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Abstract: In this paper we introduce an unsupervised learning algorithm which distinguishes two different modes in a 
cyclic signal. We also present the concept of “mean wave” which averages all signal waves aligned in a 
notable point (nth zero derivative). With that information the signal’s morphology is captured. The clustering 
mechanism is based on the information collected with the mean wave approach using a k-means algorithm. 
The algorithm produced is signal-independent, and therefore can be applied to any type of signal providing 
it is a cyclic signal that has no major changes in the fundamental frequency. To test the effectiveness of the 
proposed method, we acquired several biosignals (accelerometry, electromyography and blood volume 
pressure signals) in the context tasks performed by the subjects with two distinct modes in each. The 
algorithm successfully separates the two modes with 99.2% of efficiency. The fact that this approach 
doesn’t require any prior information and the preliminary good classification performance makes this 
algorithm a powerful tool for biosignals analysis and classification. 

1 INTRODUCTION 

Human-activity tracking techniques focus on direct 
observation of people and their behavior. This could 
be done, as an example, with cameras (Jezekiel Ben-
Arie, 2002), accelerometers to track human motion 
(Jonghun Baek et al., 2004), or contact switches to 
compute facial expressions with the 
electromyography patterns (Joshua R. Smith, 2005) 
(Alan J. Fridlund, 2007).  

In this work we acquired several cyclic 
biosignals – such as accelerometry (ACC), 
electromyography (EMG) and blood volume 
pressure (BVP) signals – from subjects performing 
some context tasks, and we’ve developed 
an unsupervised learning algorithm which is capable 
to distinguish two different modes in the same 
acquired signal.   

The developed algorithm follows an 
unsupervised learning approach, as it doesn't require 
any prior information (Zoubin Ghahramani, 2004).  
We  use  the  k-means  cluster  algorithm  due to its 

efficiency and effectiveness (Xindong Wu, 2007).  
As a clustering method, our algorithm is signal-

independent and doesn’t use specific information 
about the signals. Although our algorithm is signal-
independent, the signals used must be cyclic signals, 
with only two distinctive modes and a small 
variation of fundamental frequency between those 
modes.  

Warren Liao (2005) presents a survey on time 
series data clustering, exposing past researches on 
the subject. He organizes the works in three groups: 
whether they work directly with the raw data, 
indirectly with features extracted or indirectly with 
models built from the raw data. We created a 
different algorithm as we intended to work with 
single signals with different modes or activities in it, 
and the previous studies uses various signals each 
one distinct with only one mode or activity.   

A more resemble approach, as the clustering is 
based on the similarity of wave shapes presented in a 
single time series data, is the work of Dr. Rodrigo 
Quiroga (2007) with spike sorting. However, as the 
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neuron activity is not periodic, the spikes are 
detected with a threshold and the clustering 
procedure uses features extracted from those parts of 
the signal.  

We present the concept of “mean wave” which 
averages all signal waves aligned in a notable point, 
that we call triggering point, such as maximum, 
minimum, zero or inflexion point. Our algorithm 
automatically separates each signal’s cycle and 
computes the mean wave using an alignment on the 
triggering point of each cycle. With that information 
the signal’s morphology is captured. Our clustering 
algorithm uses the signal’s cycles information 
gathered from the mean wave approach to separates 
the two modes cycles of the entire signal. 
As our mean wave approach effectively captures the 
morphology of a signal, can be useful in several 
areas – as a clustering basis or just for a simple 
signal analysis.  

In the following section the signal acquisition 
methodology is presented. In section 3 we expose 
the signal processing detailing all algorithms steps. 
Finally in sections 4 and 5 we detail and discuss our 
results and algorithm performance, concluding the 
work.    

2 METHODS 

2.1 Acquisition System and Sensors 

To acquire the biosignals necessary to this study we 
used a surface electromyography (EMG) sensor, 
emgPLUX, a triaxial accelerometer (ACC), 
xyzPLUX, and a finger blood volume pressure 
(BVP) sensor, bvpPLUX (bioPLUX Research 
Manual, 2010). 

For the signal’s analog to digital conversion and 
bluetooth transmission to the computer we used a 
wireless signal acquisition system, bioPLUX 
research, which has 12 bit ADC and a sampling 
frequency of 1000 Hz (bioPLUX Research Manual, 
2010). In the acquisitions with accelerometers just 
the axis with inferior-superior direction was 
connected to the bioPLUX. 

2.2 Data Acquisition and Data Format 

Several tasks were designed and executed in order to 
acquire signals that had two distinctive modes. 

We conceived a synthetic digital signal and 
collected signals from four different activities 
scenarios with the accelerometer sensor, and one for 
each EMG and BVP sensors.  

2.2.1 Synthetic Signal 

To test our algorithm, a synthetic wave (Figure 1) 
created using a low-pass filtered random walk (of 
100 samples), with a moving average smoothing 
window of 10% of signal’s length, and multiplied by 
a hanning window, was repeated 30 times, so all the 
cycles were identical. After a small break on the 
signal the wave was repeated 20 more times, with an 
identical small change of 40 samples in all waves, 
creating a second mode. 

 
Figure 1 a): Synthetic signal with identical waves from t0 
to t1 and from t1 to t2; b): corresponding zoomed waves. 

2.2.2 Walking and Running (ACC) 

With an accelerometer located at the right hip and 
oriented so the y axis of the accelerometer (the only 
connected to the bioPLUX) was pointing upward, 
the subjects performed a task of walking and 
running non-stop (on a large circle drawn on the 
floor). 

The subjects walked for about 1 minute at a slow 
speed, then spent 1 minute running, and ended with 
1 minute walking again. The signal acquired is 
represented in figure 2. 

 
Figure 2 a): Acceleration signal of walking (t0 to t1 and t2 
to t3) and running (t1 to t2); b): corresponding zoomed 
waves; c): tasks performed. 
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2.2.3 Running and Jumping (ACC) 

With an accelerometer located at the right hip and 
oriented so the y axis of the accelerometer (the only 
connected to the bioPLUX) was pointing upward, 
the subjects performed a task of running non-stop 
(on a large circle drawn on the floor) and jumping 
also continuously but at the same place.  

The subjects spent 1 minute running, followed by 
1 minute jumping. The signal acquired is 
represented in figure 3. 

 
Figure 3 a): Acceleration signal of running (t0 to t1) and 
jumping (t1 to t2); b): corresponding zoomed waves; c): 
tasks performed. 

2.2.4 Jumping with and Without Impulsion 
(ACC) 

In this task, the following procedure was executed: 
14 seconds of “normal” jumping (small jumps 
without a big impulsion), 24 seconds of jumping 
with some boost and again 7 seconds of normal 
jumping.  

The subjects used an accelerometer located at the 
right hip and oriented so the y axis of the 
accelerometer (the only connected to the bioPLUX) 
was pointing upward. The signal acquired is 
represented in figure 4. 

2.2.5 Skiing (ACC) 

Figure 5 shows the acceleration signal of an 
accelerometer attached to the ski pole, below the 
handgrip, used by the subject when skiing.  

In the 37 seconds of the signal the subject 
performed two different techniques, called V1 and 
V2. V1 skate is an asymmetrical uphill technique 
involving one poling action over every second leg 
stroke. V2 skate is used for moderate uphill slopes 

and on level terrain, involving one poling action for 
each leg stroke. (Erik Andersson, 2010)

 
Figure 4 a): Acceleration signal of normal jumps (t0 to t1 
and t2 to t3) and jumps with boost (t1 to t2); b): 
corresponding zoomed waves; c): tasks performed. 

 
Figure 5 a): Acceleration signal of skiing with V2 
technique (t0 to t1 and t2 to t3) and skiing with V1 
technique (t1 to t2); b): corresponding zoomed waves; c): 
tasks performed. 

The first 7 cycles of the signal (about 5 seconds) 
were produced through a V2 technique, the next 27 
cycles (about 25 seconds) a V1 technique and the 
final 8 cycles the technique was V2 again.  

2.2.6 Elevation and Squat of the Legs 
(EMG)  

The subject was standing straight with both feet 
completely on the ground and was asked to 
performed 12 elevations of the legs - getting on the 
tiptoes  and  back  with  both feet completely on the 
ground - followed  by 11 squats - bending the knees 
and back standing straight - (Figure 6). The EMG 
data were collected using bipolar electrodes at the 
gastrocnemius muscles of the right leg.  
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Figure 6 a): EMG signal of the gastrocnemius muscle’s 
contraction through the elevation (t0 to t1) and squat (t1 to 
t2) of the inferior members; b): corresponding zoomed 
waves; c): tasks performed. 

2.2.7 Normal (at rest) and High Beat (after 
Exercise) Signal (BVP) 

The subjects were instrumented with a BVP sensor 
on the fourth finger of the left hand and were seating 
with his left forearm resting on a platform. 

We’ve made one acquisition with the subject at 
rest. The subjects performed intensive exercise that 
was not collected to avoid undesirable artefacts due 
to movement. After the exercise, we acquired 
another BVP signal.  

For the purpose of this study we used both 
signals (at rest and after exercise) in the same file, 
cutting a part of each signal and concatenating them 
offline. The resulting signal is represented in figure 
7. 

 
Figure 7 a): BVP signal with the subject at rest (t0 to t1) 
and after exercise (t1 to t2); b): corresponding zoomed 
waves; c): tasks performed. 

All the signals referenced above are available at 
OpenSignals (Opensignals.net website, 2010). 

3 SIGNAL PROCESSING 

The collected data was processed offline using 
Python with the numpy (T. Oliphant, 2006) and 
scipy (T. Oliphant, 2007) packages. 

Signal processing algorithms were developed for 
automatic detection of a mean wave representative 
of the signal’s behavior and the k-means algorithm 
was used to cluster the signals. The main idea of this 
algorithm is to define a loop with k centroids far 
away from each other, take each point belonging to a 
given data set and associate it to the nearest centroid. 
Repeating the loop, the centroids position will 
change because they are re-calculated as barycenters 
of the clusters result, and after several iterations the 
position will stabilize and we achieved the final 
clusters (Dênis Martins, 2008). 

Figure 8 describes the method used to process 
the signals. All biosignals were submitted to a 
signal-specific pre-processing phase and then to a 
generic signal-independent phase (composed with a 
mean wave and clustering procedure) which was 
applied to all the signals of this study.  

 
Figure 8: Signal’s processing procedure schematics. 

For the pre-processing phase, the acceleration 
signals were low-pass filtered using a smoothing 
filter with a moving average window of 50 points. 
The BVP signal was also low-passed filtered with 
the same moving average window as the 
acceleration signals. Random noise with 1/5 of 
original amplitude was added to the synthetic signal. 
The EMG signal was centered at y axis zero, by 
subtracting its mean value, and then rectified. Then 
we applied the smoothing filter with a moving 
average window of 300 points. 
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In the next sections the generic processing 
procedure will be described.  

3.1 Mean wave 

The autoMeanwave algorithm is the base function 
to identify the individual waves. After running this 
algorithm we will have the mean wave computed 
with the individual wave’s information.  

This algorithm receives, by input, a signal, its 
sampling frequency and a trigger mode (this one can 
be omitted and the algorithm will use the maximum 
point as default).  

As we’re working with cyclic signals, the first 
step of the automatic mean wave algorithm is the 
detection of the signal’s fundamental frequency. For 
that we use the fundamentalFrequency 
algorithm. With the result we compute the window 
size value and randomly selected a part of the signal 
with the same number of samples as the window 
size. With that signal’s part and the original signal 
itself we run sumvolve algorithm to get the signal 
events (series of points that we consider the center of 
each cycle). 

After this we have all the information necessary 
to compute the mean wave, which we do in the 
computeMeanwave algorithm. 

Algorithm 1 autoMeanwave 
Input: Signal, sampling frequency, trigger 

mode.  
Output: Fundamental frequency, window size, 

events. 

Next we will describe minutely the sub-
algorithms referenced above.  

Algorithm 2 fundamentalFrequency
Input: Signal, sampling frequency.  
Output: Fundamental frequency. 

In the fundamentalFrequency function, 
we smoothed the result of the original signal’s fast 
fourier transform with a moving average window of 
5% of the signal’s length. We assumed the 
frequency value of the first big peak located at the 
smoothed FFT signal as the fundamental frequency 
of the original signal.  

With the fundamental frequency value we could 
compute the sampling size of a signal’s cycle. We 
call that value “window size”, with a 20% margin: 

winsize = (fS / f0) *1.2 (1)

Being fS the sampling frequency and f0 the 
fundamental frequency. We open the window 20% 
to use some more samples than a cycle.  

Although there are more robust methods to 
determine the fundamental frequency of a signal, 
this approach is adequate for our work as the 
purpose was to have a close idea of the size of a 
cycle. We actually use more than one exact cycle as 
we use a margin of 20%, opening the window 
calculated with the fundamental frequency. Notice 
that further on we use a correlation function to detect 
meaningful events on a cycle, so the fundamental 
frequency is just used as a preliminary estimation to 
support others algorithms.  

Algorithm 3 sumvolve 
Input: Two signals 
Output: Distance values. 

This algorithm works as a correlation function. 
Sliding the smaller window part of the signal (given 
by argument) through the original signal, one sample 
at a time, this algorithm compares the distance of the 
two windows. We used the mean square error as the 
distance function: 

 

(2)

 

The result of this algorithm is a signal composed 
with distance values. That distance values shows the 
difference between each sliding winsize cycle and 
the window selected at the first place.  

After, we found all the minimum peaks of the 
resulted correlation signal. Those peaks will be our 
events. 

Algorithm 4 computeMeanwave 
Input: Signal, events, window size. 
Output: Mean wave and standard deviation 

error wave. 

With the events and the window size, we cut the 
signal into periods that we assume as our signal 
cycles: 

cycle = signal[event – winsize/2 : event 
+ winsize/2] (3) 

This way, based on all cycles, we could compute 
the mean value to each cycle sample, and compose a 
mean wave. The standard deviation error wave is 
computed with the same principle, calculating the 
standard deviation error instead of the mean value. 
For a better visualization of the results, we computed 
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an error area with the standard deviation error wave 
obtained. For that, we added and subtracted one 
standard deviation error wave to the mean wave, 
getting a superior and inferior wave, to graphically 
present the error area (66% of the error). This is 
shown in the results section. 

After the results shown above, a final adjustment 
was made: the alignment of every signal’s cycles. 
The position of the mean wave’s minimum point 
was detected, and that become our trigger point. The 
minimum position was chosen as the trigger position 
- we could use the maximum (of the signal or the 
derivative), or the zero crossings, for example.  

With this trigger point we recalculate the peak 
events, or cutting points, used in the 
computeMeanwave algorithm: 

events =  events + trigger – winsize/2  (4) 

With the events variable recalculated, we used 
the computeMeanWave function again, so the 
cycles were aligned and the resultant mean wave 
more accurate. 

3.2 Clustering 

For the clustering procedure we developed a 
function that receives the signal to cluster, the 
window size and cutting events produced with the 
autoMeanwave algorithm.  

We go through all the cutting events and for each 
we select a part of the signal with center at that event 
and a number of samples to both sizes equal to the 
window size. Then we compare that cut with each of 
the others (with the center in the others cutting 
events and the same window size), using the 
distance wave-to-wave formula: 

Algorithm 5 distanceMatrix 
Input: Signal, Cutting events, window size. 
Output: Matrix with wave-to-wave distances. 

 

 

(5)

 

With s1 and s2 being the parts of the signal selected 
before. 

With all of the distance values for each wave, we 
built a matrix of distances.  

 
Figure 9: Matrix of distances produced for the synthetic 
waves (a)) and the skiing task (b)). 

Figure 9 presents two matrixes of distances, 
obtained with the imshow command. Figure 9 a) 
shows the matrix of the synthetic waves distances 
and figure 9 b) the matrix for the skiing task 
distances. As we can see, the synthetic matrix is 
almost ideal, as all the waves are equal – the 
distance values only are minimums or maximums. In 
the skiing matrix however, the matrix assumes a 
greater variation of distances, as the cycles are not 
exactly the same. However, it’s visible the similarity 
between the cycles of the same technique (7 cycles 
V2, 27 cycles V1 and 8 cycles V2).  

To cluster the signal we used the kmeans 
algorithm. Those functions received the matrix 
created with the distanceMatrix algorithm and 
the number of clusters expected in the data, giving 
the clusters and distances to the clusters as result. 

4 RESULTS AND DISCUSSION 

Figure 10 shows the graphics of the resulting mean 
waves (line) and deviation error area (filling) after 
running the algorithms referenced above. At the left 
(figure 10 a.) the graphics represent the initial mean 
waves created, before the clustering procedure. At 
the right (figure 10 b.) we have the mean waves 
representative of the signal parts that were divided 
according to the resultant clustering codebook. 

It’s visible that the mean waves at the left gather 
information about the behavior of the signal, even if 
there are some changes in shape or frequency along 
the signal. After the clustering procedure there are 
some predictable variations in the resultant mean 
waves. We notice an overall reduction of the 
deviation error after the clustering procedure and 
also a reshaping of the mean wave. 

After running the clustering procedure we gather 
the results for each task performed. These results are 
shown in table 1. 
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Figure 10: Mean waves of all the tasks before (a)) and after (b)) the clustering procedure. 

Table 1: Clustering results. 

Task Number 
of Cycles 

Cycles 
correctly 
clustered 

Errors Misses 

Synthetic 50 49 0 1 

Walk and run 343 342 1 0 

Run and jump 296 295 1 0 

Jumps 85 84 1 0 

Skiing 42 41 0 1 
Elevation and 
squat 23 23 0 0 

BVP rest and 
afterexercise 165 159 4 2 

All 1004 991 7 5 

It is important to note that some cycles  weren’t 
classified, and that occurred because sometimes the 
borders of the signal didn’t have a full cycle - the 
distanceMatrix algorithm (algorithm 5) cannot 

be used to compare a short cycle with the regular 
ones.  Therefore, those cycles have been rejected for 
lack of pattern quality, and won’t be taken into 
account.  

In the “walk and run” activity there were some 
extra classification points. The cycles were correctly 
clustered (with only 1 error encountered), but in the 
“walking” mode there were some extra points 
between those cycles that were also classified. The 
reason is a relatively large variation in the 
fundamental frequency from the walking to the 
running activity - despite one activity has all cycles 
well defined (by events variable described at (4)), 
the other as less than one cycle per period cut 
(because of that change of fundamental frequency). 
This condition shows a limitation of our algorithm – 
doesn’t allow big changes in the frequency domain 
in the different modes presented on the signal.  

The errors of classification, note that only 7 
errors were encountered, and 2 of those errors were 
in transition periods – where the cycle wave is still 
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reshaping to form the other activity and the distance 
value to the mean wave or to the clusters mean 
values is bigger than anywhere else on the signal. 
This occurred in the jumps and in the walk and run 
activities.  

Given the results we can affirm that our 
clustering algorithm based on the mean wave 
information only returned 7 errors out of 999 cycles 
with pattern quality, and therefore we achieved 
99.2% of efficiency.  

5 CONCLUSIONS 

The proposed algorithm represents an advance in the 
abstract clustering area, as it has an effective 
detection of signal variations, tracing different 
patterns for distinct clusters, whether it’s an activity, 
synthetic or physiological signal. 

6 FUTURE WORK 

In future work we intend to repeat this procedure to 
a wide range of subjects performing the same task, 
perform a noise immunity test and also run the 
algorithm using a signal with more than two modes. 

We intend to introduce an automatically 
perception of the cycles which are too distance from 
the cluster and assign those cycles to a new 
“rejection class”. This will reduce the number of 
errors due to a strange cycle, in particular the 
mode’s transition cycles. 

The local detection of the fundamental frequency 
is also a future goal, as we intend to realize when 
there’s a major variation of fundamental frequency 
and make our algorithms adapt its behavior 
according to that variation.  

Finally, we have the intention of creating a 
multimodal algorithm, which can receive more than 
one signal, and process those at the same time and 
with the same treatment. This could be useful if we 
want to use the 3 axis of an accelerometer, or 
conciliate the information of a BVP with an 
electrocardiography (ECG) signal. 
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