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Abstract: Several applications demanding the development of small networks of on-body sensors, such as motion 
sensors, are currently investigated. Accelerometers are a popular choice as motion sensors: the reason is 
partly in their capability of extracting information that can be used to automatically infer the physical 
activity the human subject is involved, beside their role in feeding estimators of biomechanical parameters. 
Automatic classification of human physical activities is highly attractive for pervasive computing systems, 
whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas 
wearable sensor systems are proposed for long-term monitoring of physiological and biomechanical 
parameters. This paper is concerned with the machine learning algorithms needed to perform the 
classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian 
Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement 
dynamics into the classification process, without discarding the time history of previous outcomes, as 
GMMs do. In this work, rather than considering them as models for single motor activities, we apply 
HMMs as models suitable for sequences of chained activities. An example of the benefits of the statistical 
leverage by HMMs is illustrated and discussed by analyzing a dataset of accelerometer time series. 

1 INTRODUCTION 

Many technical applications could greatly benefit 
from the availability of systems that are capable of 
automatically classifying specific physical activities 
of human beings. In this paper, either static posture, 
e.g., standing, or dynamic motion, e.g., walking is 
included in the term physical activity. The sort of 
contextual awareness coming from this knowledge 
(Brézillon, 1999) may help improving the 
performance of healthcare monitoring devices or 
promoting the development of advanced human-
machine interfaces. In fact, the precise activity 
performed by the subject helps defining the context 
in which further estimation can be conducted. 
Consider, for instance, the problem of estimating the 
metabolic energy expenditure of a human subject by 
indirect methods (Meijer et al., 1991): these methods 
are reported to incur severe estimation errors in the 
absence of any information about the particular 
functional task the subject is actually involved 

(Meijer et al., 1991 and Bouten et al., 1997). In 
robotics, several applications which demand some 
capability by the robot controller of recognizing the 
user’s intent are, for instance, in the field of 
rehabilitation engineering, where smart walking 
support systems are developed to assist motor-
impaired persons and elderly in their efforts to stand 
and to walk (Yu et al., 2003 and Chuy et al., 2007), 
or to detect gait instabilities of the user (Sabatini et 
al., 2002 and Hirata et al., 2008) and minimize the 
risk of fall (Hirata et al., 2008).  

In principle, the wearable sensors needed to elicit 
the contextual information would be characterized 
by low power consumption, small size and weight, 
adequate metrological specifications. Micro 
electromechanical systems (MEMS) motion sensors 
appear well matched to these requirements. The 
methods investigated in this paper revolve around 
the processing of acceleration signals acquired from 
small nets of MEMS accelerometers affixed to 
selected points of the human body.  
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A major part of this paper consists of illustrating 
and discussing an approach to classification of 
human physical activities, which is based on using 
Hidden Markov Models (HMMs). In principle, this 
approach aims at exploiting the information 
available on the movement dynamics, namely the 
capability of recognizing activities performed at the 
current time is related to the classification outcomes 
provided in the past by the classifier. Accordingly, 
we talk about sequential classifiers, which differ 
from the so-called single-frame classifiers, in the 
sense that the latter ones are interested to single 
activity primitives, in other words elementary 
activities are studied in isolation from the history of 
previously detected activities (Allen et al., 2006; 
Bao & Intille, 2004; Begg & Kamruzzaman, 2005; 
Foerster et al., 1999; Karantonis et al., 2006; Mathie 
et al., 2004; Ravi, 2005 and Van Laerhoven & 
Cakmakci, 2000).  

Nowadays HMMs find applications in a large 
number of recognition problems, including, but not 
limited to, speech recognition (Rabiner, 1989), hand 
gesture and sign language recognition (Liang & 
Ouhyoung, 1995), controlling robotic tools by hand 
gesture (Yang et al., 1997). Concerning the human 
activity recognition, most studies on the application 
of HMMs (Babu, 2002; Martìnez-Contreras, 2009) 
are based on camera recordings, as shown by 
Yamato (1992). These studies focus on the 
validation of statistical models of each considered 
activity. In a different way, our approach is based on 
using lightweight wearable sensors and is oriented to 
exploit HMMs at a higher level. In particular, their 
use can be oriented towards modelling time relations 
between elements of a sequence of activities. Few 
applications of HMMs are reported in the literature 
as for the problem of classifying human physical 
activities from inertial sensors, probably because 
HMMs are known potentially plagued by severe 
difficulties of parameter estimation. In this paper we 
propose a way of alleviating this difficulty by 
adopting a supervised approach to classifier training. 
This approach is feasible when the data available in 
the training set are annotated. 

2 MATERIALS AND METHODS 

2.1 Datasets for Physical Activity 
Classification 

The present work is based on analyzing the dataset 
of acceleration waveforms published by Bao & 
Intille (2004), and disclosed to us by the authors. 

Acceleration data, sampled at 76.25 Hz, are acquired 
from five bi-axial accelerometers, located at the hip, 
wrist, arm, ankle, and thigh. The original protocol is 
based on testing 20 subjects, who are requested to 
perform 20 activities. In this paper, we select the 
seven activities shown in Figure 1, giving rise to a 
reduced dataset, henceforth called seven-activity 
dataset. These activities involve primarily the use of 
the lower limbs; the rationale for their inclusion is 
consistent with the most important item in our 
current research agenda, namely the development of 
a system for pedestrian navigation and gait 
parameter estimation. 

Since the research goal in Bao & Intille, (2004) 
is exclusively to test single-frame classifiers, the 
available data for each subject concern acceleration 
time series that are known to correspond to each 
activity primitive. Simulating a composite activity 
by a single subject in our study (virtual experiment) 
requires that one data frame is associated to each 
state of the model. The associated data frame is 
randomly sampled (with replacement) from the 
maximum number N of frames available in the 
reduced dataset for each primitive and subject (18 ≤ 
N ≤ 58). We assume that a sequence of elementary 
activities, say, an activity at the motor sentence 
level, can be modeled as a first-order Markov chain, 
composed of a finite number Q of states Si; each 
state accounts for an activity primitive, say, an 
elementary activity at the motor word level. The 
time evolution of a first-order Markov chain is 
governed by the vector π of prior probabilities, and 
the transition probability matrix (TPM) A. We opt 
for a subject-specific training, i.e. a distinct classifier 
is trained for each individual subject and we build a 
Q-state model (π, A), so as to generate motor 
sentences from the vocabulary of motor words 
shown in Figure 1 (Q = 7).  

 
Figure 1: Scheme of a sequential classification based on 
HMMs. 
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A number S = 20 of virtual experiments is 
synthesized, each of which composed of T = 300 
data frames. A subset of P virtual experiments is 
included in the training set. The procedure of 
synthesizing virtual experiments in the manner 
described above implies the existence of clear-cut 
borders between data frames associated to different 
primitives, without unknown transients between 
consecutive classifiable frames. This problem is 
managed by manual data cropping in creating the 
original dataset (Bao & Intille, 2004). Of course, 
real-life composite activities would be more 
complex and fuzzy, especially as for the postural 
transitions between different activities. In the 
attempt to get a more realistic picture of the HMM-
based sequential classifier performance, data frames 
from the original dataset not included in the reduced 
dataset are randomly interspersed in the tested data 
sequences generated by the OMM, in variable 
proportions, from null to 1:3 (max.). The resulting 
garbage is managed in our system by the spurious 
rejection algorithm described in Section 2.5. 

At the time being, the wearable system ActiNav 
is moving its first steps in our lab for applications in 
the field of pedestrian navigation and smart 
estimation of biomechanical parameters and it is 
therefore a welcome addition to our opportunities to 
test the developed algorithm. ActiNav revolves 
around an ARMadeus Board (APF27). It is equipped 
with an ARM9 based Freescale processor, having 
128 MB of RAM, 256 MB of FLASH memory, and 
a 200K-gates Xilinx FPGA. A custom printed circuit 
board allows arming the APF27 with a 12-bit 
Successive Approximation Register ADC (AD7490, 
Analog Devices, Inc.). This converter operates up to 
1 MSPS; moreover, since it is endowed with 16 
analog channels, up-to-five tri-axis analog 
accelerometers or gyros can be integrated in 
ActiNav. The system with the main board 
(100×84×16 mm) and different sensors connected is 
shown in Figure 2. For the aim of this work a single 
tri-axis accelerometer (ADXL325, Analog Devices, 
Inc.) with FS = ±5 g is fastened on the right thigh of 
a single tested subject. The acquired dataset is 
limited to 20 sit-stand-walk sequences. This low-
complexity dataset allows us in testing the proposed 
methods on a real sequential dataset that includes a 
postural transition and the incipient locomotion 
situation. These aspects are particularly relevant for 
our studies in robotic walking aids for rehabilitation. 

 Accelerometer data, acquired at a sampling 
frequency of 250 Hz, are labeled using the activity 
class reported by the experimenter (supervised 
approach). Henceforth, we refer to this reduced-

complexity dataset as the sit-stand-walk dataset, so 
as to differentiate it from the seven-activity dataset. 

 
Figure 2: The ActiNav board is shown with several 
sensors connected to its input ports. 

2.2 Data Processing: Feature Vectors  

The automatic classification of acceleration data 
requires a pre-processing phase in which feature 
variables with high information content are extracted 
from the raw sensor data. The feature vectors are 
computed from acceleration samples within sliding 
windows with finite and constant width, henceforth 
called data frames. 

According to the indications reported in previous 
works (Bao & Intille, 2004; Ravi et al., 2005), the 
following feature variables are selected in this paper: 

 DC component. This feature is helpful in 
discriminating static postures; it is evaluated 
by averaging the raw samples in each data 
frame. One feature per data channel is 
obtained. 

 Energy. This feature is helpful in assessing the 
motor act strength. It is evaluated as the sum 
of squared spectrogram coefficients within 
each data frame. The first coefficient that 
includes information about the DC component 
is excluded from the sum. One feature per data 
channel is obtained. 

 Entropy of spectrogram coefficients. This 
feature is helpful in discriminating primitives 
that differ in frequency domain complexity 
(Bao & Intille, 2004). A kernel density 
estimator is applied to spectrogram 
coefficients for its determination. One feature 
per data channel is obtained. 

 Correlation coefficients between pair of 
accelerometer signals. They are obtained by 
computing the dot product of pairs of frame 
vectors, normalized to their length, and are 
helpful in discriminating activities that involve 
motions of several body parts. A total of 55 
coefficients can be computed in our 
application. 
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Before applying the classification algorithm, the 
computed feature vectors are selected in order to 
reduce the dimensionality of the problem. This is 
required to limit the risk of bad parameter estimation 
(Jain et al., 2000). In particular, we use the Pudil's 
algorithm that is a sequential forward-backward 
floating search (SFFS-SFBS) (Pudil, 1994); this 
algorithm uses the Euclidean distances between each 
pair of feature vectors of the same class in the 
training set as a criterion for selection.  

For the sit-stand-walk dataset we limit ourselves 
to computing the DC components and the correlation 
coefficients. Moreover, rather than applying the 
Pudil’s feature selection approach, we prefer to 
apply a feature extraction method (Jain et al., 2000). 
Hence, a Principal Component Analysis (PCA) is 
applied, in order to reduce the dimensionality from 
nine (3 DC components + 6 Correlation coefficients) 
to three. 

2.3 Single-frame Classification 

Although several single-frame classifiers can be 
proposed, we consider here a particular technique 
for single-frame classification, namely the Gaussian 
Mixture Model (GMM) classifier. This approach is 
reported by Allen et al. (2006) to achieve very 
promising results. In particular, the authors discuss 
the high adaptability of the classifier, a good feature 
to analyze data from subjects that are not included in 
the training set.  

Of course, other methods for single-frame 
classification of human physical activity can be 
chosen, and they may also outperform GMMs 
(Mannini & Sabatini, 2010). Here, the GMM 
classifier is selected as the single-frame classifier of 
reference, in particular for its resemblance to the 
structure of a cHMM. As a matter of fact, the 
probability density of emissions of each state in a 
cHMM is modeled as a Gaussian mixture. 

The GMM classifier first performs a parametric 
estimation of class-conditional probability density 
functions p(x|wi), which assign the probabilities of 
the feature vector x given its membership to the class 
wi. During the training phase of a GMM classifier, 
class-conditional probabilities are estimated on the 
feature-space as Gaussian mixtures. Each feature 
vector x is then classified in the class yielding the 
highest value of p(x|wi).  

2.4 cHMM-based Classification  

In modeling sequences of human activities as first-
order Markov chains we propose that the prior and 

transition probabilities that are associated to the 
model are empirically determined by observing the 
subject behavior. If the TPM and the state at the 
current time are known, then the most likely state 
that will follow is probabilistically determined. 
However, each activity primitive can only be 
observed through a set of raw sensor signals (the 
measured time series from on-body accelerometers, 
in the present case). In other terms, the states are 
hidden and only a second-level process is actually 
observable (emissions). The statistical model 
including the pair (π, A) and the emission process is 
an HMM. We opt for a continuous emissions 
approach (continuous emissions densities HMM, aka 
cHMM, Rabiner, 1989). The most common 
approach to the problem of modeling continuous 
emissions is parametric. In particular we consider 
mixtures of M multivariate normal distributions 
N(μjm,Σjm) that are specified by assigning the mean 
value vectors µjm, the covariance matrices Σjm, and 
the mixing parameters matrix C. The mixture is used 
to model the emissions from each state in the chain. 
An excellent reference source for HMMs and 
algorithms for their learning and testing in a 
recognition problem is in Rabiner (1989). 

For our particular problem we consider a Q-state 
cHMM as represented in Figure 1 (Q = 7). One of 
the main problems may be in the high number of 
parameters to be identified. In fact, a Gaussian 
cHMM trained in a d-dimensional feature space, 
with Q primitives to be classified and M components 
for each mixture requires the specification of the 
following parameters: 

 π, prior probability vector, 1 × Q; 
 A, transition probability matrix Q × Q; 
 μ, set of mean value matrices, Q × M × d; 
 Σ, set of covariance matrices, Q × M × d × d; 
 C, set of mixing parameters, Q × M. 
The approach to deal with the parameter 

identification problem is to split the training phase 
into two different steps: a first-level supervised 
training phase is followed by a second-level training 
phase, which is performed by running the Baum-
Welch algorithm (Rabiner, 1989). Indeed, the 
particular problem we are facing with is typically 
supervised. It is also known that an inaccurate 
initialization of parameters could lead to suboptimal 
results by using the Baum-Welch algorithm, due to 
the presence of many local maxima in the 
optimization surface (Rabiner, 1989). Accordingly, 
the first level supervised training becomes the 
proposed particular way for achieving a good 
initialization of parameters entering the second 
“traditional” phase. 
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In order to simplify the estimation process, the 
parameter set is divided into two main groups, 
namely transition parameters (π, A) and emission 
parameters (μ, Σ, C). This separation allows us to 
train separately two parameter sets with reduced 
size, yielding a relevant reduction of the overall size 
of the training set. Transition parameters can be 
estimated through an OMM. In fact, under 
supervised conditions, activity labels from training 
set sequences, which in our model correspond to 
hidden states, are actually known. Emission 
parameters can be estimated by running a GMM 
classifier. The training process at the second level 
exploits the values of the parameters estimated 
during the training process at the first level, as initial 
values for running the Baum-Welch algorithm.  

In Figure 3 a conceptual scheme of the whole 
sequential classification algorithm is depicted: thin 
lines refers to parameters, bold lines represent data 
frames. 

 
Figure 3: Block diagram of the developed cHMM-based 
sequential classifier. 

2.5 Spurious Data Rejection 

The introduced classification strategy allows us to 
define a criterion for automatic rejection of spurious 
feature vectors. If a threshold-based detector is 
applied to estimated class-conditional probabilities 
p(x|wi), it is straightforward to reject those feature 
vectors the classification of which is believed too 

uncertain, without introducing an additional model 
for unknown data. In fact the probability p(x|wi) in 
the cHMM refers to the probability of the feature 
vector x of being the emission of the model state wi. 
If, for any feature vector, the probabilities relative to 
each state are below the threshold, the feature vector 
itself can be marked as spurious and removed, 
without affecting the cHMM operation. Low values 
of p(x|wi) are typical when unknown activities are 
hidden in the data presented to the classifier, or 
when too much uncertainty affects them.  

The threshold value can be optimized upon 
assessment of the ROC curves; in Figure 4, the 
specificity-sensibility curve, averaged over the 20 
subjects, is reported for the data in the seven-activity 
dataset. The threshold is settled in our application by 
retaining the value when the sensibility of rejection 
is slightly greater than the specificity.  

 
Figure 4: ROC curve obtained for different threshold 
values. 

3 RESULTS 

3.1 The seven-activity Dataset  

After applying the Pudil's feature selection algorithm 
to data, the number of features is reduced from 85 to 
17, namely 4 DC components of accelerations and 
13 correlation coefficients are retained. The training 
set for the single-frame classifier is composed of K 
frames per class and per subject. According to the 
results of some preliminary testing, K = 7 turns out 
to be a convenient choice. Testing is performed 
using the remaining N–K frames available for each 
subject.  

The number of Gaussian components of the 
mixture is taken M = 1, either in the GMM or the 
cHMM-based classifiers. Indeed the experimental 
evidence is in strong support of the assumption of 
unimodal data distributions. Algorithm testing up to 
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M = 5 indicates only marginal improvements over 
the simpler choice M = 1 discussed in the following. 
We consider the value K = 7 for the cHMM-based 
classifier too. The effect of the number P of motor 
sentences in the training set is then analyzed and 
results are shown in Figure 5, either in the case that 
the second-level training is performed or not, 
yielding P = 5 as a reasonable value for sizing the 
training set. A subject-specific training and test is 
performed for both GMM and cHMM-based 
classifiers. In Table 1 the classification accuracy is 
reported for each tested subject.  

As far as the algorithm for spurious data 
rejection is concerned, the threshold is fixed so as to 
achieve sensibility Se = 96.6% and specificity Sp = 
90.8%. In Table 2 the classification accuracy in the 
presence of spurious data and after their automatic 
rejection is presented. 

 
Figure 5: Classification accuracy vs. number of P motor 
sentences in the training set. o: only first-level training is 
applied; *: first-level training is followed by second-level 
training. 

3.2 The sit-stand-walk Dataset 

This dataset is processed using the same sequential 
classification methodology as for the seven-activity 
dataset. However, the presence of a single subject 
dataset requires a different validation method. A 
leave-one-out approach is followed: 20 classifiers 
are trained, and each time a single sequence is used 
to validate the classifier. Classification results in 
terms of recognition accuracy are reported in Table 
3. As far as spurious data, there is no need to add 
spurious data, as described before for the seven-
activity dataset. The spurious rejection algorithm is 
now applied to tag data from the sit-stand-walk 
dataset, whose reliability for classification is deemed 
questionable. Of course, we expect to observe a 
higher number of tagged data where activity 
transitions take place. In Figure 6 the classifier 
outcome and the spurious rejection effect are 
reported. 

Table 1: Recognition accuracies (percentage values) for 
each subject and mean accuracy value over 20 subjects 
(seven-activity dataset, before introducing spurious data).  

Subject GMM cHMM 
(First level only) 

cHMM 
(First and second level)

1 97.6 97.2 99.6 
2 93.9 95.6 99.7 
3 94.9 94.9 99.7 
4 99.9 96.1 99.7 
5 82.1 92.2 97.8 
6 91.6 89.8 99.5 
7 89.5 90.5 97.7 
8 98.3 90.6 99.7 
9 87.2 94.5 99.6 

10 95.6 96.3 99.7 
11 98.3 96.2 98.8 
12 90.4 89.2 98.1 
13 79.9 86.7 99.2 
14 92.7 87.2 98.8 
15 64.3 94.2 99.6 
16 98.7 97.9 98.9 
17 53.6 94.8 97.6 
18 67.9 81.7 83.4 
19 86.9 96.5 99.5 
20 75.2 98.5 99.7 

Mean 86.9 93.0 98.3 

Table 2: Classification accuracy (mean percentage values) 
in the presence of spurious data, seven-activity dataset.  

Implementation 
Classification 
accuracy, [%] 

Without rejection of spurious data 72.1 
With rejection of spurious data 95.7 

Table 3: Classification accuracy (mean percentage values) 
after and before spurious data rejection, sit-stand-walk 
dataset. 

Classifier Classification 
accuracy (%) 

GMM 89.7 
cHMM (First level only) 86.4 
cHMM (First and second level) 96.0 
cHMM (With spuria rejection) 99.2 

4 DISCUSSIONS AND 
CONCLUSIONS 

Referring to the seven-activity dataset, the Pudil’s 
feature selection scheme individuates a subset of 
features that simply consist of gross postural 
information (DC components) and movement 
coordination  information  (correlation  coefficients). 
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Figure 6: Classification and spurious data rejection on a 
sequence of the sit-stand-walk dataset. 

Nonetheless, it is argued that energy and entropy 
time-domain features would be highly valuable, 
provided that we decide to investigate other 
activities, e.g., those from the set studied in (Bao & 
Intille, 2004) that are not considered in this paper. 
Our decision to concentrate on a basic vocabulary of 
activities is motivated by our ongoing work aimed at 
developing a wearable sensor system for pedestrian 
navigation and human locomotion rehabilitation. 

The applicability of Markovian modeling to the 
classification of human physical activities - the 
subject of this paper - is demonstrated. In particular 
we highlight the importance of exploiting the 
statistical knowledge about the human motion 
dynamics that can be “trapped” within the Markov 
chain. The cHMM-based classifier, owing to the 
exploitation of statistical information about the 
activity dynamics it provides, systematically 
outperforms the GMM classifier (the classification 
accuracy, averaged across the pool of tested 
subjects, raises from about 87% to 98%). 

A subject-specific training is considered in this 
work. Especially for the cHMM-based sequential 
classifier indeed, this approach is more appropriate 
than training a single net for a pool of subjects; this 
is because of the high variability in how humans 
perform a given physical activity. 

The supervised training is pursued in this paper 
with the idea to split the process of estimating the 
parameters of the cHMM-based classifier into two 
distinct levels. We can observe that considering only 
the first-level training the accuracy of the cHMM-
based classifier performance goes down to about 
93% from 98%, still superior to the performance of 
the single-frame GMM classifier. Splitting the 
training process in two distinct levels is helpful to 
effectively cope with the size limitations of the 
training set: P = 5 sequences lasting each just few 
minutes are enough to yield a suitable training set in 
the present application.  

A final point is related to the proposed method 
for managing spurious feature vectors. Most 
published studies, including (Bao & Intille, 2004), 
handle the problem of the fuzzy borders by manual 
data cropping. Clearly this is neither useful nor 
applicable if we look for a real-time system for 
activity classification. In our approach, the whole 
spurious rejection process is made automatic. When 
up to one third of the whole feature vectors in the 
data are spurious, the cHMM-based classifier 
accuracy is limited to about 72% in the absence of 
the proposed threshold-based detector. If the 
threshold-based detector is actually implemented the 
performance ramps up to about 96%.  

Although being limited to three activities chained 
in a fixed order, and lasting few seconds only, the 
tests on the sit-stand-walk dataset show that the 
proposed algorithm can be applied to data in which 
transitions are not removed by data cropping. The 
beneficial effect of the dynamic information of 
HMMs respect to GMMs is confirmed and high 
classification accuracy is obtained (> 95 %). This 
capability encourages the application of the 
proposed methods even for subjects that are affected 
by pathologies. As it is shown in Figure 6, the 
spurious rejection system is able to identify those 
data that actually correspond to postural transitions, 
whose classification would be troublesome. This 
allows using the proposed methodology, without any 
particular attention to how the dataset is labeled 
during data acquisition.  

In conclusion, a Markov modeling approach to 
the design of a sequential human activity classifier 
has been pursued. The requirements in terms of 
dataset size are not prohibitive, owing to the 
proposed subdivision of the training process into two 
distinct levels. The supervised machine learning 
algorithm also includes a very effective device for 
rejecting spurious feature vectors, which turns out to 
show high sensibility and specificity of detection. 

Ongoing work will concern the extension of the 
proposed algorithm in the ActiNav system for 
applications in the field of pedestrian navigation, 
human robot interaction and smart estimation of 
biomechanical parameters. 
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