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Abstract: In this paper, we study the problem of bilateral bargaining under uncertainty. The problem is cast in an in-
teractive decision-theoretic framework, in which the seller and the buyer agents are equipped with the ability
to represent and reason with (probabilistic) beliefs about strategically relevant parameters, the other agent’s
beliefs, the other agent’s beliefs about the current agent’s beliefs, and so on up to finite levels. The inescapable
intractability of solving such models is characterized. We present a realization of the paradigm of (resource)
bounded rationalityby achieving a trade-off between optimality and efficiency as a function of the discretiza-
tion resolution of the infinite action space. Memoization is used to further mitigate complexity and is realized
here through disk-based caching. In addition, the inevitability of model extinction that arises in such settings
is dealt with by indicating an intuitive realization of theabsolute continuity conditionbased on maintain-
ing an ensemble model, for e.g. a random model, that accounts for all actions not already accounted for by
other models. Our results clearly demonstrate an operationalizable scheme for devising computationally effi-
cient anytime algorithms on interactive decision-theoretic foundations for modeling (higher-order) epistemic
dynamics and sequential decision making in multi agent domains with uncertainty.

1 INTRODUCTION

In strategic multi agent interactions under uncertainty,
modeled in a decision-theoretic framework, it is im-
portant for an agent to reflect upon its (partial) knowl-
edge of the strategically relevant parameters of the
interaction and the (partial) knowledge of the oppo-
nents as it deliberates about what course of action is
best (i.e. attains highest expected utility). The phe-
nomenon of aninteractive epistemologyof mutual
beliefs naturally arises – an agent may form beliefs
about the parameters to represent its uncertainty, be-
liefs about other agents’ beliefs, beliefs about other
agents’ beliefs about others’ beliefs, and so on. Then,
(Bayesian) probability calculus provides a flexible
and powerful means of representing and reasoning
about the resultant epistemic dynamics.

An immediate difficulty that arises in this frame-
work is the potential infiniteness of the interactive
epistemology. In game theory, esp. in the literature
on games under incomplete information, beginning
with John Harsanyi’s seminal work on this problem
(Harsanyi, 1968), there is a long tradition of work that
has been systematically addressing this issue. See, for
e.g., (Zamir, 2008) for a survey.

The game-theoretic approach centers around the
notion of an equilibrium. Particular epistemic as-
sumptions (Aumann and Brandenburger, 1995) are
necessary in order to achieve equilibirum – such as
may never be the case in an actual interaction. In
addition, many games, especially under incomplete
information, exhibit the phenomena of a multiplicity
of equilibria, with no means of uniquely identifying
“the” rational chouce from among them. Therefore,
the game-theoretic approach is limited in its ability to
prescribe a generally applicable control paradigm for
the design of intelligent autonomous agents.

A purely subjective approach of dealing with
this issue in a decision-theoretic framework was re-
cently proposed and has led to definition of afinite
interactive epistemological decision theoretic model
(DT-FIE, from here on) called theFinitely Nested
I-POMDP ((Gmytrasiewicz and Doshi, 2005) and
(Doshi and Gmytrasiewicz, 2005)). In that work, the
standard POMDP model (Lovejoy, 1991) and (Kael-
bling et al., 1998) is extended by equipping an agent
with the ability to maintain interactive (i.e. higher-
order) beliefs, up to some finite level. The standard
theory of sequential decision making is then extended
to this model to produce optimal policies. The analy-
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ses in this paper are inspired by that work.
The problem of bilateral bargaining under uncer-

tainty is a well-known example of a multi agent se-
quential decision-making problem under uncertainty
and is well-studied in game-theoretic literature: see,
in order, (Rubinstein, 1982), (Rubinstein, 1985), (So-
bel and Takahashi, 1983), (Cramton, 1984), (Fuden-
berg and Tirole, 1983), (Grossman and Perry, 1986),
(Perry, 1986) and (Cho, 1990).

The incompleteness of the theory, from a predic-
tive as well as a prescriptive perspective, motivates
this work, in which our main objective is the realiza-
tion of an operationalizable automated DT-FIE bar-
gaining agent.

The paper is organized as follows. In the next sec-
tion, we introduce notation and set up the model. In
the following sections, we introduce and study seller
and buyer agents of successively increasing sophisti-
cation and present our various results in their appro-
priate contexts. Our main result regarding the real-
ization of bounded rationality is presented in Section
5.2, where we discuss the L2Seller type.

2 PRELIMINARIES

In this paper, we investigate a seller-offers bargain-
ing mechanism where, at every turn, the seller makes
offers and the buyer indicates whether or not a partic-
ular offer is acceptable. The game ends when an offer
is accepted unless the game has a finite horizon, in
which case it ends, possibly without agreement, when
the horizon is encountered. Delay in reaching agree-
ment is costly to either party – realized by applying
a multiplicative discount factorδ to the payoffs ($1
today is worth only $δn dollars n days from now).

The agents ascribe avaluation to the item bar-
gained over – sayc for the seller andv for the buyer.
Assume also that trade is feasible, i.e.c≤ v. If agree-
ment is reached on the n-th stage at some price, say
x, wherec ≤ x ≤ v, the payoffs to the seller and the
buyer are(x−c) ·δn−1 and(v−x) ·δn−1, respectively.

It is assumed throughout thatc= 0 andc≤ v≤ 1
(i.e. v∈ [0,1]) and that 0≤ δ ≤ 1. All this is assumed
to be commonly known; while,v itself is assumed to
be the buyer’s private information. Agents may main-
tain other relevant beliefs and higher-order beliefs; for
e.g. the seller may maintain a belief about the buyer’s
valuation, the buyer may maintain a second-order be-
lief about the seller’s first-order belief about its (i.e.
the buyer’s) valuation, etc. There is nothing special
about this particular informational setting; the con-
clusions easily generalize to settings where the basic
strategically relevant uncertainty is about something,

or, set of things, other than the buyer’s valuation.
Here, we recall and adopt notations from (Gmy-

trasiewicz and Doshi, 2005) to describe the agents’in-
teractive epistemological sophistication. An Li-type
(class) for i = 1,2..., wheretype is eitherBuyer or
Seller, denotes an agent type (class) that can model
and reason about agents ofLj-type (class), where
0 ≤ j < i. For e.g., the L2-type agent can represent
and reason about L0-type and L1-type agents, etc.

2.1 Definitions

In the following, we introduce additional notation and
definitions to make certain notions precise:

n(Li )AgentA
LjAgentB . The number of possible (Li-)AgentA

types (or, type classes, as should be clear from the
context) in the support of the Lj-AgentB’s initial
prior belief. For e.g.,nL0Buyer

L1Seller represents the num-
ber of L0-Buyer type classes in the L1-Seller’s
prior support, andnL1Seller

L2Buyer represents the number
of L1-Seller types in the L2-Buyer’s prior support.

|V|. The cardinality of the discretized space of possi-
ble buyer valuations.

mpd. Theminimumprofit demanded by the buyer.

Schedule. A (possibly finite) sequence of offers
{x1,x2,x3, ...}, where each successive offer is
made after the rejection of the previous one. We
assume a discretized space of possible offers,O.
We also assume that offer schedules aremono-
tonically decreasing. These ensure, usefully, the
finiteness of the space of possible offer schedules.
An optimal schedule is one that achieves the
maximum expected utility with respect to some
(implicit) initial prior belief.

|O|. The cardinality of the discretized space of possi-
ble actions (offers).

Terminal Belief. A state of belief that need not be
explored (i.e. deliberated upon) further and can
be trivially assigned a value; for e.g. the belief
state of the (seller) agent upon encountering the
horizon of the game or after the lowest possible
potentially profitable offer was just rejected, etc.

Belief-state Graph. A labelled directed graph where
all possible belief states of an agent constitute the
nodes (or, vertices) and where there is a directed
edge from a nodeu to a nodev labelled with offer
a if the agent’s belief state changes fromu to v
after performing Bayes’ belief update conditional
on the event that offera was rejected.
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3 L0-TYPE AGENTS

L0-typeagents, the least sophisticated in this study,
have the capability to model the world and may have
preferences and intentions (to realize them). They do
not explicitly model other similarly intentional agents
(though, their presence may be ‘modelled’ as environ-
mental artifact or noise). The classic POMDP would
be classified as an L0-type model.

We consider a class of L0-Seller types equipped
with a simple offer generation rule:Decrement the
most recently rejected offer, if any, by some (fixed or
random) amount. We assume a smallest discretiza-
tion unit for the action space, denoted as d and a mul-
tiplicative factor, denoted bym. The L0-Seller starts
with some initial offer and then decrement the cur-
rently outstanding offer by some constant amountmd,
or some random amount sampled uniformly from all
possible offers that are lesser than the outstanding one
by some multiple ofmd, denoted respectively as L0-
Seller(md) and L0-Seller(mdr). Offers cease as soon
as one is accepted, or, if continuation is detrimental.

Example 1. Let d = 0.05. Let the outstanding of-
fer be 0.4. Then, for instance, an L0-Seller(2d)
would next offer 0.3(= 0.4− 2× 0.05) and an L0-
Seller(3rd) would select some offer uniformly in
{0.05,0.2,0.35}.

We consider L0-Buyer types with equally simplis-
tic decision behavior: a buyer with valuationv accepts
the outstanding offerx if (and only if) v− x≥ mpd.
An L0-Buyer type is, therefore, characterized by its
valuation and mpd. We group together L0-Buyer
types with the samempdinto a type class.

4 L1-TYPE AGENTS

4.1 L1-seller

At every stage, the seller can compute the probability
that a given offer will be rejected, based on its cur-
rent belief. If the offer is indeeed rejected, the seller
updates its beliefs in a Bayesian manner, and the de-
liberation continues, until a terminal belief is encoun-
tered. This mechanism induces a directeddelibera-
tion treeas the connected subgraph of the belief state
graph, where the root node is the initial prior belief
and every leaf node is a terminal belief. A particular
offer schedule, therefore, corresponds to a particular
set of paths on this tree from the root node to a termi-
nal node. An expected probability may be computed
for each path, which induces an expected utility for

each offer schedule. The seller’s task is to chose an
optimal schedule, with respect to its prior beliefs.

The complexity of the straightforward optimal
top-down traversal approach, is equal to the total
number of nodes in the deliberation tree, namely, 2|O|.
This result is obtained as a consequence of the fact
that, at every stage, the seller need not again consider
offers greater than or equal to rejected offers.

In the bottom-up approach, the seller first solves
all terminal belief states, followed, successively, by
solving all belief states that have a directed edge in
thebelief state graphto some previously solved state.
This process is complete when theroot belief state is
encountered and solved. The associated complexity
depends on the number of unique belief states and can

be shown to be|V|n
L0Buyer
L1Seller.

Therefore, the running-times of both approaches
are exponential; the top-down approach in the dimen-
sion of the action space and the bottom-up approach
in the dimension of one component of the state space.
These values are not directly comparable; therefore,
there does not,a priori, seem to be a naturalbetter
alternative among the two approaches.

It turns out that, in the particular case of the
L1Seller, it is possible to elegantly characterizereach-
able belief states which is then used to devise a
polynomial-time algorithm for the bottom-up ap-
proach. Due to space limitations, this is outlined only
in our technical report (Varkey, 2010). However, such
characterizations are not simple to achieve in gen-
eral. In Section 5.2, we analyze the L2-Seller and
present, as our main contribution, a boundedly ratio-
nal top-down scheme that is applicable to general Li-
type sellers.

4.2 L1-buyer

A buyer with valuationv accepts an offerx if the im-
mediatesureprofit (= v− x) is greater than the dis-
counted expected profit from the next stage. It cal-
culates this expected profit from what it expects to be
the next offer based on its beliefs, updated after seeing
the current offerx, about the seller.

Thisonlinedecision-making computation is linear
in the number of mental models maintained by the
buyer, i.e.O(nL0Seller

L1Buyer)). Two examples follow.

Example 2. Suppose that the buyer, assumed to
have avaluationof 0.9, believes, with probabilities
0.7 and 0.3, respectively, that the seller is one of two
types – asubintentionalautomaton with a fixedsched-
ule of offers, say{1.0,0.8,0.7,0.4,0.3,0.2,0.1}, or
an L0-Seller(2d) type. Call theseModel 1andModel
2, respectively. Suppose that the actual seller follows
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the schedule{1.0,0.8,0.6,0.4,0.3,0.2,0.1}. Also as-
sume thatd = 0.1 andδ = 0.7.

The buyer’s belief updates and decisions at every
stage are recorded in Table 1.

Both seller models may be used torationalizethe
first two offers. In these cases, Bayesian belief update
simply preserves the prior. The buyer rejects both
these offers because the discounted expected profit
from the next stage is greater. The next offer, 0.6, is
only rationalizable usingModel 2. Therefore, the up-
dated belief concentrates the entire probability mass
on this model. The discounted expected profit from
the next stage is still greater – therefore, 0.6 too is
rejected. Finally, offer 0.4 is accepted.

4.2.1 Model Extinction and ACC

Example 2 usefully demonstrates the necessity and
sufficiency of theabsolute continuity condition(ACC)
(Kalai and Lehrer, 1993) in an interactive decision-
making framework. Both models thought possible by
the buyer arewrong(in the sense that neither of them
represents the true seller). In fact, after the buyer re-
ceives offer 0.6, it (correctly) deems that the seller
cannot possibly beModel 1, and, therefore, removes
this model from the support of its beliefs. However, it
turns out thatModel 2 accounts forthe buyer’s obser-
vations all the way until the termination of the inter-
action (which happens when the buyer accepts offer
0.4). But note, in particular, thatModel 2 is also a
wrong model of the true seller. Interestingly enough,
had the negotiations continued for one more round,
the next offer of 0.3 would have led the buyer to con-
clude that not evenModel 2could be the true model
of the seller, leading to the extinction of all models
in the buyer’s prior belief space. None of the prior
models it thought possible to begin with could suc-
cessfully explain (rationalize) reality; it realizes that
it was completely mistaken in its beliefs.

How should Bayesian decision-theoretic agents
prepare for such contingencies in multi-agent en-
vironments where it is uncertain about thetype of
agent(s) with which it is interacting? As in our ex-
ample, consider an agent that starts with a prior belief
over a non-exhaustive set of possible models of the
opponent agent. If one of these models happens to be
the true model of the opponent, then our agent will
never be taken by surprise. In fact, after sufficient in-
teraction and observation, its beliefs will converge to
the true model (Kalai and Lehrer, 1993). If, on the
other hand, its beliefs do not contain the true model
in its support, then, barring a fortuitous satisfaction
of ACC, the agent will eventually be completely sur-
prised (an eventual extinction of all models in its be-
lief support).

Realization of ACC through Random Models. A
closer understanding of such an agent’s beliefs yields
a way out of this quandary. If an agent is so com-
pletely mistaken in its beliefs that the true model is not
even possiblea priori, it is only natural that it even-
tually faces inexplicable situations. A more realistic
approach calls for a cautious agent that includes, in
the support of its beliefs, one more model – arandom
model – which would make all actions (here, offer ev-
ery possible offer) plausible with some positive prob-
ability, and, thereby, account for all contingent behav-
ior (not already modeled by the other models). Such
a prior belief will always satisfyACC. The following
example illustrates the usefulness of this approach.

Example 3. Consider a buyer, withvaluation0.7,
who believes, with probabilities 0.5, 0.4 and 0.1, re-
spectively, that the seller is one of three possible
types – asubintentionalautomaton with a fixedsched-
ule of offers, say{1.0,0.9,0.7,0.4,0.3,0.2,0.1}, or
an L0-Seller(d) type, or an L0-Seller(dr) type. Call
theseModel 1, Model 2 and Model 3 respectively.
Suppose that the actual seller follows the schedule
{1.0,0.9,0.8,0.7,0.5,0.3,0.1}. As before, assume
thatd = 0.1 andδ = 0.7.

The buyer’s belief updates and decision-making at
every stage are recorded in Table 2.

We observe thatModel 1 is removed (from the
support of beliefs) when offer 0.8 is recieved.Model
2 is removed when 0.5 is recieved – leaving only the
randommodel,Model 3. Since this model rational-
izes every possible offer, the buyer is able to continue
interacting and eventually accepts 0.3.

5 L2-TYPE AGENTS

5.1 L2-buyer

The L2-Buyer “pre-solves” all its L1-Seller mental
models offline, incurring, in the process, an (offline)
polynomial time cost of

O
(

nL1Seller
L2Buyer×

(

|O|2×nL0Buyer
L1Seller

))

Following this, its online operation is similar to that
of the L1-Buyer. Whenever an offer is recieved, it up-
dates its beliefs and decides whether or not to accept
by comparing the immediate profit with the expected
profit from the next stage – both of which are linear
time computations in the number of mental models –
namely,O

(

nSeller
L2Buyer

)

.
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Table 1: Example 2: L1-Buyer’s belief update and sequentialreasoning;v= 0.9,δ = 0.7.

Offer Belief Expected Expected Profit Accept/
Update Next Offer On Reject Reject

1.0 Both models survive 0.7·0.8+0.3·0.8 = 0.8 0.7· (0.9−0.8) = 0.07>−0.1(= 0.9−1.0) Reject
0.8 Both models survive 0.7·0.7+0.3·0.6 = 0.67 0.7· (0.9−0.67) = 0.161> 0.1(= 0.9−0.8) Reject
0.6 Only Model 2 survives 1·0.4= 0.4 0.7· (0.9−0.4) = 0.35> 0.3(= 0.9−0.6) Reject
0.4 Model 2 survives 1·0.2= 0.2 0.7· (0.9−0.2) = 0.49< 0.5(= 0.9−0.4) Accept

Table 2: Example 3: L1-Buyer that includes random L0-Sellermodel in support of prior beliefs;v= 0.7,δ = 0.7.

Offer Belief Expected Expected Profit Accept/
Update Next Offer On Reject Reject

1.0 All models survive 0.5·0.9+0.4·0.9+0.1·0.5 = 0.86 < 0 Reject
0.9 All models survive 0.5·0.7+0.4·0.8+0.1·0.45= 0.715 < 0 Reject
0.8 Model 2 and Model 3 survive 0.8·0.7+0.2·0.4= 0.64 0.7· (0.7−0.64) = 0.042 Reject
0.7 Model 2 and Model 3 survive 0.8·0.6+0.2·0.35= 0.55 0.7· (0.7−0.55) = 0.105 Reject
0.5 Only Model 3 survive 1·0.25= 0.25 0.7· (0.7−0.25) = 0.315 Reject
0.3 Model 3 survives 1·0.15= 0.15 0.7· (0.7−0.15) = 0.385 Accept

Table 3: Column index symbol legend for Table 4.

Symbol Description
d The discretization unit
τ Time horizon∈ {1,2,3, ...}∪ inf

optimal schedule The optimal schedule of offers
θ The optimal expected profit
c Number of actual computations
c′ Maximum number of computations
µ̂ Executions times (in secs)

5.2 L2-seller

We note first that a straightforward bottom-up dy-
namic programming is optimal but incurs a time com-
plexity of an order equal to the number of possible
belief states, which isdoubly exponentialin the di-
mension of the state space.

5.2.1 Memoization using Disk-based Caching

This extreme intractibility leads to a reexamination of
the top-down approach, which, as noted previously,
incurs an exponential time-complexity ofO(2|V|). An
immediate enhancement that may used to mitigate
this complexity involvescachingthe computed results
on disk. This caching scheme is calledmemoization
and works best when there are many redundancies. In
the worst-case, there are no redundancies, and the en-
tire computation tree will be stored on disk.

As before, the seller’s initial belief state and the
belief state graph induces a top-down deliberation
tree. At each belief state, the seller first checks to see
if the solution is already available, in which case, it

was previously encountered, solved and cached. Else,
it proceeds to solve it by considering all and only of-
fers lesser than previously rejected ones. Whenever
the computation encounters aterminalbelief state or
whenever it evaluates all possible offers for a given
belief state, it ascends up the deliberation tree. In the
latter case, the belief state under consideration is com-
pletelysolved, in the sense that the algorithm has eval-
uated all possible offers at this state and has computed
the best offer (along with the expected profit associ-
ated with this offer). This solution is then cached on
disk – in particular, in our implementation it is stored
in a relational database1. The solution is indexed by
a complete specification of the entire belief state. In
Section 6 we present considerable empirical evidence
for the practical usefulness of memoization.

5.2.2 Realization of Bounded Rationality

The unavailability of a general analytical solution for
multiagent sequential planning under uncertainty and
the infeasibility of searching through the uncountable
space of all possible schedules using a discrete algo-
rithm necessitates our discretized dynamic program-
ming approach. It was noted earlier that the worst-
case complexity incurred is exponential in the dimen-
sion of the action space (i.e discretized space of possi-
ble offers). It is in the context of this characterization
that we recast our top-down deliberation tree traversal
approach under the paradigm ofbounded rationality.
A finerdiscretization considers a strict superset of the
space of available policies than acoarserone. There-
fore, a finer discretization, though slower, is more op-

1sqlite3serves as our database backend
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Table 4: Experimental results for L2-Seller Ann.

d τ optimal schedule θ
(

c, c′ = ∑
min(⌊ 0.9

d +1⌋,τ)
k=0

(⌊ 0.9
d +1⌋

k

))

µ̂

0.02 inf 0.48→0.28→0.2→0.14→0.12→0.1 0.216036 174, 70368744177664 17.861, 17.826
0.02 7 0.48→0.28→0.2→0.14→0.12→0.1 0.216036 610, 64441700 64.328, 62.477
0.02 6 0.48→0.28→0.2→0.14→0.12→0.1 0.216036 513, 10917020 52.626, 52.501
0.02 5 0.48→0.28→0.2→0.14→0.1 0.215916 408, 1550201 41.153, 41.418
0.02 4 0.48→0.28→0.18→0.12 0.214824 295, 179447 29.369, 29.228
0.02 3 0.46→0.26→0.18 0.212658 174, 16262 16.94, 16.426
0.02 2 0.48→0.28 0.21224 45, 1082 4.512, 4.768
0.05 inf 0.55→0.3→0.2→0.15→0.1 0.205083 66, 524288 6.536, 6.252
0.05 6 0.55→0.3→0.2→0.15→0.1 0.205083 162, 43796 14.958, 14.774
0.05 5 0.55→0.3→0.2→0.15→0.1 0.205083 138, 16664 12.759, 13.378
0.05 4 0.55→0.3→0.2→0.15 0.203733 106, 5036 9.575, 9.763
0.05 3 0.55→0.3→0.2 0.201405 66, 1160 6.111, 5.988
0.05 2 0.6→0.35 0.202639 18, 191 2.029, 1.774
0.1 inf 0.5→0.3→0.2→0.1 0.201527 30, 1024 3.09, 2.916
0.1 5 0.5→0.3→0.2→0.1 0.201527 49, 638 4.729, 4.5
0.1 4 0.5→0.3→0.2→0.1 0.201527 43, 386 3.916, 3.891
0.1 3 0.5→0.3→0.2 0.199453 30, 176 2.9, 2.8
0.1 2 0.6→0.4 0.2 9, 56 1.264, 1.192
0.2 inf 0.5→0.3→0.1 0.18025 10, 32 1.118, 1.242
0.2 4 0.5→0.3→0.1 0.18025 11, 31 1.41, 1.277
0.2 3 0.7→0.5→0.3 0.190684 10, 26 1.287, 1.125
0.2 2 0.5→0.3 0.197568 4, 16 0.658, 0.741

timal than acoarserone. Substantial empirical evi-
dence is presented in the next subsection in support
of this claim.

In principle, a contract algorithm can be devised
to exploit this tradeoff by choosing a discretization
unit such that the maximum number of computations
required is lesser than the total time available to the
agent. In practice, this turns out be overly conserva-
tive and wasteful. This is because the caching scheme
works really well in practice resulting in actual run-
times being much lower with memoization that with-
out. Obtaining a theoretical characterization of the
benefits of memoization would pave the way to real-
izing bounded rationality for this problem in a con-
tractual environment.

In the meanwhile, bounded rationality may be re-
alized by the following simple and straightforward
anytime algorithm. First, start with a coarse dis-
cretization and compute the optimal schedule (clearly,
this will be fast but will output poor results). Then,
make the discretization finer and recompute a better
schedule. This is repeated until time runs out or the
agent is interrupted – at which point the most recent
fully computed result is available.

5.2.3 Empirical Results and Discussion

We consider an L2-Seller Ann who believes that the
buyer is from one of three type classes – two L0-
Buyer classes with mpd values of 0.1 and 0.2 respec-
tively, and an L1-Buyer class which believes that the

seller is uniformly one of three types – L0-Seller(1d),
L0-Seller(3d) or L0-Seller(1dr).

We solve Ann’s model using the memoized top-
down approach for various settings of the discretiza-
tion resolution and horizon. The computations were
done on a Pentium 4 3.2GHz, 1GB RAM machine.
The results are indexed and presnted in Table 4 ac-
cording to the column index legend in Table 3. We
observe the following:

Memoization Enhancement. The number of actual
(explicit) computations performed is lesser than the
total possible number of computations by many or-
ders of magnitude.

Bounded Rationality through Fine-tuning Action
Space Discretization. The expected profit is greater
for finer discretizations than for coarser ones. The
running time is also greater for finer discretizations.
Therefore, quality of the solution increases with a
finer resolution of the action space, while correspond-
ing simultaneously to an increase in the running time.

In addition, we also observed that the infinite hori-
zon case takes considerably lesser time than the fi-
nite horizon case. This is not surprising considering
the fact that in the infinite horizon case, the time-to-
horizon (infinity) is always the same at every node
and this increases the likelihood that many more be-
lief states would be repeated than the finite horizon
case where the time-to-horizon also characterizes the
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belief state. Also, as expected, larger finite horizon
settings take longer than shorter ones.

6 CONCLUSIONS

In this paper, we considered the problem of seller-
offers bilateral bargaining – an instance of the more
general problem of optimal sequential planning under
uncertainty in multiagent settings. Our main contribu-
tion consisted of developing a boundedly rational ap-
proach for the seller’s problem of generating optimal
offer schedules. The approach is based on achieving
a tradeoff between speed and solution quality by us-
ing the discretization of the action space to fine-tune
the size of the search space of available policies – a
finer resolution leads to better policies (in expecta-
tion) but takes longer to compute, and vice versa. We
also demonstrated how memoization may be used to
exploit redundancies in belief space deliberation. Fur-
ther, we also presented a natural way of avoiding the
problem of model extinction (for e.g. for the buyer
agent, as here) – by maintaining one random model
that explains any action not already accounted for by
other sophisticated models.

The work presented in this paper falls more gen-
erally under the recently formalized paradigm of
decision-theoretic reasoning augmented with finite in-
teractive belief hierarchies. We believe that the results
provided in this paper serve two purposes. Firstly,
it sets forth a principled prescription for achieving
resource bounded rational behavior in bilateral bar-
gaining. Detailed comparative studies of behavioral
economics literature are required to understand if this
model also provides a descriptive account of actual
human behavior in bargaining settings, although this
is only of secondary interest to us. And secondly,
the specific insights gained – namely, bounded ratio-
nality through fine-tuning the resolution of the action
space to exploit the resultant speed-optimality trade-
off, caching during deliberation and maintaining en-
semble models to avoid model extinction – are gener-
ally applicable to other optimal sequential multiagent
planning problems under uncertainty.
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