or microphone ar-
ray (Omologo et al., 1998; Martin, 2001). Robust
acoustic features attempt to represent parameters less
sensitive to noise by modifying the extracted fea-
tures. Common techniques include cepstral mean nor-
malization (CMN) and cepstral mean subtraction and
variance normalization (CMSVN) and relative spec-
tral (RASTA) filtering (Droppo and Acero, 2008; Her-
mansky and Morgan, 1994). Model adaptation ap-
proach modify the acoustic model parameters to fit
better with the observed speech features (Omologo
et al., 1998; Gales and Young, 1995).

Performance of the human auditory system is
more adept at noisy speech recognition. Auditory
modeling, which simulates some properties of the
human auditory system have been applied to speech
recognition system to enhance its robustness. The in-
formation coded in auditory spike trains and the in-
formation transfer processing principles found in the
auditory pathway are used in (Holmberg et al., 2005;
Deng and Sheikhzadeh, 2006). The neural synchrony
is used for creating noise-robust representations of
speech (Deng and Sheikhzadeh, 2006). The model
parameters are fine-tuned to conform to the popula-
tion discharge patterns in the auditory nerve which
are then used to derive estimates of the spectrum on a
frame-by-frame basis. This was extremely effective in
noise and improved performance of the ASR dramat-
ically. Various auditory processing based approaches
were proposed to improve robustness (Ghitza, 1988;
Seneff, 1988; Dau et al., 1996) and in particular, the
works described in (Deng and Sheikhzadeh, 2006;
Flynn and Jones, 2006) were focused to address the
additive noise problem. Further, in (Kleinschmidt
et al., 2001) a model of auditory perception (PEMO)
developed by Dau et al. (Dau et al., 1996) is used as
a front end for ASR, which performed better than the
standard MFCC for an isolated word recognition task.
Principles and models relating to auditory processing,
which attempt to model human hearing to some extent
have been applied for speech recognition in (Herman-
sky and Morgan, 1994; Hermansky, 1997).

The important aspect in a speech recognition sys-
tem is to have abstract representation of highly redun-
dant speech signal, which is achieved by frequency
analysis. The cochlea and hair cells of the inner
ear perform spectrum analysis to extract relevant fea-
tures. The models for auditory spectrum analysis are

based on filterbank design, which are usually char-
acterized by non-uniform frequency resolution and
non-uniform bandwidth on linear scale. Examples
include popular speech analysis techniques, namely
Mel frequency cepstrum and perceptual linear pre-
diction which try to emulate human auditory percep-
tion. Other important processing is based upon Gam-
matone filter bank, which is designed to model hu-
man cochlear filtering and is shown to provide robust-
ness in adverse noise conditions for speech recogni-
tion tasks (Flynn and Jones, 2006; Schlueter et al.,
2006). In (Flynn and Jones, 2006), gammatone based
auditory front-end exhibited robust performance com-
pared to traditional front-ends based on MFCC, PLP
and standard ETSI frontend. For large vocabulary
speech recognition tasks, the performance of these
features have been competitive with standard fea-
tures like MFCC and PLP (Schlueter et al., 2006).
Another important psychoacoustic property is mod-
ulation spectrum of speech, which is important for
speech intelligibility (Dau et al., 1996; Drullman
et al., 1994). The relative prominence of slow tem-
poral modulations is different at various frequencies,
similar to perceptual ability of human auditory sys-
tem. Particularly, most of the useful linguistic in-
formation is in the modulation frequency components
from the range between 2 and 16 Hz, with dominant
component at around 4 Hz (R.Drullman et al., 1994;
Kanedera et al., 1999; Hermansky, 1997). Modula-
tion spectrum based features computed over longer
windows have been effective in measuring speech in-
telligibility in noisy environments (Houtgast et al.,
1980; Kingsbury, 1998).

In this work, an alternate approach based on psy-
choacoustic properties combining gammatone filter-
ing and modulation spectrum of speech, to preserve
both quality and intelligibility for feature extraction
is presented. Gammatone frequency resolution re-
duces the ASR system sensitivity to environmental
reverberant signal attributes and improve the speech
signal characteristics. Further, long-term modulation
preserves the linguistic information in the speech sig-
nal, improving the accuracy of the system. The fea-
tures derived from the combination are used to pro-
vide robustness, particularly in the context of mis-
match between training and testing reverberant envi-
ronments. The studied features are shown to be reli-
able and robust to the effects of the hands-free record-
ings in the reverberant meeting room. The effective-
ness of the proposed features is demonstrated with ex-
periments which use real-time reverberant speech ac-
quired through four different microphones. For com-
parison purposes the recognition results obtained us-
ing conventional features are tested, and usage of the
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proposed features proved to be efficient.
The paper is organized as follows: Section 2 gives

an overview of the auditory inspired features, in-
cluding gammatone filter bank processing and mod-
ulation spectrum processing. Section 3 describes
the methodology for feature extraction. Section 4
presents database description, experiments and re-
sults. Section 5 discusses the results. Finally, Section
6 concludes the paper.

2 FEATURE DESCRIPTION

In this section, a brief introduction and general
overview of auditory features based on gammatone
filter bank and modulation spectrum is presented.

2.1 Gammatone Filter Bank

The gammatone filter was first conceptualized by
Flanagan as a model of the basilar membrane dis-
placement in the human ear (Flanagan, 1960). Jo-
hannesma used it to approximate responses recorded
from the cochlear nucleus in the cat (Johannesma,
1972). de Boer and de Jongh used a gammatone func-
tion to model impulse responses from auditory nerve
fiber recordings, which have been estimated using a
linear reverse-correlation technique (de Boer, 1973).
Patterson et al. showed that the gammatone filter
also delineates psychoacoustically determined audi-
tory filters in humans (Patterson et al., 1987).

Gammatone filters are linear approximation of
physiologically motivated processing performed by
the cochlea(Slaney, 1993), comprise series of band-
pass filters, whose impulse response is defined by:

g(t) = atn−1cos(2π fct +φ)e−2πbt (3)

wheren is the order of the filter,b is the bandwidth
of the filter,a is the amplitude,fc is the filter center
frequency andφ is the phase.
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Figure 1: Frequency response for the 32-channel gamma-
tone filterbank.

The filter center frequencies and bandwidths
are derived from the filter’s Equivalent Rectangular
Bandwidth (ERB) as detailed in (Slaney, 1993). In
(Glasberg and Moore, 1990), Glasberg and Moore re-
late center frequency and the ERB of an auditory filter
as

ERB( fc) = 24.7(
4.37fc

1000
+1) (4)

The filter output of themth gammatone filter ,Xm
can be expressed by

Xm(n) = x(n)∗ hm(n) (5)

wherehm(n) is the impulse response of the filter.
The frequency response of the 32-channel gam-

matone filterbank is as shown in Fig. 1.

2.2 Modulation Spectrum

The temporal evolution of speech spectral parameters,
which describe slow variation in energy represent
important information associated with phonetic seg-
ments (Greenberg, 1997). The low-frequency modu-
lations encode information pertaining to syllables, by
virtue of variation in the modulation pattern across the
acoustic spectrum. Dudley showed that essential in-
formation in speech is embedded in modulation pat-
terns lower than 25 Hz distributed over a few as 10
discrete spectral channels (Dudley, 1939). Further,
studies by Drullman et al. confirmed the importance
of amplitude modulation frequencies on speech intel-
ligibility, particularly modulation frequencies below
16Hz contributing to speech intelligibility (Drullman
et al., 1994). Houtgast and Steeneeken demonstrated
that modulation frequencies between 2 and 10 Hz can
be used as an objective measure of speech intelligibil-
ity, for assessing quality of speech over wide range of
acoustic environments (Houtgast et al., 1980).

The long-term modulations examine the slow tem-
poral evolution of the speech energy with time win-
dows in the range of 160 - 800 ms, contrary to the con-
ventional short-term modulations studied with time
windows of 10 -30 ms which capture rapid changes
of the speech signals. Generally, the modulation spec-
trum is computed as following: Speech signalX(k) is
segmented into frames by a window functionw(k, t),
wheret is frame number. Short-time Fourier trans-
form of the windowed speech signalX(t, f ) is calcu-
lated as

Y (t, f ) =
∞

∑
i=−∞

X( f − i)W(i, t) (6)

The modulation spectrumYm( f ,g) is obtained by ap-
plying Fourier transform on the running spectra, ob-
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Figure 2: Processing stages of the gammatone modulation spectral feature.

tained by taking absolute values|Y (t, f )| at each fre-
quency, expressed as

Ym( f ,g) = FT [|Y (t, f )|]|t=1,...T (7)

whereT is the total number of frames andg is the
modulation frequency. The relative prominence of
slow temporal modulations is different at various fre-
quencies, similar to perceptual ability of human audi-
tory system. Most of the useful linguistic information
is in the modulation frequency components from the
range between 2 and 16 Hz, with dominant compo-
nent at around 4 Hz (Drullman et al., 1994; Kanedera
et al., 1999). In (Kanedera et al., 1999), it has been
shown that for noisy environments, the components
of the modulation spectrum below 2 Hz and above 10
Hz are less important for speech intelligibility, par-
ticularly the band below 1 Hz contains mostly infor-
mation about the environment. Therefore the recog-
nition performance can be improved by suppressing
this band in the feature extraction.

The comparative waveforms, spectrograms, gam-
matonegrams and modulation spectrum density plots
of the clean and noisy versions corrupted with con-
volutive and additive noises of the same speech utter-
ance are as shown in Fig. 3. From modulation spec-
trum density plots, some of the important characteris-
tics of the modulation spectrum can be observed. The
important information of speech is concentrated in the
area from 2 Hz and 16 Hz, particularly 2 Hz and 4 Hz
contain crucial information related to the variation of
phonemes.

3 METHODOLOGY

The block schematic for the gammatone modulation
spectrum based feature extraction technique is shown
in Fig. 2. The speech signal first undergoes pre-
emphasis, which flatten the frequency characteristics
of the speech signal. The signal is then processed by a
gammatone filterbank which uses 32 frequency chan-
nels equally spaced on the equivalent ERB scale as
shown in Fig. 1. The impulse responses of the gam-
matone filterbank are similar to the impulse responses
of the auditory system found in physiological mea-
surements (de Boer, 1973). The filterbank is linear
and does not consider nonlinear effects such as level-
dependent upward spread of masking and combina-
tion tones. The computationally effective gamma-
tone filter bank implementation as described in (Ellis,
2010) is used. The gammatone filter bank transform
is computed overL ms and the segment is shifted byn
ms. The log magnitude resulting coefficients are then
decorrelated by applying a discrete cosine transform
(DCT). The computations are made over all the in-
coming signal, resulting in a sequence of energy mag-
nitudes for each band sampled at 1/n Hz. Then, frame
by frame analysis is performed and aN-dimensional
parameter is obtained for each frame. The modulation
spectrum of each coefficient which is defined as the
Fourier transform of its temporal evolution is com-
puted. In each band, the modulations of the signal
are analyzed by computing FFT over theP ms Ham-
ming window and the segment is shifted byp ms.
The energies for the frequencies between the 2 - 16
Hz, which represent the important components for the
speech signal are computed.

For example, if the given signalx(t) is sampled at
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Figure 3: Waveform, spectrogram, gammatonegram, and modulation spectrum density plots for the (a)clean, (b)reverberant
and (c)additive noise corrupted speech.

8 kHz, a first-order high pass pre-emphasis filter is
applied and short segments of speech are extracted
with a 25 ms rectangular window. The window is
shifted by 10 ms which corresponds to a frame rate
of 100 Hz. Each speech frame is then processed by
a 32-channel gammatone filterbank. The 32 logarith-
mic gammatone spectral values are transformed to the
cepstral domain by means of a DCT. Thirteen cep-
stral coefficientsC0 to C12 are calculated.C0 is re-
placed by logarithm of the energy computed from the

speech samples. The modulation spectrum of each
coefficient, (sampled at 100Hz) is calculated with a
160 ms window, shifted by 10 ms. Thirteen coeffi-
cientsC13 toC26 which are first-order derivatives are
further extracted. The features are named gammatone
filterbank modulation cepstral (GFMC) features.

The same processing is also performed by replac-
ing gammatone filterbank with Mel filterbank in the
Figure 2 resulting in Mel-frequency modulation cep-
stral (MFMC) features. The performance of these fea-
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tures in comparison to GFMC features are discussed
in Section 4.

4 EXPERIMENTS AND RESULTS

To evaluate the performance, a full HTK based recog-
nition system is used. The HMM-based recognizer ar-
chitecture specified for use with the Aurora 5 database
is used (Hirsch, 2007). The training data is down-
sampled version of clean TIDigits at a sampling fre-
quency of 8 kHz, with 8623 utterances. There are
eleven whole word HMMs each with 16 states and
with each state having four Gaussian mixtures. The
sil model has three states and each state has four mix-
tures.

4.1 Convolutive Noise

The experiments are conducted on a subset of the
Aurora-5 corpus - meeting recorder digits. The data
comprise real recordings in a meeting room, recorded
in a hands-free mode at the International Computer
Science Institute in Berkeley. The dataset consists of
2400 utterances from 24 speakers, with 7800 digits
in total. The speech was captured with four differ-
ent microphones, placed at the middle of the table
in the meeting room. The recordings contain only a
small amount of additive noise, but have the effects of
hands-free recording in the reverberant room. There
are four different versions of all utterances recorded
with four different microphones, with recording lev-
els kept low.

Table 1 shows the results in % word accuracies for
meeting recording digits recorded with four different
microphones, labeled as 6, 7, E and F. The average
performance of four microphones for different fea-
tures is shown at the last column of the table. ETSI-2
correspond to the standard advanced front-end as de-
scribed in (Hirsch, 2007). PLP and MFCC are the
standard 39-dimensional Perceptual linear prediction
and Mel frequency features along with their delta and
acceleration derivatives. MFMC indicate Mel Fre-
quency Modulation Spectral based Cepstral (MFMC)
features where the first thirteen features are extracted
in a traditional way, and the rest are the modulation
features (13) and their derivatives (13) derived as dis-
cussed in Section 3, except for Gammatone filterbank
being replaced with Mel filterbank. The GFCC fea-
tures are extracted in a similar way as reported in Sec-
tion 3 with C0 to C12 being the corresponding cep-
stral coefficients. GFMC indicate Gammatone Fre-
quency Modulation Spectral based Cepstral (GFMC)
features derived in a same way as GFCC but appended

with modulation spectral features corresponding to
C13 toC26 and their corresponding derivatives as dis-
cussed in Section 3.

Table 1: Word recognition accuracies (%) for different
feature extraction techniques on four different microphones.

Channel 6 7 E F Average

ETSI-2 64.3 47.6 58.1 62.7 58.1
PLP 73.8 63.8 68.1 71.4 69.2

MFCC 75.8 64.7 67.3 75.9 70.9
MFMC 75.6 61.0 70.8 77.9 71.3
GFCC 86.0 79.0 78.3 84.2 81.9
GFMC 87.8 82.7 82.2 86.9 84.9

From Table 1, it is evident that the advanced ETSI
front-end has highest error rates compared to the
MFCC and PLP. This demonstrates that for reverber-
ant environments the advanced ETSI front-end is not
effective as compared to its performance in the pres-
ence of additive background noise. It can be inferred
that the techniques applicable for additive background
noise removal are not suitable to handle reverberant
conditions. The MFMC features have better perfor-
mance than MFCC, which in turn had better perfor-
mance than PLP. It can also be seen that the GFCC
features were effective, performing better than any of
the baseline systems (ETSI-2, PLP, MFCC). This is
consistent with the earlier studies which have shown
that gammatone based features exhibit robust perfor-
mance compared to MFCC, PLP features and ETSI
frontend (Flynn and Jones, 2006; Schlueter et al.,
2006).

It can also be observed that the performance of
GFMC is the best among all the baselines and fea-
tures compared, and consistent across all the chan-
nels. However, the combination of Mel filtering and
modulation spectral features is not as beneficial as
gammatone filtering with modulation spectral fea-
tures. This clearly demonstrates the efficiency of this
combination of these features in reverberation condi-
tions.

4.2 Additive Noise

Further, to test the efficiency for practical conditions
which contain additive noises, preliminary experi-
ments were conducted on close-talk, hands free of-
fice and hands free livingroom with clean and 15
dB SNR additive noise corrupted signals. The data
is from Aurora-5 database, where condition is simu-
lated as combination of additive noise and reverber-
ation(Hirsch, 2007). Aurora-5 covers all effects of
noises as they occur in realistic application scenarios.
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In this experiments, hands free speech input in a office
and in a living room is considered. In Table 2, Ctalk,
HFOffice, HFLroom, -, A represents close-talk, hands
free office, hands free living room, no additive noise
and with additive noise of 15 dB SNR respectively.

Table 2: Word recognition accuracies (%) for clean, hands
free office and hands free living room conditions.

Feature Ctalk HFOffice HFLroom
- A - A - A

MFCC 99.4 94.3 90.1 61.6 75.8 40.2
PLP 99.3 85.2 88.6 65.1 74.3 46.9
GFCC 99.5 88.1 89.1 65.6 73.8 48.9
GFMC 99.5 92.8 92.2 73.3 78.6 57.4

From Table 2, it can be observed that for all the
features the performance degrades significantly in ad-
ditive noise compared to no additive noise case. Also,
it can be seen that GFCC has better performance than
MFCC and PLP in case of hands free office and hands
free living room. It can be observed that for almost
all cases GFMC has better performance than GFCC,
MFCC and PLP indicating efficiency of this features
in additive noise conditions.

5 DISCUSSION

The results from both Table 1 and Table 2 indicate that
the gammatone frequency resolution was effective in
reducing system sensitivity to reverberation and ad-
ditive noise, and improved the speech signal charac-
teristics. It can also be observed from Table 1, that
the combination of gammatone filtering with modu-
lation spectral features is beneficial than the combi-
nation of Mel filtering and modulation spectral fea-
tures. The emphasis on slow temporal changes in the
spectral structure of long-term modulations preserved
the required speech intelligibility information in the
signal which further improved the accuracy of the
system. Thus, by extracting features that model hu-
man hearing to some extent mimicking the processing
performed by cochlea, particularly emulating cochlea
frequency resolution was beneficial for speech feature
enhancement.

6 CONCLUSIONS

The paper has presented auditory inspired modulation
spectral features for improving ASR performance in
presence of room reverberation. The proposed fea-
tures were derived from features based on emulat-

ing the processing performed by cochlea to improve
the robustness, specifically gammatone frequency fil-
tering and long-term modulations of the speech sig-
nal. The features were evaluated on Aurora-5 meeting
recorder digit task recorded with four different micro-
phones in hands-free mode at a real meeting room.
Results were compared with standard ETSI advanced
front-end and conventional features. The results show
that the proposed features perform consistently bet-
ter both in terms of robustness and reliability. The
work also presented some preliminary results in addi-
tive noise scenario where the speech signal was cor-
rupted with 15 dB SNR noise, simulated with hands-
free office and hands-free living room conditions. The
results are promising, performing better than the con-
ventional features, indicating the efficiency of this
features in additive noise scenario.

Our study raised number of issues, including
study of auditory inspired techniques for improve-
ment of standard additive noise removal techniques
to deal with reverberation condition. The gammatone
filter implemented in this work is linear which does
not consider nonlinear effects such as level-dependent
upward spread of masking and combination tones.
For the future, we like to investigate these issues to ef-
ficiently deal with real world noisy speech, and eval-
uate these features on large vocabulary tasks.
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