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Abstract: In this paper, we propose a novel method for the automatic segmentation of Electrical Impedance 
Tomography (EIT) lung images. EIT is a non-invasive technique, which produces low-spatial and high-
temporal resolution images of the internal resistivity of the region of the body probed by currents. EIT is the 
only technology that reliably quantifies regional lung volumes non-invasively. The problem is non-linear 
and ill-conditioned and can be solved using 2D or 3D finite element methods (FEMs) subject to using 
appropriate regularisation strategies. The usual method of segmenting EIT lung images is to manually select 
a region of interest and derive statistical measures. This procedure is not suitable for FEM-based models as 
it works on rectangular pixels, as well as making the task tedious and time consuming. We propose an 
alternative segmentation framework, which operates directly on the resulting FEM meshes, prior to 
rasterisation in order to prevent the propagation of errors in the reconstructed resistivity regions, due to 
mapping onto a rectangular grid. We use a spatio-temporal probabilistic method to segment conductivity 
changes in the EIT thorax images. Application of the proposed method offers a much needed alternative to 
interactive segmentation currently favoured by EIT researchers and clinicians. 

1 INTRODUCTION 

EIT is a non-invasive technique, which produces 
images of the internal conductivity or resistivity of 
the region of the body probed by alternating currents 
(Brown, 2003). EIT could be applied to imaging 
both structural and functional abnormalities in the 
human lungs. It has several advantages over existing 
chest-imaging techniques, including low cost, 
portability, its non-invasive and non-ionizing nature, 
the potential for ambulatory or ICU measurements 
and fast acquisition speed. EIT is the only non-
invasive technique that provides insight into the 
regional distribution of ventilation. Current 
strategies to provide lung protective ventilation rely 
on avoiding lung over distension by reducing tidal 
volumes and on opening atelectasis by applying 
adequate positive end-expiratory pressure. However, 
it is currently impossible to continuously measure 
regional lung over distension and atelectasis while a 
patient is ventilated, but it would be extremely 
relevant information that could lead to reducing 
ventilator-induced lung injury. EIT can resolve 
changes in the distribution of lung volumes between 
dependent and non-dependent lung regions as 

ventilator parameters change. Thus, EIT 
measurements may be used to control the specific 
ventilator settings to maintain lung protective 
ventilation on an individual patient basis (Frerichs et 
al, 2006). 

In EIT, current density flow within the body is 
described by Maxwell’s equations. Typically, 
multiple electrodes are placed on a person's thorax 
and a sinusoidal current excitation is imposed. The 
governing equation for the voltage field produced by 
placing a current across a material is 

( ) 0σ ωε ϕ∇ ⋅ + ∇ =  (1)

which is an elliptic partial differential equation, 
where σ is the electric impedance of the medium, φ 
is the electric potential, ω is the frequency, and ε is 
the electric permittivity (Molinari, 2003). Equation 
(1) is reduced to the standard governing equation for 
EIT, ( ) 0σ ϕ∇ ⋅ ∇ =  when the angular frequency is 
sufficiently low or direct current is used. 

By repeating these steps and scanning around 
various electrode pairs, it is possible to calculate the 
approximate current distribution inside the body 
through inverse solution of Maxwell's equations 
using two or three-dimensional finite element 
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methods. A medical image can then be 
reconstructed, since the structures within the human 
body have different resistivities. However, this 
requires the solution of a non-linear, ill-conditioned 
inverse problem. The non-linearity arises in σ, since 
the potential distribution. φ, is a function of the 
impedance, φ= φ(σ), and the ill-conditioning stems 
from the fact that small errors in the measurements 
or in the forward modelling step may introduce large 
errors in the reconstruction. The forward problem in 
EIT is to estimate the induced electrical 
measurements at the electrodes, given an excitation 
signal and permittivity distribution. The inverse 
problem estimates the permittivity distribution based 
on the excitation signal and the terminal electrical 
measurements. Once images have been 
reconstructed, following regularization of the 
inverse problem, in the final stage, FEM 
triangulation results are rasterised to cover a 
rectangular grid for subsequent image processing. 

2 EIT LUNG IMAGES  

2.1 Low Spatial Resolution of EIT 
Images  

It is well known that a reconstructed EIT image is 
unique for noise-free complete boundary data 
(Sylvester and Uhlmann, 1986). However, in 
comparison to magnetic resonance imaging (MRI) 
and computed tomography (CT), EIT suffers from 
poor spatial resolution due to noise, low sensitivity 
of boundary voltages to inner conductivity 
perturbations and a limited number of boundary 
voltage measurements (Clay and Ferree , 2002). 
Moreover, the reconstructed images are usually 
subtracted from a reference frame in order to 
minimize errors due to electrode movement or 
unknown boundary shape. A comparison of an EIT 
image and its CT counterpart of the thorax is shown 
in Figure 1. In spite of the above, EIT is very useful 
in monitoring patient lung volume, because the air 
has a large conductivity contrast compared to other 
tissues in the thorax. The large change in lung 
impedance with respiration, and the ease of use of 
impedance tomography as a monitoring technique, 
has led to a significant body of research in lung 
impedance (Frerichs, 2000). However, the spatial 
resolution of the EIT images reduces further with the 
rasterisation process, where FEM model results are 
mapped onto a rectangular grid for further image 
processing. This rasterisation step introduces further 
fuzziness to the reconstructed regions of 

conductivity changes in the EIT images of the lungs, 
and makes it even harder to determine the outline of 
these rapidly changing regions during the breathing 
cycle. 

(a) (b) 

Figure 1: (a) CT image of the thorax (Ackermann, 1995) 
(b) EIT difference image (brighter regions correspond to 
larger conductivity changes). 

2.2 Feasibility of EIT Image 
Segmentation 

Due to the aforementioned problems regarding the 
poor spatial resolution of EIT images, a question 
arises as to whether it is possible to introduce a 
robust adaptive EIT segmentation method. 
Currently, there exists no method, which could 
automatically segment regions with significant 
conductivity changes, corresponding to the lobes for 
an entire EIT breathing cycle sequence. The usual 
method of segmenting or interrogating images is to 
select a region of interest (a pixel or a small region) 
on the image and then derive statistical measures for 
the selected regions (Smallwood, 1999). 

An additional problem is that EIT patient 
histories generally include data from a limited 
battery of tests, thus, making it difficult to train a 
sufficiently complete probabilistic model. 
Traditional background subtraction algorithms are 
not appropriate due to the slower inflation/ deflation 
rate of the lungs compared to the acquisition frame 
rate (i.e., 13 fps), hence changes in the lung lobe 
conductivity images appear slow moving or 
temporarily stationary. Under these conditions, the 
background becomes corrupted and object/blob 
detection becomes erroneous. 

To address the above issues, in the following 
section a two-fold approach is proposed to tackle 
this. In the first step, we carry out segmentation on 
the FEM meshes prior to the rasterisation stage. This 
prevents regions becoming even fuzzier and 
facilitates the estimation of accurate measurement 
results, which is a prerequisite for the extraction of 
much needed ventilation parameters. In the second 
step, we use a probabilistic model, which 
accommodates both temporal and spatial contiguity 
of mesh element values in order to segment and 
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extract regions of conductivity changes directly from 
the EIT lung FEM meshes.  

3 METHOD 

3.1 Dealing with Non-rectangular 
Grids 

The basis of the proposed approach is segmentation 
of conductivity changes on the actual FEM meshes, 
rather than the post-processed, rasterised images. 
This necessitates assigning a label to each triangular 
or tetrahedral element on the FEM mesh in order to 
access their coordinate positions. Unlike traditional 
images, which are typically based on rectangular 
grids, meshes can be of any shape and their 
constitutive elements maybe triangles in 2D or 
tetrahedra/ hexahedra in 3D. This restricts the 
applicability of image processing approaches, which 
are commonly implemented on rectangular grids. In 
the proposed method, we use the centroid of each 
triangular element composing the mesh (in our case, 
a 2D cross section of the thorax) as the 
representative of that particular element and we 
repeat this for all elements in the mesh. The 
coordinates of the centroids form the inputs for 
subsequent processing. A visual interpretation of the 
centroid concept on a sample mesh of the thorax 
obtained from EIDORS (Adler, 2006) is shown in 
Figure 2. 

The next stage of the method consists of three 
steps. Firstly, we use anatomical information 
regarding the position of the lungs in the thorax to 
extract elements belonging to the background and 
obtain a prior model of the background by fitting a 
Gaussian to the trajectory of each background 
element value, BkgE , as it varies in time. Secondly, 
the change of mesh element values through time is 
modelled as an ‘element process’ and a Gaussian 
probability distribution is fitted to this 
trajectory, eleE . Thirdly, an additional model, 
corresponding to the change of the sum of each 
element’s neighbourhood associations through time, 
is formed by fitting a Gaussian probability model. 
The term ‘neighbourhood association’, denotes the 
connectivity neighbourhood value .connE of mesh 
element ),( θrE , where ),( θr  are the polar 
coordinates of the elements’ centroid, which consists 
of the number of adjacent triangles in the mesh that 
share a common edge with the current element. An 
example of neighbourhood association of the 251st 

element is shown in red patches in the mesh of 
Figure 2. 

 
Figure 2: Centric assigned to each mesh element. 

For this particular element the connectivity 
parameter will be  
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This parameter will be calculated for all elements 
in each frame in the sequence and a Gaussian model 
will be fitted to its trajectory. Finally, each new 
mesh element is classified by the closeness of its fit 
to the three Gaussian distributions (i.e., BkgE , eleE  

and .connE ). 

3.2 Statistical Background Model 

As previously discussed, the first task involves 
modeling of the background. This is achieved by 
using anatomical structure of the lung lobes. As 
observed in Figure 1(a), several layers exist between 
the lung lobes and the surface of the skin, i.e., skin 
tissue, fat layers, muscles covering the thorax and 
the thoracic skeleton, which protects the lungs.  

(a) 

 
(b) 

Figure 3: (a) Image progression is from left to right, top to 
bottom. Full-breath cycle is shown. (b) Variance mesh 
(Brighter regions correspond to higher conductivity 
variance). 
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This suggests that elements close to the boundary 
of the thorax do not form part of the lung lobes and 
thus background samples maybe extracted from 
these regions. In order to validate this hypothesis, 
we consider a sequence of reconstructed EIT FEM 
images corresponding to one of the patients in our 
dataset. The cycle is shown in Figure 3(a). 

Next, we calculate the variance of each element 
over this period, and produce a variance image, as 
shown in Figure 3(b). As it is clearly seen, the lung 
lobes display the highest conductivity changes, 
followed by the adjacent darker region (depicted in 
red and black colours), which separates them from 
the other layers; we were able to reproduce such 
variance ‘pattern’ images for all patients in the 
dataset. Hence, the two most distant element layers 
from the mesh centre were used as background 
samples. For all of these elements in a frame 
sequence, we model their change trajectory as a 
random variable that follows a Gaussian 
distribution ),(~ 2

,,, jijijip σμΝ . 
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where jip ,  is a pixel-wise random variable which 

follows a Gaussian distribution, located at the thj  

position in the thi EIT frame sequence. ),( σμ  are 
the corresponding mean and standard deviation 
parameters of the Gaussian distribution. Hence, 
background mesh element values over time are 
modelled as a time series, which is called an element 
process. 

Methods employing time-adaptive per-pixel 
mixture of Gaussians (MoG) are a popular choice 
for modelling scene backgrounds at the pixel level 
(Stauffer, 1999). In our application, one Gaussian 
sufficed, and moreover such methods are not 
appropriate for EIT, since we are not interested to 
merely segment out the foreground, but rather the 
lung lobes. This is better understood by examining 
Figure 3(b). It can be clearly seen that the current 
background model is not sufficient for lung lobe 
conductivity change segmentation. Specifically, the 
central region mesh elements also exhibit constant 
changes of conductivity; however, they do not 
belong to the lung lobes. For example, if we 
threshold the elements of this mesh using the 75 

percent Quantile of the variance values we get the 
FEM shown in Figure 4. 

As it can be seen in this figure, central regions 
also show a large degree of change in conductivity, 
   

 
Figure 4: Thresholded variance image. 

hence a Gaussian model fitted to the mesh element 
trajectories could indeed belong to the foreground; 
however, it may not necessarily form part of the 
lobes, which is the objective of this work. In order to 
resolve this problem, we build two further element 
process models, namely eleE  and .connE , the first 
representing changes of an individual element in 
time (excluding previous elements used for the 
background model) and the second representing the 
region attribute process in time, as discussed before. 
So, if the new element centroid was not classified as 
part of the initial background model, it would be part 
of the foreground but it may or not correspond to the 
lobe regions that we are after. Next, by comparing 
its value to our other two probabilities calculated 
for eleE and .connE we can then calculate whether it 
maximizes both these probabilities ensuring which 
only an element in the lobe region might do. 

3.3 Element Classification 

Each background element has its own threshold 
value, which can be obtained from the 
corresponding standard deviation. In this respect, the 
proposed method is similar to the adaptive method 
described in (Stauffer, 1999), i.e., a per-element/per-
distribution thresholding method. The details of the 
algorithm are as follows: 

1) Calculate Background model ),( bgbgN σμ  
2) For each element in current frame calculate 

}2,1{),,( =−=Η etrE ieiie μθ , 
3) ieie ησ=Τ , bgbg ησ=Τ  

4) if bgie T<Η then element is background, 
update background. Go to Step 6 else it’s a 
possible lobe 

5) if bgie T>Η  & ieie T>Η element belongs 
to the lung lobe region. Go to Step 2. 

6) ),,()1( trEiieie θαμαμ +−=
),,()1( trEiieie θασασ +−=  

Here, ),,( trEi θ is an element in a current frame 

( thi in the sequence), 1iμ  is the mean of the 
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element-wise Gaussian distribution, 2iμ  is the mean 
for the regional attribute distribution, 21, ii σσ  are 
the corresponding element-wise standard deviations, 
respectively, ieΗ is the absolute difference between 

iE and the distribution means, bgT  and ieT are the 

element-wise thresholds for BkgE , eleE  and .connE , 
α is the learning rate of the background and η  is 
the threshold gain. ),( bgbgN σμ  is pre-calculated 
and is not updated to accommodate for faster 
computation speed. 

4 EXPERIMENTS AND RESULTS 

4.1 Data Acquisition and Processing 

Data were collected from a group of 10 male 
subjects with no known respiratory or cardiac 
abnormalities (age: mean 32; age range, 27-42). In 
each case, the 16 element adjacent electrodes were 
placed around the subject’s lower thorax (4th-6th 
intercostal space on the mid-clavicular line). The 
subjects lay supine, and were asked to relax and 
breathe normally during a 3 min recording. A total 
of 2340 frames were recorded using a Sheffield 
mark 1 EIT system, using a 50 kHz current drive 
(Brown B. H. and Seagar A. D., 1987). 

The measured voltage data were then imported 
into EIDORS and the inverse problem was solved 
using the Gauss-Newton reconstruction algorithm on 
a 2D, 576-element thorax mesh model, shown in 
Figure 2. The FEM triangulation results were not 
parameterized on a 2D pixel grid after the 
reconstruction, in order to prevent further resolution 
deterioration.  

4.2 Gaussian Fitting and Element 
Classification 

Next, the normalized element value trajectory 
alongside the regional attribute trajectory was fitted 
by two separate Gaussian models. More specifically, 
the recent history of each element, 

)},,(,),1,,({ trErE eleele θθ … alongside the sum of 
its regional attributes )},,(,),1,,({ trErE connconn θθ …  
were modelled by the two Gaussian distributions. 
The process of fitting the 251st element of the mesh 
of figure 2, which is located in the upper left region 
of the mesh, is shown in Figure 5 for eleE . 

Finally, for each new frame, each of its elements 

(a) 

(b) 

Figure 5: (a) Intensity histogram for the 251th element in 
time (b) Fitted Gaussian probability distribution. 

is classified to background or lung lobe region 
according to the algorithm described in section III. 
For the experiments, the learning rate parameter 
α was set to 0.002, while η = 2.5 gave the best 
classifications. The results of the proposed method 
on the EIT sequence of Figure 3(a) are shown in 
Figure 6.  

The effectiveness of the proposed method can be 
seen from Figure 6. It shows that the probability 
models were able to separate out the non-lung lobe 
regions and picked out only areas of high 
conductivity changes produced by the lobes without 
producing outliers. With the proposed approach, the 
use of regional information of each element as it 
evolves through time permits the detection of the 
globality of the change, recovering the correct 
changes in the lobes. 

5 CONCLUSIONS 

The work proposes a novel, probabilistic method for 
extracting regions of conductivity changes in EIT 
lung images. The method involves modelling each 
mesh element and its regional attribute as a time 
series process fitted by a Gaussian model. Moreover, 
a prior model of the background was also obtained 
using anatomical structure of the thorax. The results 
obtained from the different patient data show that 
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(a) 

(b) 

Figure 6: Segmentation results; image progression is from 
left to right, top to bottom. Full-breath cycle is shown. (a) 
proposed method (b) time-adaptive per-pixel MOG 
method described in (Stauffer, 1999). 

this new approach can be successfully applied to 
automatically segment regions of conductivity 
changes in EIT lung images. The procedure requires 
minimal input fine-tuning and can capture the 
dynamics of distinctly different regions in EIT 
images. Further work involves the use of parallel 
processing to speed up the segmenta-ion process so 
that it can be used in real-time, for longer time 
periods, and the extension of the framework to 
segmentation on 3D meshes.  
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