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Abstract: The Wiener model is a natural description of many physiological systems. Although there have been a 
number of algorithms proposed for the identification of Wiener models, most of the existing approaches 
were developed under some restrictive assumptions of the system such as a white noise input, part or full 
invertibility of the nonlinearity, or known nonlinearity. In this study a new recursive algorithm based on 
Lyapunov stability theory is presented for the identification of Wiener systems with unknown and 
noninvertible nonlinearity and noisy data. The new algorithm can guarantee global convergence of the 
estimation error to a small region around zero and is as easy to implement as the well-known back 
propagation algorithm. Theoretical analysis and example studies show the effectiveness and advantages of 
the proposed method compared with the earlier approaches. 

1 INTRODUCTION 

Numerous approaches have been proposed for the 
identification of nonlinear systems including 
parametric and nonparametric methods (Greblicki 
1997, Nelles 2001). Among these, the so-called 
block-oriented models have been found very useful 
in practice, due to their simplicity in structure and 
relative ease of implementation and interpretation. 
One of the block-oriented structures is known as the 
Wiener model, which consists of a cascade 
connection of a linear time invariant (LTI) system 
followed by a static (memoryless) nonlinearity. Such 
a structure has been shown to be a reasonable model 
for many chemical and biological processes (e.g.: 
Hunter and Korenberg 1986), as well as 
communication and control systems (Huang 1998, 
Bloemen et al 2001). Theoretically, any nonlinear 
system that has a Volterra or Wiener functional 
expansion can be represented (with a sufficient 
degree of accuracy) by a finite sum of Wiener 

models (Boyd and Chua 1985).  
Several different algorithms have been presented 

in the literature for the identification of Wiener 
models. Early approaches used correlation analysis, 
but long periods of data and white Gaussian noise 
inputs are required (Billings and Fakhouri 1978). 
Approaches based on the invertibility of the static 
nonlinearity, and estimation of the linear and 
nonlinear blocks either in a successive (Narendra et 
al 1966) and iterative procedure or in a simultaneous 
manner (Gomez and Baeyens 2004, Kalafatis 1997) 
have also been proposed. The main disadvantage of 
such algorithms is that convergence is difficult to 
guarantee. Moreover, several studies assumed the 
nonlinearity to be known (Wigren 1994) or 
approximated by a piecewise linear function (the 
nonlinearity needs to be invertible in each of the 
small working regions identified - Figueroa 2008). 
Similarly, Bai and Reyland (2009) assumed the 
nonlinearity to be monotonic (and therefore 
invertible) in a specific region. Only a few studies 
do not assume and make use of the invertibility of 
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the nonlinear block. Lacy and Bernstein (2003) 
directly expanded the system into a “linear in 
parameters” regressive form. The approach also 
requires additional manipulation to extract the model 
parameters for the linear and nonlinear part. 
Comparisons made by the authors with previous 
approaches showed that their singular value 
decomposition SVD-based method and the 
gradient`-based algorithm provide better estimates. 
Nonetheless, the algorithms are computationally 
expensive, especially when the orders of the linear 
and nonlinear parts are high.  

In the present contribution a learning approach 
for the identification of Wiener models with 
unknown and non-invertible nonlinearity, based on 
Lyapunov stability theory is proposed. Previous 
work has studied the identification of nonlinear 
systems using learning methods based on neural 
networks (Kosmatopoulos et al 1995). However the 
use of the learning approach for direct identification 
of Wiener models from input-output data has not 
been fully explored. The proposed recursive 
algorithm is developed with guaranteed global 
convergence. The linear part is given by an IIR or 
FIR filter model and the nonlinear part is 
approximated by a polynomial. All model 
parameters are estimated simultaneously, and linear 
and nonlinear model orders can be set to be 
arbitrarily high. The new approach is as simple as a 
back propagation (BP) algorithm with regard to 
implementation. The learning approach can also be 
used to estimate time-varying systems, which is of 
particular relevance to the neurophysiological 
investigations that motivated the current work. 
Theoretical analysis and simulation results to 
evaluate the effectiveness of the method are also 
presented. 

2 WIENER MODEL 
IDENTIFICATION PROBLEM 

The Wiener model is composed of a linear block 
followed by a static nonlinear unit (Fig.1). The 
linear part is assumed to be single-input single-
output (SISO) linear IIR model. The Wiener system 
can therefore be written as: 
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where u(t), x(t) and y(t) are the input to the system, 
the (unmeasured) output of the linear part, and the 

measured output of the system, respectively. The 
process, input and output noise can all be regarded 
as additive output noise denoted by w(t). The 
nonlinear function is assumed to be a polynomial 
function of the form: 
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Note that a polynomial function with sufficiently 
high order can be used to approximate any 
continuous nonlinearity to any degree of accuracy in 
the region of interest for x (Jeffreys 1988). Here, the 
nonlinearity f(.) is not necessarily invertible. 

For convenience, (1-3) can be written as: 
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with Na , Nb and Nc the corresponding orders used in 
estimation. The estimation error can be defined as  

)())(())(()()()( twtxftxftytyte −−=−=  (6) 

The identification problem is to find an updated 
law for the model in (4-5) 
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given a series of input-output data pairs u(t) and y(t) 
(t=1,2,…, T), with any initial values )0(K and )0(C , 
such that the estimation error in (6) comes to zero 
(noise-free case) or a small region near zero (noisy 
case) as ∞→t , according to a cost function V(e(t)) 
which is a positive definite function of e(t). Thus 
assuming stationary signals and a time-invariant 
system, each model parameter converges to a 
constant level. To ensure a unique solution, )(tK and 

)(tC  can be normalized. For example if the linear 
part is estimated as an FIR model and suppose 
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Figure 1: Wiener model. 
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3 THE LEARNING METHOD  

The learning method (LM) updates the model 
parameters with each new sample, driving a cost 
function towards zero. The algorithm, based on 
Lyapunov stability theory, is formulated as follows:  
Lemma 1.  The difference of the estimation error (6) 
between two successive sampling times can be 
computed as 

))()()1()()( tytytetete Δ−Δ=−−=Δ  (9) 

where Δ  indicates the change between successive 
samples and •  an estimate. By expanding (.)f  as a 
Taylor series: 
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where )),(),(((.) tUtKtC ΔΔΔ=σσ  denotes the remaining 
higher order terms in a Taylor series expansion of 

)(ty and measurement noise, and
1−−=Δ ttt UUU . 

Remark 1. In (10) the effects of model parameter 
updates (first two terms) and effect of the changing 
input (represented by ε(t)) on errors are explicitly 
considered. Note that the conventional back 
propagation (BP) algorithm in learning methods is 
simply based on the assumption that the output error 
has no distinct relationship with the input u(t), 
therefore limiting the use of BP for the identification 
of Wiener models. The current method thus 
overcomes this important limitation of a 
conventional approach.  

Theorem 1. Given input output data pairs u(t) and 
y(t) (t=1,2,…, n >>max(Na,Nb)) measured for system 
(4) and with the assumption that | σ(.)| <ρ, the 
estimated model (4 and 5) can be obtained with the 
estimation error (6) asymptotically convergent to a 
ball with radius ,ca ηρσ )0,0( >> ac ση around 
zero by training the estimation model with the 
parameter update laws (7a,b).  

Proof of this theorem will be presented 
elsewhere.  

Remark 2. The new algorithm is globally 
convergent, in terms of a cost function V(t) = e2(t) , 
to a small region around zero whose size is 
determined by the upper bound of σ(t) which 

denotes the remaining higher order terms in a Taylor 
series expansion and also represents the “effect” of 
the model estimation error. Existing recursive two-
step methods (i.e. Hunter and Korenberg 1986) can 
not guarantee convergence and the recursive 
algorithm in Wigren (1993) can only guarantee it 
locally. It should also be emphasized that the 
algorithm proposed does not require the nonlinearity 
to be invertible  

Remark 3. When there is additive noise in the 
measured output, the error (6) will not represent the 
true difference in output between the real and the 
estimated model. This will affect the update laws in 
(7a,b) and thus result in σ(t), due to the high order 
terms of the Taylor series, to vary with a larger 
amplitude (ρ). Setting ηk (the learning rate for the 
linear parameters in K ) as small as possible will 
reduce the problem. Note that the convergence speed 
of the algorithm is mainly determined by ηc (the 
learning rate for the nonlinear parameters in C ). 
Also, the saturation-like error )(te is used to avoid 
the unnecessary oscillations in the recursive 
computation which might arise following sudden 
large errors.  
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4 EXAMPLES  

Example 1. Consider a Wiener model 
K=[a1,b0,b1]T=[1,1,2]T with a noninvertible 
nonlinearity , C=[c0,c1,c2,c3,c4]T =[0.0001 0.0010 
0.0150 -0.0005 -0.0001]T as shown in Fig. 2. The 
system is stimulated by white Gaussian noise with 
added white noise such that the signal to noise ratio 
is 2, i.e., ||yr||/||w|| =2. The table in Figure 2a shows 
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the model parameters estimated with our proposed 
learning method LM after three training rounds 
(which are sufficient for the algorithm to converge 
provided the learning rate is appropriately selected). 
These are compared with the SVD method (Lacy 
2003). The results show that even though slightly 
larger errors are obtained for b1 and c0 using the 
proposed algorithm, all other parameter errors are 
considerably better than those by the SVD method 
(see Fig 2a). The model fit for the validation data 
(not used in training) is 61.58% with the LM whilst 
is only 38.22% with the SVD. The fitness to the real 
output without noise is 96.41% for the LM and only 
47.24% for SVD.  

 

 
Figure 2: a) Errors in model estimates. b) Nonlinearity to 
be identified.  

Example 2. The LM algorithm was also applied to 
the intracellular potential recorded from a spiking 
local interneuron, that is part of the reflex control 
loop of the hind limb (Newland et al 1997, Vidal-
Gadea et al 2009). The input signal was Gaussian 
noise used to stimulate a stretch-sensor located at the 
femoro-tibial joint of the hind leg. The noninvertible 
nonlinearity identified using the proposed learning 
method is shown in Figure 3a. The fitness for 
validation data is 50.0% after three rounds of 
training. The LM algorithm was also run in a BP-
like condition whereby the consideration of the 
effect from the changing input (Remarks 1-3) was 
removed. In this case, the fitness in the same 
validation data is only 38.67% (three rounds of 
training).. Here the model orders were Na=10, Nb=30 
and Nc=9. Due to the high orders of the model, it is 
difficult to apply the SVD method. 
 

 
Figure 3: A practical example from a locust neuro 
muscular control systems. (a) The estimated nonlinearity, 
(c) Estimated ouput (LM). 

5 CONCLUSIONS  

Most of the existing algorithms for the identification 
of Wiener models were developed under some 
restrictive assumptions, such as white noise input, 
part or full invertibility of the nonlinearity, or known 
nonlinearity. A novel recursive algorithm based on a 
learning approach has been developed for the 
identification of Wiener systems with unknown and 
noninvertible nonlinearity and noisy data. The new 
algorithm can guarantee global convergence of the 
estimation error to a small range around zero and is 
easy to implement in a manner similar to the well-
known back propagation (BP) algorithm. 
Comparisons between the proposed methodology 
and existing algorithms such as SVD-based method 
and BP algorithm were provided in two example 
studies. The theoretical analysis and example studies 
show the effectiveness and advantages of the 
proposed approach. In continuing this work, we will 
investigate optimal choices of the control parameters 
for the algorithm, and provide more extensive 
evaluations in simulated and recorded signals.  
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