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Abstract: This paper investigates the properties of DNA translocations signals in a stochastic framework. The considered
signals are relative to the translocation of single strand DNA through natural nanopores, and are obtained
using a planar patch clamp method. The stochastic signal analysis is carried out considering the statistical
distribution of DNA translocation parameters, considered as random variables including the amplitude, the
duration and the apparition of the DNA translocation events as well as the no-translocation signal features.
For each of these variables, a distribution function is proposed and assessed using a Kolmogorov-Smirnov
test, and their features are estimated. The DNA translocation signal stochastic analysis enables to characterize
the detection and/or estimation performances of existing algorithms, such as a breakdown detection algorithm,
in a stochastic framework. Moreover, it opens the way to the design of model based algorithms such as
detection tests using a likelihood ratio or joint detection-estimation algorithms using a maximum likelihood
approach, for an enhanced characterization of DNA translocations.

1 INTRODUCTION

DNA

In view of the DNA sequencing, a biochip dedicated
to the DNA translocation through natural nanopores
reconstituted on an artificial biomimetic membrane — llummmm:—
was designed in (Osaki et al., 2009). The biochip hemolysin'” |\
consists in a partition between a fluidic chamber and channel T : :
a channel, made with a thin film of parylen obtained i Glass
by chemical vapor deposition, and micromachined
through oxygen plama (see figure 1).

. The b.l(.)m'metlc artificial mgmbrane IS by".t up on Figure 1: Presentation of the biochip used for DNA translo-
this partition, by the successive flow of lipids and .tion detection.
buffers into the channel, as described in (Osaki et al.,
2009) and the nanopore is created thanks to the in-
sertion of ami-hemolysin natural membrane protein.

chamber | —J{AgCl

| D!}lA translocation

mental setup. In order to avoid aliasing during the

The application of a voltage on both sides of the mem- e}cquﬁsition process, a so called a_nti-aliasing low pass
brane induces the movements of ions, and thereforefilter is used to process the experimental data.

the apparition of a current through the channel. The  Getting DNA translocation signals is a delicate ex-
DNA strand crossing through the membrane induces Periment, since the obtained signals depend on many
a current blockade, measured thanks to a patch clampparameters, such as temperature, humidity, sealing of
amplifier. The amplitude and duration of this block- the artificial membrane or surface conditions of the
ade characterizes the DNA composition and length. electrodes.

The blockade current constitutes the informative sig- In this study, in order to avoid repetitive exper-
nal which is sampled and digitalized by the experi- iments required to adjust the acquisition parameters
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left to the users and the dedicated data processing
techniques, artificial signals are generated. The prop-
erties of these artificial signals are determined through
the statistical investigations of actual biosignals. In
section 2 the statistical properties of the signal are Translocation—————=
estimated, including the no-translocation current, the Ass 20555 _ 206 706.05
. . . Time (sec)
amplitude and duration of the DNA tranS|ocatlon-s Figure 2: Examples of current blockades relative to DNA
events, and the delgy'bet\(veen events. In SeCtlontranslocation and translocation attempts.
3, corresponding artificial signals are generated and
used to optimally design an amplitude-duration char-
acterization algorithm based on a breakdown detec-
tion approach, and used to evaluate the amplitude-
duration characterization performances. In section 4,
thanks to the proposed statistical framework, the rele-
vance of model based approaches is pointed out, in or-
der to develop i) a detection test using likelihood ratio,
and ii) a joint detection-estimation algorithm based on
a maximum likelihood method.
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Figure 3: Features of the DNA translocation signal.
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2 A STATISTICAL DESCRIPTION
OF THE DNA
TRANSLOCATION SIGNAL
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In this study, the investigation is carried out e e o e T

in a stochastic framework for the current flow- ' ' Time (seq) '

ing through the nanopore. The considered ex- Figure 4: Real current variations througtrhemolysin
perimental data are relative to the transloca- channel without any translocation event.

tions of a 41mer ssDNA TTTTTTTTTCACTGAC-
CTGGGGGAGTATTGCGGAGGAAGGT, the con-
centration of which is 45uM in a 1.0 M KCI, 10
mM PBS, 1 mM EDTA buffer featuring pH=7.4. The
DNA translocations are conducted thanks to a 80 mV
voltage applied between both sides of the lipid bi-
layer.

The stochastic characterization of DNA signals
consists in the evaluation of the statistical distribution ) ) .
of the amplitude, denotefiMP, the duration DU R), Figure 5: Histogram of no-translocation experimental cur-
the delay between translocatioD§T), and the no- rent samplesr=1982 samples).
translocation signalNT 9, which are defined in fig-
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ure 3. distribution. The mean and standard deviation param-
_ eters of the distribution, respectively denofeaghdo,

2.1 Propertiesof the Current through are estimated using:

Nanopore in Absence of 10

Translocation M= x[K] (1)

K=1

Firstly we examine the statistical properties of the ) n 5
actual current flowing through an operhemolysin 0" = n_1 (XK — ) 2)

channel nanopore without any DNA stand transloca-
tion. An example of the current flowing through the wherex is the signal andh the number of samples.
nanopore is shown in figure 4. Considering the available experimental data, the esti-

An histogram of this no-translocation signal is mation using eq. (1) and eq. (2) leadg4@rs=93.7
shown on figure 5, which seems to exhibit a Gaussian pA andoyTs= 1 pA.
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In order to attest the assumed Gaussian distribu-translocation amplitud&MP can be estimateqiavp
tion of the no-translocation signal, a Kolmogorov- =89.2 pA andoamp = 7.33 pA.
Smirnov (KS) test was implemented. The KS test ac- In this study, the translocation current amplitude
tually quantifies the distance between the cumulative AMPis assumed to be normally distributed, and a KS
distribution function (CDF) of the considered exper- testimplemented has validated this assumption.
imental data, denotelh(x), and the CDF of a refer- In (Meller et al., 2000), the distribution of the
ence distribution denoteB(x) (Kendall and Stuart, translocation duration was approximated using a mix-
1979). This KS will be prefered to the Chi-2 test ture of a Gaussian law and an exponentially decaying
which is sensitive to a lack of data in the experimental law. Here, for tractability purposes, a Rayleigh law

histogram. The KS distance is expressed by: (Eq. 4) seems to be more adequate to fit BiéR
D = /N x SUp|F (X) — Fn(X)| (3) actual distribution law, and will therefore be prefered
x (Figure 7). The KS test validates this distribution law.

wheren is the number of samples of the exper-
imental data. If this distancB, is greater than a
predefined threshold, then the hypothesis according
to which the experimental data distribution is close to
the candidate reference distribution is rejected. The
threshold is adjusted for a false reject rate of 1%.

Here, the KS test validates the normal distribution
of the no-translocation current, as shown on figure 6, FOUR = 1 (DURJK]))2 = 924psec  (5)
which exhibits the CDF(x) andF (x). ke%’n}

f(DUR) =

- (4)
rBur 2rfur

For the duration distribution the Rayleigh param-
eterr is estimated according to equation (5).
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Figure 6: Cumulative distribution functior§,(x) (Gaus-
sian)F (x) (experimental data). Figure 7: Cumulative distribution functiorfs, andF rela-
tive to the Rayleigh distribution ddUR.

2.2 Statistical Properties of

. 222 tisticsof D T i
Translocations Events Statistics of Delay between Translocations

Events

In this section, we characterize the translocation
events through their duration and amplitude distribu-
tion. Indeed, the translocation event provokes a cur-
rent blockade featured by a duration and an amplitude
which give biological information on the ssDNA. The
amplitude vs time duration graph permits to deter-
mine the length of the DNA, and provides information where: n
about its composition, such as the discrimination be- e
tween polyU, polyC or polyA, (Akeson et al., 1999). ZDBT(i)

As usually admitted (Kasianowicz et al., 1996), i=
only translocations with a current amplitude decreas- o — (17.6mg 2.
ing more than 80% of the initial value correspond to
complete translocations. Others are translocation at-2.2.3 Statistical Description of the DNA
tempts which are not considered here. Trangocation Signal

The distribution of the delay between translocations
(DBT) is considered in this section and assumed to be
a decreasing exponential, expressed by :

f(DBT) = aexp(—aDBT) (6)

(7)

221 Amplitude and Duration of the Finally, the distribution features of the random vari-
Translocation Events ablesAMP, DUR, DBT andNT S estimated from ex-

erimental DNA translocation signals are gathered in
Thanks to equations (1) and (2) the amplitude dis- {Dable 1. g g

tribution mean value and standard deviation of the
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Table 1: Distributions features.

| | Dist | param.1 | param.2 |
NTS || Gaus.| un=937pA o=1pA
AMP | Gaus.| u=892pA | o=7.33pA
DUR || Ray. r =924pus
DBT || Exp. | a=(17.6 ms)?

3 PERFORMANCESOFA

NO-PARAMETRIC
AMPLITUDE-DURATION
ESTIMATION ALGORITHM

In this section, the DNA translocation signal charac-

which are wrongly positionned at a distance smaller
than a varying distance. Then, the receiver opera-
tional characteristic (ROC) which plots the TPR as a
function of FPR for various values of can be con-
sidered to quantify the characterization performances
(Bradley, 1997). ROC curves obtained for the con-
sidered translocations data are presented in figure 11.
One can note for example that a 90 % TPR is reached
at the cost of a 0.01 % FPR considering a transloca-
tion sequence witBNR= 28 dB, and that the same 90
% TPR is reached at the cost of a 1 % FPR when the
SNRfalls down to 18 dB. An other means of quanti-
fying the performance of the amplitude-duration esti-
mation algorithm is to evaluate the mean square error
(MSE) defined in equation (9), of the characterization
as a function of th&NRof the translocation signal.

terization results are used to evaluate, in a stochas-

tic framework, the performances of an elementary
translocation characterization algorithm. The con-

sidered algorithm is based on a breakdown detec-

tion technique, presented in_ (Osaki et al., 2010)
which allows to estimate the amplitude and duration
of translocation events, respectively denotehlP
andDUR. To evaluate the performances of this char-
acterization algorithm for various signal features, we
build up artificial biomimetic signal considering the
AMP, DUR, DBT andNT Sdistributions estimated in
the previous section. Moreover, in order to take the
possible experimental noise variance variations into
account relative to the experimental set-up, we elab-
orate artificial signals featured by various signal to
noise ratios$NR, defined as:
|J~AMP|

ONTS ®
An example of a 319 translocation signal se-
guence featured by a 30 dBNRIis represented in
figure 8, and figure 9 exhibits the detail of a sin-
gle artificial translocation event. The implementation
of the breakdown detection algorithm applied to this
translocation sequence allows 1P andDURval-

SNR= 20log|

ues of the 319 translocations to be estimated. The cor-
responding amplitude vs duration representation dia-

gram is depicted in figure 10.

In order to quantify the characterization perfor-
mances of the algorithm, we compute the true posi-
tive rate and the false positive rate of the character-
ization algorithm, consideringNFs ranging from 6
to 46 dB. The true positive rate (TPR) is computed
as the rate of the estimatédP-DU R values of each

AMPB — AMPR,
Hamp

DUR —DUR
HDUR

n

MSE=

e

2
C)

where AMP and DUR are the estimated values
of AMP and DUR respectively,n is the number of
translocations equal to 319, and where the contribu-
tion of the amplitude and duration errors are normal-
ized by their mean values in order to give them the
same weight in the computation of tiSE The
MSE computed according to equation (9) and ex-
pressed in percentis represented in figure 12. One can
note that theM SEfalls from 30 % to 0.02 % when the
SNRrises from 6 dB up to 46 dB, respectively.

120

Current amplitude (pA)
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Time (sec)

. . .
10 20 30

Figure 8: Generated artificial signal.

4 DISCUSSION

We have proposed a statistical characterization of
nanopore DNA translocation current allowing well

considered translocation event which are close to theknown methods of amplitude/duration characteriza-

actual values whithin a predifined distanee On
the other hand, the false positive rate (FPR) is de-
fined as the rate of the estimatéd1P-DUR values

224

tions (Basseville and Nikiforov, 1993) to be imple-
mented and evaluated using intensive computer simu-
lations.
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S tion.
O 20 1
ol m | information theoretic criterion such as Akaike infor-
mation criterion like tests. Moreover, since this seg-
20 ‘ ‘ ‘ ‘ r mentation technique considers the DNA translocation
R iy v signal as a whole sequence, it avoids the well known
) ] ) ) o drawbacks relative to sliding window data processing
Figure 9: Single translocation event in the artificial signa approaches
= i) a regularized maximum likelihood method can
S 100 , , be built, looking for the unknown parametérss:
[=2]
= + + I~ .
R , 6 = argminfjs-(t) = (@) [+ A|Ds(6)ll1} * (20)
S + + + 45
+ + 4+ + .
e v LA wit
,
R R Eﬁ +§++ e ke ] 0 = [t1,tp...tn,a1,a2...an]" wheret; are the step
s ﬁﬁiﬁ%w ﬁg#ﬁ }* #+ + location parameters argl are the step amplitude pa-
S esp Y v L F o . ] rameters.
+ + . . .
g LT - + Os(0) is the gradient of the solution. As we are
3 ‘ ‘ s ‘ ‘ ‘ looking for a steplike signal, for regularization pur-
© %Y Mouaonse) 0 «os  posesds norm will be used for the gradient.

sx (t) is the actual recorded signal as@) is a
candidate signal. Recent developments in convexe
constraint optimisation open the way to an efficient
optimisation of the criterium expressed in equation

1F A . . . .
3“5//ﬁ (10). A is a parameter used to adjust the contribution
og |ZB8 1 of each terms of the regularization criterion.

Figure 10: Diagram duration vs amplitude for the artificial
translocations.

§0.67 jo e | This provides a statistical framework for DNA
1§ translocation characterisation.
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