
EPISTEMIC REASONING FOR AMBIENT INTELLIGENCE

Theodore Patkos and Dimitris Plexousakis
Institute of Computer Science, FO.R.T.H., Heraklion Crete, Greece

Keywords: Ambient intelligence, Epistemic reasoning, Reasoning about action and change.

Abstract: Ambient Intelligence is an emerging discipline that requires the integration of expertise from a multitude of
scientific fields. The role of Artificial Intelligence is crucial not only for bringing intelligence to everyday
environments, but also for providing the means for the different disciplines to collaborate. In this paper we
highlight the importance of reasoning under partial observability in such dynamic and context-rich domains
and illustrate the integration of an epistemic theory to an operational Ambient Intelligence infrastructure.

1 INTRODUCTION

Ambient Intelligence (AmI) is an emerging discipline
that introduces novel and highly demanding chal-
lenges. Within AmI environments a multitude of
smart entities operate autonomously and perform ac-
tions, motivated by their own view of the user’s cur-
rent needs or intentions. Intelligent software agents
operating on smart devices or rational robots that are
assigned specific tasks are expected to perform long
sequences of context dependent actions; still, con-
text knowledge is not always available or accessible
in AmI spaces:

• AmI domains are highly dynamic and adaptive to
changes. Contextual information changes rapidly
and in a fashion that is not easily prefigured,

• contextual knowledge may not be readily avail-
able. Continuously sensing all desirable informa-
tion is impractical when executing long action se-
quences with resource constraint devices,

• context data often needs to be filtered and aggre-
gated (fused). As this task is typically assigned to
specialized components, mobile devices can uti-
lize context under certain accessibility, connectiv-
ity or even privacy restrictions,

• many context parameters that may act as precon-
ditions for actions, especially for composite ones,
are not directly acquired through sensing, rather
are fragments of high-level knowledge that re-
quires some form of reasoning to be performed.

As a result, agents inhabiting real-world AmI sys-
tems need to incorporate both epistemic and tempo-

ral reasoning skills; whenever sensing is not avail-
able or profitable, context knowledge needs to be de-
rived through commonsense inference, considering
the most recent information about the world and the
effects of observed actions. A formal model is imper-
ative to ensure that the behavior of all entities is prop-
erly regulated. In this paper we demonstrate how a re-
cently proposed epistemic action theory from the field
of cognitive robotics can contribute in facilitating dif-
ferent aspects of AmI. We report on our experiences
in participating in an ongoing AmI-related project at
the FORTH institute (Grammenos et al., 2009), hav-
ing encountered restrictions by other commonly used
approaches, such as rule-based reasoning, to handle
certain complex tasks. Our objective is to signify the
importance of epistemic reasoning for AmI and to ex-
hibit the ways that it contributes to our infrastructure.

The basic properties of the epistemic action theory
are discussed in Section 2. Sections 3 and 4 demon-
strate different aspects where epistemic reasoning can
be applied in an AmI domain, from the standpoint of a
centralized infrastructure and that of mobile devices,
respectively. Section 5 describes implementation is-
sues and the paper concludes in Section 6.

2 EPISTEMIC THEORY

The Discrete Event Calculus Knowledge Theory
(DECKT), thoroughly described in (Patkos and Plex-
ousakis, 2009), is a formal theory for reasoning about
knowledge, actions and causality. It builds on the
Event Calculus (Kowalski and Sergot, 1986) and ex-

242 Patkos T. and Plexousakis D..
EPISTEMIC REASONING FOR AMBIENT INTELLIGENCE.
DOI: 10.5220/0003149902420248
In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence (ICAART-2011), pages 242-248
ISBN: 978-989-8425-40-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

tends it with epistemic capabilities enabling reason-
ing about a wide range of commonsense phenom-
ena, such as temporal and delayed knowledge ef-
fects, knowledge ramifications, concurrency, non-
determinism and others. It is a many-sorted first-order
language, whereeventsindicate changes in the envi-
ronment,fluentsdenote time-varying properties and
a timepointsort implements a linear time structure.
The Event Calculus defines predicates for expressing,
among others, which fluents hold when (HoldsAt),
what events happen (Happens) and which their ef-
fects are (Initiates, Terminates).

The theory employs the discrete time Event Calcu-
lus axiomatization described in (Mueller, 2006). It as-
sumes agents acting in dynamic environments, having
accurate but potentially incomplete knowledge and
able to perform knowledge-producing actions and ac-
tions with context-dependent effects. Knowledge is
treated as a fluent, namely theKnowsfluent, which
expresses knowledge about fluents and fluent formu-
lae, obtained either from direct effects of actions or
indirectly through ramifications modeled as state con-
straints. For technical reasons, for direct effects the
auxiliaryKP fluent (for ”knows persistently”) is used
that is related with theKnowsfluent by the axiom1:

(KT2) HoldsAt(KP(f), t)⇒ HoldsAt(Knows(f), t)

DECKT augments a domain axiomatization with a set
of meta-axioms describing epistemic derivations. For
instance, for positive effect axioms that specify un-
der what conditions actione initiates fluent f , i.e.,∧i HoldsAt(fi , t) ⇒ Initiates(e, f , t), DECKT intro-
duces the (KT3) set of axioms expressing that if the
conjunction of preconditionsC = {~fi} is known then
aftere the effect will be known to be true, such as:

(KT3.1)
∧ fi∈C HoldsAt(Knows(fi), t)∧
Happens(e, t)⇒ Initiates(e,KP(f), t)

In a similar fashion, the (KT5) axiom set cap-
tures the fact that if some precondition is un-
known while none is known to be false, then af-
ter e knowledge about the effect is lost. The ap-
proach proceeds analogously for negative effect ax-
ioms

∧i HoldsAt(fi , t) ⇒ Terminates(e, f , t) and re-
lease axioms

∧i HoldsAt(fi , t) ⇒ Releases(e, f , t).
The latter model non-deterministic effects, therefore
they result in loss of knowledge about the effect.

Knowledge-producing (sense) actions provide in-
formation about the truth value of fluents and, by def-
inition, cause no effect to the environment, instead
only affect the mental state of the agent:

(KT4) Initiates(sense(f),KPw(f), t)

1Free variables are implicitly universally quantified.

Kw is an abbreviation for whether a fluent is
known (similarly for KPw): HoldsAt(Kw(f), t) ≡
HoldsAt(Knows(f), t) ∨ HoldsAt(Knows(¬ f), t)
Furthermore, the theory also axiomatizes so called
hidden causal dependencies(HCDs). HCDs are
created when executing actions with unknown
preconditions and capture the fact that in certain
cases, although knowledge about the effect is lost, it
becomes contingent on the preconditions; obtaining
knowledge about the latter through sensing can
provide information about whether the effect has
actually occurred. Consider the positive effect axiom
HoldsAt(f ′, t) ⇒ Initiates(e, f , t), where fluent f ′

is unknown to the agent andf known to be false
at T (f may denote that a door is open,f ′ that a
robot stands in front of that door ande the action
of pushing forward gently). Ife happens atT, f
becomes unknown atT + 1, as dictated by (KT5),
still a dependency betweenf ′ and f must be created
to declare that if we later sense any of them we can
infer information about the other, as long as no event
alters them in the meantime (either the robot was
standing in front of the door and opened it or the door
remained closed).

DECKT introduces the (KT6) set of axioms
that specify when HCDs are created or destroyed
and what knowledge is preserved when an HCD is
destroyed. For instance, for positive effect axioms
(KT6.1.1) below creates an appropriate implication
relation:

(KT6.1.1)¬HoldsAt(Knows(f), t)∧
¬HoldsAt(Knows(

∨ fi∈C¬ fi), t)∧∨ fi∈C[¬HoldsAt(Kw(fi), t)]⇒

Initiates(e,KP(f ∨
∨ f j∈C(t)− ¬ f j), t)

whereC(t)− denotes those precondition fluents that
are unknown to the agent at timepointt. In a nut-
shell, DECKT augments the mental state of an agent
with a disjunctive knowledge formula, equivalent to
HoldsAt(Knows(

∧ f j∈C(t)− f j ⇒ f), t + 1), that en-
codes a notion of epistemic causality in the sense that
if future knowledge brings about (

∧ f j∈C(t)− f j) it also
brings aboutf .

DECKT adopts an alternative representation for
knowledge that does not employ the possible worlds
semantics, which are computationally intensive and
not appropriate for practical implementations. In-
stead, its efficiency stems from the fact that HCDs,
which are based on a provably sound and complete
translation of possible worlds into implication rules,
are treated as ordinary fluents.

EPISTEMIC REASONING FOR AMBIENT INTELLIGENCE

243

3 AMI FRAMEWORK

In the next sections we demonstrate the benefits
of epistemic reasoning for AmI, by describing how
DECKT is employed within a large-scale AmI-related
project that is being conducted in our institute over the
last 2 years. The project integrates expertise from dif-
ferent laboratories that contribute a multitude of hard-
ware and software technologies; our work package
is assigned the task of designing and implementing
a reasoning framework for the AmI infrastructure.

3.1 Reasoning Framework Architecture

Figure 1: Event management framework architecture.

The design goals of our reasoning framework have
been the efficient representation, monitoring and dis-
semination of any low- or high-level contextual in-
formation in the AmI infrastructure, as well as the
support for a number of general-purpose and domain-
specific inference tasks. The need for hybrid ap-
proaches for such systems has already been recog-
nized (Bettini et al., 2009), still is mostly restricted
on specific aspects, such as for context inference (Bul-
foni et al., 2008). In our system we couple method-
ologies from the Semantic Web and the action theo-
ries domains and deploy the hybrid event-based rea-
soning architecture shown in Fig. 1, that comprises
three main components: theEvent Managerthat re-
ceives and processes incoming events from the am-
bient infrastructure, theReasonerthat can perform
both rule-based and causality-based inferencing, and
the Knowledge Basethat stores semantic informa-
tion represented using ontology-based languages. A
middleware layer undertakes the role of connecting
applications and services developed by different re-
search parties and with diverse technologies.Ser-
vicesdenote standalone entities that implement spe-
cific functionalities, such as voice recognition, local-
ization, light management etc., whereasapplications
group together service instances to provide an AmI
experience in smart spaces.

A number of ontologies capture the meaning
and relations of concepts regarding low-level con-
text acquired from sensors, high-level context inferred
through rule-based reasoning, user and devices pro-
files and spatial features. High-level context, in par-
ticular, may concern a user’s emotional state, iden-
tity, intentions, location and others. Within our sys-
tem rule-based reasoning contributes to the design of
enhanced applications and also provides feedback to
services for sensor fusion purposes, in order to resolve
conflicts of ambiguous or imprecise context. On the
other hand, rule-based languages offer only limited
expressiveness to describe certain complex features,
such as compound actions. We utilize the Event Cal-
culus to formalize event operators for the construction
of composite events, characterized by their initiation
and termination occurrence times, as well as to de-
clare their effects and potential preconditions.

3.2 Partial Knowledge

During our involvement in the first phases of the
project, we recognized how crucial it is for the man-
agement of an AmI system to distinguish between
the rules that govern its behavior from the domain-
specific functionalities and restrictions, in order to en-
able efficient and dynamic adaptation to changes dur-
ing development. This need was primarily driven by
the fact that multiple research groups participate and
collaborate in parallel tasks, having different degrees
of contribution and therefore comprehension of the
general objectives and the system restrictions intro-
duced from other groups.

Towards that end, we implement a modular ap-
proach that distinguishes the rules that expresssys-
tem policies and restrictionsthat guarantee a con-
sistent and error-free overall execution at all times,
from service specificationsthat change in frequent
time periods by developers, as well as fromapplica-
tion specificationsthat are usually under the responsi-
bility of non-experts who only possess partial knowl-
edge about the system restrictions. The specifications
of services, for instance, retrieved from the KB, are
axioms that describe the domain, such as:

Terminates(TurnO f f Light(l),LightOn(l), t)

Application descriptions express the intended be-
havior of an application as a narrative of context-
dependent action occurrences:

Happens(SitOn(chair), t)∧
HoldsAt(LightOn(l), t)⇒
Happens(TurnO f f Light(l), t)∧
Happens(StartSlideshow(< f ile >,TV01), t)

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

244

Finally, system restrictions (or safety properties) cap-
ture assertions about attributes of system states that
must hold for every possible system execution. For
instance, the Localizer’s specifications require that no
change in lighting conditions should occur when in
Runningmode, otherwise the camera-based localiza-
tion process may be destabilized:

HoldsAt(LocalizaterRunning(ROOM23), t)∧
HoldsAt(LocatedIn(light,ROOM23), t)⇒
HoldsAt(LightOn(light), t)

A core task of our framework is to verify that the spec-
ifications of AmI applications are in compliance with
the overall system restrictions and detect errors early
at the development phase. This analysis is performed
at design-time and can formally be defined as an ab-
ductive reasoning process to find a setP of permis-
sible actions that lead a consistent system to a state
where some of its constraints are violated, given a do-
main descriptionD, an application descriptionAPi for
applicationi and a set of system constraintsC:

D∧APi∧P |= ∃t¬C(t) whereD∧APi∧P is consistent

Russo et al. (2002) provided a fully decidable re-
duction of this abductive task. The absence of avail-
able knowledge about certain context parameters was
found to be a less likely contingency to consider by
developers and usually arises late at the evaluation
phase or even after deployment.

Example 1. Imagine that a developer uploads an ap-
plication description file to the system containing ax-
ioms such as the one mentioned above. After exe-
cuting theApplicationCheckfunctionality of the Val-
idator to check for consistency with respect to sys-
tem restrictions already stored by service engineers,
potential violations are raised: whenever a user sits
on the chair theTurnO f f Light action is triggered
conflicting with the Localization service being at a
Runningstate. Moreover, the developer does not
consider the situation where the state of lights are
unknown due to some other application’s interven-
tion, i.e., when neitherHoldsAt(LightOn(l), t) nor
¬HoldsAt(LightOn(l), t) are true. For the latter case
in particular, the appropriate epistemic counterpart
should be used, i.e.,HoldsAt(Knows(LightOn(l), t))
and also a new axiom should be introduced to account
for lack of knowledge. DECKT enables the formal-
ization of such processes for deriving epistemic con-
clusions regarding the effects of actions. �

Application verification is only one dimension of
the system management process and can be executed
at design-time and in isolation. Still, run-time action
validation is equally important and must be performed
considering the current state of the system, as well as

potential conflicts with other applications that might
request access to the same resources (e.g., speakers).
Causality-based reasoning is applied for high-level re-
source management, as well as for uncertainty han-
dling due to ambiguous context or for determining
harmful ramifications of actions, which may cause
side-effects to the execution of other applications.

4 EPISTEMIC REASONING
FOR MOBILE DEVICES

Building on the centralized infrastructure already
available, our current efforts concentrate on transfer-
ring reasoning capabilities to mobile and resource-
constraint devices that operate in a smart space. Such
autonomous devices, capable of executing common-
sense tasks, constitute the core of the AmI vision, as
they take leading role in domains, such as ambient as-
sisted living for supporting individuals with cognitive
or physical impairments. For such devices reasoning
under partial knowledge is a critical factor, as they
experience substantial restrictions not only in storing
relevant contextual information, but even in accessing
it. We provide different aspects where DECKT can
contribute, adopting the personal assistant paradigm.

4.1 The Personal Assistant Paradigm

In a smart space every user is assumed to be equipped
with a virtual personal assistant, an intelligent agent
that can live in stationary or mobile devices that the
user interacts with, such as her PDA, cellphone etc,
and utilize relevant information in order to assist the
user. This assistant can be assigned different tasks:
it can be instructed to proactively or reactively devise
ways to accomplish user objectives that comply with
her needs, given the specifications of the smart space
(planning); it may assist the user while performing
certain tasks and explain the behavior of the system in
response to her actions (postdiction and model find-
ing); it can foresee the result of actions by predict-
ing the user’s intentions and provide relevant assis-
tance, e.g., suggestions or warnings (projection). The
agent can take advantage of the facilities of the smart
space based on certain privacy policies, such as sen-
sors, services and devices, still we should expect that
its knowledge about the environment is neither com-
plete nor constantly updated, for reasons that may be
related to limited resources, network reliability etc.

Uncertainty Handling. Apart from actions with
unknown preconditions that lead to lack of knowl-
edge about the effect, uncertainty is evident in differ-

EPISTEMIC REASONING FOR AMBIENT INTELLIGENCE

245

ent forms within an AmI environment. For instance,
given noisy conditions, it is common practice to ax-
iomatize the action of speaking voice commands into
a microphone as having non-deterministic effects

HoldsAt(Rec(mic), t)∧HoldsAt(Admin(u), t)∧
HoldsAt(InFrontO f(u,door), t)⇒
Releases(Speak(u,mic, ”Open”),Open(door), t)

Even if the preconditions are known when the
command is given, axioms (KT5) will result in
¬HoldsAt(Kw(Open(door)), t+1).

Temporal Knowledge. The consideration of the
temporal aspect of knowledge, such as knowing facts
for specified time intervals only, is a crucial aspect
in systems where temporal constraints are ubiquitous.
The very nature of most AmI environments involves
dynamically changing context, information becoming
outdated as time passes and events occurring at spec-
ified instants, more often than not concurrently with
other events. Such issues, also discussed in (Scherl,
2003), are efficiently handled with the Event Calcu-
lus and DECKT, where the dimension of time is in-
herently modeled within the basic ontology, e.g.,:

Happens(PlaceRFCard(id), t)⇒
Happens(StartRec(Mic), t)∧
Happens(StopRec(Mic), t+5)

Ramifications. Considering the dynamics of a do-
main, an agent can not only derive knowledge from
direct effects of actions, but also indirectly through
appropriate ramifications. In the simplest case, these
can be represented as state constraints of a domain ax-
iomatization and are accommodated by DECKT with
axioms, such as the following:

HoldsAt(Knows(Holding(user,ob ject)), t)∧
HoldsAt(Knows(InRoom(user, room)), t)⇒
HoldsAt(Knows(InRoom(ob ject, room)), t)

Reasoning about only Knowing. Deliberating
about what an agent does not know, in the style of
(Lakemeyer and Levesque, 1998), is an important as-
pect when modeling partially known environments.
It enables the representation of subtle differences in
the meaning of propositions, distinguishing, for in-
stance, between the knowledge that some microphone
is currently recording, i.e.,HoldsAt(Knows(∃mic
Rec(mic)), t), without explicitly knowing which, i.e.,
¬∃mic HoldsAt(Knows(Rec(mic)), t).

4.2 Hidden Causal Dependencies

In addition to being able to cope with a multitude
of diverse commonsense phenomena, an epistemic
theory implementing an agent’s cognitive skills in
AmI needs to support long lived autonomous oper-
ation; agents may need to execute long action se-
quences under partial information about the envi-
ronment, whereas access to required world aspects
through sensing may be limited or not available when
needed. DECKT enables an agent to generate and
maintain long chains of dependencies among un-
known fluents by managing HCDs. These dependen-
cies, handled as ordinary fluents, minimize computa-
tional complexity and at the same time facilitate valu-
able ramifications when seeking for knowledge about
unobservable fluents.

Example 2. Among the personal assistant’s tasks is
to monitor the user’s everyday activities and provide
instructions or activate alerts when exceptional situ-
ations are detected with an as less intrusive manner
as possible. Let fluentf1 denote the situation when
the user is cooking, which is derived by fusing rel-
evant contextual information and user activity in the
kitchen. The end of this task can be detected from
a number of activities that follow a pattern, such as
turning off the hot plate, placing dishes in the sink and
opening the tap water. If the user leaves the kitchen
(evente1) while cooking, the assistant agent should
identify a potential exceptional behavior (fluentf2),
but not disturb the user just yet. Only if the user picks
up the phone (evente2) an alert (fluentf3) should be
activated, initiating appropriate actions to notify the
user about unfinished kitchen activity. The previous
behavior can be plainly axiomatized as follows:

HoldsAt(f1, t)⇒ Initiates(e1, f2, t)
HoldsAt(f2, t)⇒ Initiates(e2, f3, t)

Assume now that at timepointT the contextual infor-
mation coming from the kitchen is ambiguous, i.e.,
¬HoldsAt(Kw(f1),T) and then the user leaves the
kitchen and starts making a phone call. Based on
DECKT, the following HCDs are created forT ′ > T:

|= HoldsAt(Knows(f1 ⇔ f2),T ′)∧
HoldsAt(Knows(f2 ⇔ f3),T ′)

Specifically, the agent does not know if an alert should
be triggered and, before disturbing the user, this con-
tingency needs to be verified. Although there is no
direct means of sensingf3, by evaluatingf1 the agent
can also derivef3 based on the interrelation of HCDs.
In conjecturing that there is work in progress in the
kitchen with potential hazard (e.g., a turned on appa-
ratus), the act of sensingf1 is implemented as a check

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

246

procedure of sensitive aspects. �

Notice how HCDs are different from domain state
constraints. Rather than being necessarily true at all
times, the dependencies they represent are temporary,
created or destroyed based only on the agent’s current
KB. Possible worlds-based epistemic theories, which
maintain all alternative worlds rather than HCDs, are
less suitable in practice, as they require consider-
able storage and computational resources (Petrick and
Levesque, 2002). Alternative approaches that do not
deal explicitly with the notions of causality, such as
rule-based approaches, apart from being restricted to
less expressive commonsense phenomena, require for
the designer to model beforehand all possible condi-
tions that call for some action to be performed.

5 IMPLEMENTATION

The AmI infrastructure that is being implemented
at FORTH institute expands in a three-room set up,
where a multitude of hardware and software services
have been developed, such as 3D person localization,
speech recognition etc. The middleware responsible
for creating, connecting and consuming the services is
CORBA-based. The rule-based component of the rea-
soner module uses Jess2 as its reasoning engine that
deploys the efficient Rete algorithm for rule match-
ing, while the Validator component uses both Jess
and DEC Reasoner3, a SAT-based Event Calculus rea-
soner. All available knowledge is encoded in OWL
using the Prot ´egé platform for editing and querying
the corresponding models.

As far as the DECKT epistemic axiomatization
is concerned, we are currently constructing an Event
Calculus reasoner on top of Jess, that can support,
among others, two important features: (a) it enables
reasoning to progress incrementally to allow for run-
time execution of knowledge-based programs (online
reasoning) and (b) it permits nested reification of epis-
temic fluents in predicates, to allow epistemic propo-
sitions, such asKnows(Open(S1)), to be treated as
terms of a first-order logic rather than atoms.

Predicates are asserted as facts in the reasoner’s
agenda, specified by the template definition:

(deftemplate EC (slot predicate)
(slot event (default nil))
(slot epistemic (default no))
(multislot posLtrs)
(multislot negLtrs)
(slot time (default 0)))

2Jess, http://www.jessrules.com/
3DECReasoner, http://decreasoner.sourceforge.net/

Multislots represent lists denoting disjunction of
fluents (conjunctions are decomposable into their
components according to the definition for knowl-
edge), so that for instance knowledge about formula
(f1∨ f2∨¬ f3) at time 1 to be captured by the fact:

(EC (predicate HoldsAt)
(epistemic Knows)
(posLtrs f_1 f_2)
(negLtrs f_3)
(time 1))

Treating positive and negative literals of formulae
with lists enables us to represent and dynamically ma-
nipulate HCDs according to DECKT axioms4.

6 CONCLUSIONS

In this paper we described different aspects of re-
search in AmI to which reasoning under partial
knowledge can contribute, providing also examples
from an implemented system that couples rule- and
causality-based techniques. The presented applica-
tion of an epistemic action theory is an enabling di-
rection for the realization of the AmI vision. Our cur-
rent emphasis is on evaluating the solution on differ-
ent scenarios, as well as on investigating even more
challenging aspects, such as distributed knowledge.

ACKNOWLEDGEMENTS

This work has been supported by the FORTH-ICS
internal RTD Programme ”Ambient Intelligence and
Smart Environments”.

REFERENCES

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,
Nicklas, D., Ranganathan, A., and Riboni, D. (2009).
A Survey of Context Modelling and Reasoning Tech-
niques.Pervasive and Mobile Computing.

Bulfoni, A., Coppola, P., Della Mea, V., Di Gaspero, L.,
Mischis, D., Mizzaro, S., Scagnetto, I., and Vassena,
L. (2008). AI on the Move: Exploiting AI Techniques
for Context Inference on Mobile Devices. In18th Eu-
ropean Conference on AI, pages 668–672.

Grammenos, D., Zabulis, X., Argyros, A., and Stephani-
dis, C. (2009). FORTH-ICS Internal RTD Programme
Ambient Intelligence and Smart Environments. In
AMI’09: Proceedings of the 3rd European Conference
on Ambient Intelligence.

4The Jess-based Event Calculus reasoner and examples
are available athttp://www.csd.uoc.gr/˜patkos/deckt.htm.

EPISTEMIC REASONING FOR AMBIENT INTELLIGENCE

247

Kowalski, R. and Sergot, M. (1986). A Logic-based Calcu-
lus of Events.New Generation Computing, 4(1):67–
95.

Lakemeyer, G. and Levesque, H. J. (1998). AOL: A Logic
of Acting, Sensing, Knowing, and Only Knowing. In
Principles of Knowledge Representation and Reason-
ing, pages 316–329.

Mueller, E. (2006). Commonsense Reasoning. Morgan
Kaufmann, 1st edition.

Patkos, T. and Plexousakis, D. (2009). Reasoning with
Knowledge, Action and Time in Dynamic and Uncer-
tain Domains. InIJCAI’09, pages 885–890.

Petrick, R. P. A. and Levesque, H. J. (2002). Knowledge
Equivalence in Combined Action Theories. InKR’02:
International Conference on Principles of Knowledge
Representation and Reasoning, pages 303–314.

Scherl, R. (2003). Reasoning about the Interaction of
Knowledge, Time and Concurrent Actions in the Sit-
uation Calculus. InIJCAI’03, pages 1091–1098.

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

248

