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Abstract: Extracting patterns from protein sequence data is one of the challenges of computational biology. Here we 
use linear algebra to analyze sequences without the requirement of multiples alignments. In this study, the 
singular value decomposition (SVD) of a sparse p-peptide frequency matrix (M) is used to detect and 
extract signals from noisy protein data (M = USVT).  The central matrix S is diagonal and contains the 
singular values of M in decreasing order. Here we give sense to the biological significance of the SVD: the 
singular value spectrum visualized as scree plots unreveals the main components, the process that exists 
hidden in the database. This information can be used in many applications as clustering, gene expression 
analysis, immune response pattern identification, characterization of protein molecular dynamics and 
phylogenetic inference. The visualization of singular value spectrum from SVD analysis shows how many 
processes can be hidden in database and can help biologists to detect and extract small signals from noisy 
data. 

1 INTRODUCTION 

Many bioinformatics tools are designed to detect 
patterns in protein or DNA sequences by using 
statistically based sequence similarity methods. The 
patterns detected can be associated with the function 
or structural protein stability, can predict family 
genes or can be used to describe the evolving 
relationship of group sequences (Hunter, 1993). 
Such bioinformatics predictions help experimental 
determination simpler and more efficient (King et 
al., 2001). However, to evaluate how two proteins 
are similar is a complex issue. The standard methods 
quantify the similarity between two proteins using 
global or local alignments with their primary 
sequences. The goal is to find the optimal alignment, 
quantifying it by some metric. In this work, instead 
of using alignment analysis, the approach applied is 

based on linear algebra algorithms, similar to that 
used in systems for information retrieval in large 
textual databases and by Google™ web search 
engine. The ideas and linear algebra methods 
applied here are important in several areas of data 
mining, pattern recognition (for example, 
classification of hand-written digits), and PageRank 
computations for web search engines (Eldén, 2006). 
Our objective is to use singular value decomposition 
– SVD (Berry et al., 1995) of a sparse tripeptide 
frequency matrix to detect and extract signals from 
noisy protein data. Such analysis, when done in 
micro array gene expression data, associates the 
number of the most significant singular values from 
SVD with the gene groups and the cell-cycle 
structure (Wall et al., 2003).  

We will analyze the singular value spectrum to 
visualize them and to unreveal the main 
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components, the number of process that exists 
hidden in the database. More specifically, as an 
application of SVD, we want to show that the 
number of the most significant singular values is 
associate with the number of protein families in a 
sequence database. Such prediction can be used in 
phylogenetic inference, data mining, clustering etc, 
making experimental tests more efficient, and 
avoiding randomly determination for possible 
outcomes.  

2 SYSTEM AND METHODS 

Programs implemented for this analysis were written 
in MATLAB (The Mathworks, 1996), using its 
inbuilt functions (SVD, sparse matrix manipulation 
subroutines etc). Four datasets were used in this 
paper. The first evaluated database had 64 vertebrate 
mitochondrial genomes composed of 832 proteins 
from 13 known gene families (ATP6, ATP8, COX1, 
COX2, COX3, CYTB, ND1, ND2, ND3, ND4, 
ND4L, ND5 and ND6). This curated protein 
database was downloaded from online information 
by Stuart et al. paper (Stuart et al., 2002). The 
second database was composed by sequences from 
proteins retrieved from GenBank in 19/04/2006. It is 
a random 100 sequences sample of each protein 
type: globin, cytochrome, histone, cyclohydrolase, 
pyrophosphatase, ferredoxin, keratin and collagen 
and 200 other proteins, totalling 1,000 sequences 
from ten different types of genes. The third database 
was the file "pdb_seqres.txt.gz", located in 
http://bioserv.rpbs.jussieu.fr/PDB/. This file has 
121,556 redundant protein sequences from PDB 
(Protein Data Bank), which was reduced to 37,561 
non-identical sequences. From this file we recovered 
all sequences related to six types of enzymes: 
Ligase, Isomerase, Lyase, Hydrolase, Transferase 
and Oxidoreductase, which totalled 10,915 proteins. 
We also recovered a sample of 219 globins from the 
PDB file that was used as another test set. Besides, 
we extracted 86 sequences of haemoglobin alpha-
chain and a sample from the PDB file with all 
sequences higher than 47 amino acids (31,906 
proteins from several types of genes). Each of the 
above sequence files was analyzed by MATLAB 
subroutines that generate twelve tripeptide sparse 
matrices as described by Stuart (Stuart et al., 2002) 
and adapted by Couto (Couto et al., 2007). 

All sequences were recoded as 3-peptide 
frequency values using all possible overlapping 
tripeptide window. With 20 amino-acids it is 
generated a matrix M (8,000 x n), where n is the 

number of proteins to be analyzed. After the 
generation of the tripeptide frequency matrix (M), 
the matrix itself is subjected to SVD (Deerwester et 
al., 1990; Berry et al., 1995) and factorized as M = 
USVT. Where U is the p x p orthogonal matrix 
having the left singular vectors of M as its columns, 
V is the n x n orthogonal matrix having the right 
singular vectors of M as its columns, and S is the p x 
n diagonal matrix with the singular values σ1 ≥ σ2 ≥ 
σ3 ... ≥ σr of M in order along its diagonal (r is the 
rank of M or the number of linearly independent 
columns or rows of M). These singular values are 
directly related to independent characteristics within 
the dataset. Actually, the largest values of (S) 
provide the meaning of the peptides and proteins in 
the matrix (M). On the other hand, the smaller 
singular values identify less significant aspects and 
the noisy inside the dataset (Eldén, 2006). 

In this work our focus is only in the matrix (S) 
and its diagonal values (si) that make up the singular 
value spectrum. The magnitude of any singular 
value is indicative to its importance in explaining the 
data (Wall et al., 2003). Then, the objective here is 
to visualize the singular value spectrum as plots that 
help biologists to discover the main components, the 
process, and the groups hidden in the database. Two 
graphs were built: 

a) the scree plot, with 25 bigger singular 
values for each database; 

b) the cumulative relative variance (Vi) 
captured by the ith-singular value:  
Vi = 1 − (Si)2/∑k(Sk)2; Si = ith-singular 
value; k = 1, 2, … n. 

The visual examination of the scree plot looks 
for a “gap” or an “elbow” that indicates how many 
significant singular values exist in database. After 
the “gap” there is no significant value. The second 
graph helps to understand how much variance is 
explained by each singular value. Despite the effort 
for automatic analysis, graphic visual inspection still 
is one of the most commonly used in practice for 
dimensionality selection (Zhu and Ghodsi, 2006). 

3 RESULTS 

When there is only one specific type of protein in 
database, as haemoglobin alpha-chain, the singular 
value spectrum obtained shows a “big gap” after the 
first eigenvalue (Figure 1).  Such result is confirmed 
by the second graph (Figure 2) that indicates more 
than 90% variance is explained by the first singular 
value, which is compatible with the database itself. 
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For the globin matrix (Figures 3 and 4) is more 
difficult to define exactly where the “gap” or 
“elbow” is, because there are more than one type 
protein in database.  However, the objective here is 
not to be very precise, but sufficiently accurate to 
help biologists in finding an interval with the 
number of process or groups that exists hidden in the 
database. Such predictions need validation by 
experimental determination that becomes simpler. In 
the globin database for example, is reasonable to 
define between one and three groups that explains 
about 60% of the variance in database (Figure 4). 
After the third singular value there is stability in the 
singular value spectrum (Figure 3). 

For the database with 13 mitochondrial genes 
(Figures 5 and 6) it is possible to define the number 
of groups around 10: after this interval the singular 
value spectrum stabilizes and there is between 50% 
and 60% explained variance.  When the GenBank 
matrix is analyzed, with ten different types of genes, 
it is necessary carefully combine both graphs. 
Despite the fact that there is a “gap” after the sixth 
singular value (Figure 7), the variance explained 
until this point is only about 40% (Figure 8). The 
interval between 10 and 15 singular values 
corresponds to about 50% of relative variance and 
the spectrum becomes flat. 

The PDB database, with more then 31,000 
proteins from several types of genes, presents a 
singular value spectrum where is necessary more 
than 20 eigenvalues to explain about 30% of 
variance. There is an “elbow” between the second 
and third singular value (Figure 9) that is insufficient 
to explain most data (Figure 10). Similar result is 
obtained with the PDB enzymes database that 
apparently had only 6 types of proteins. The visual 
analysis of the scree plot and cumulative variance 
graph (Figures 11 and 12) suggest more than 25 
groups hidden under the six enzymes denomination. 
This is a clue, a possibility that should be analyzed 
by another bioinformatics tool.  

Table 1 summarizes the visualization of all 
singular value spectrums for each database, plotted 
in the Figures 1 to 12. The suggested numbers of 
significant singular values for each dataset is 
coherent, except the enzymes database, which seems 
to be actually formed by several quite different 
sequences. SVD analysis unreveals biological 
motives associated with biological processes and 
other biological properties in each dataset. 
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Figure 1: Scree plot showing singular values of 
haemoglobin α-chain database. 
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Figure 2: Cumulative relative variance of haemoglobin α-
chain database. 
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Figure 3: Scree plot showing singular values of globin 
database. 
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Figure 4: Cumulative relative variance of globin database. 
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Figure 5: Scree plot showing singular values of 
mitochondrial genes database. 
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Figure 6: Cumulative relative variance of mitochondrial 
genes database. 
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Figure 7: Scree plot showing singular values of sample 
genes from GenBank. 
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Figure 8: Cumulative relative variance of sample genes 
from GenBank. 
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Figure 9: Scree plot showing singular values of random 
PDB sequences dataset. 
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Figure 10: Cumulative relative variance of random PDB 
sequences dataset. 
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Figure 11: Scree plot showing singular values of PDB 
enzymes database. 
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Figure 12: Cumulative relative variance of PDB enzymes 
dataset. 

4 CONCLUSIONS 

A biologist could ask: “What is the biological 
significance of the SVD?” We answered this 

question: the visualization of singular value 
spectrum from SVD analysis shows how many 
process can be hidden in database. The singular 
value plot is a suggestion, a clue that helps biologists 
to detect and extract small signals from noise data.  

Table 1: Suggested number of significant singular values. 

Dataset Predefined # 
groups 

Suggested number 
singular values 
Min Max 

Haemoglobin α-chain 1 1 1 
Globin 1 1 3 

Mitochondrial genes 13 9 15 
GenBank 10 10 15 

PDB sequences Several > 20 
Enzymes 6 > 25 
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