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Abstract: A Neural Network modelling approach is presented for the prediction of surface texture parameters during 
end milling of aluminium alloy 5083. Eighteen carbide end mill cutters were manufactured by a five axis 
grinding machine and assigned to mill eighteen pockets having different combinations of geometry 
parameters and cutting parameter values, according to the L18 (2

1x37) standard orthogonal array. A feed-
forward back-propagation NN was developed using data obtained from experimental work conducted on a 
CNC milling machine center according to the principles of Taguchi’s design of experiments method. It was 
found that NN approach can be applied easily on designed experiments and predictions can be achieved, fast 
and quite accurately. 

1 INTRODUCTION 

Aluminium 5083 is generally supplied as a flat 
rolled product in plate form and it has the highest 
strength of the non-heat treatable alloys. Although 
there is no specific machinability data the Al 5083 is 
machinable by conventional means. 

The machinability of an engineering material 
denotes its adaptability to machining processes with 
regard to factors such as cutting forces, tool wear 
and surface roughness. Surface roughness plays an 
important role on the product quality and is a 
parameter of great importance in the evaluation of 
the machining accuracy (Kechagias et al., 2009; 
2010).  

The surface roughness of parts produced by 
material removal processes is affected by various 
factors such as material properties, tool geometry, 
cutting parameters, etc. Thus parameter design for a 
material is useful in order to have the best 
performance and consequently decrease the quality 
loss of a process (Phadke, 1989). 

A number of attempts, which study surface 
quality, cutting forces, tool wear, and cheap 

morphology, during end milling, are reported in the 
literature. Most of these studies refer to specific 
cutting conditions, such as the tool-workpiece 
material and the cutting tool geometry (Engin and 
Altintas, 2001; Yun and Cho 2000). 

The current research work studies the influence 
of the cutting parameters and the end cutter 
geometry parameters during end milling of Al alloy 
5083 on the surface texture parameters; arithmetical 
mean roughness (Ra), maximum peak (Ry), and ten-
point mean roughness (Rz). 

The two-flute end cutter geometry parameters  
tested are the core diameter (%), flute angle (o), rake 
angle (o), peripheral 1st relief angle (o) and 
peripheral 2nd relief angle (o). The core diameter is 
measured as a percentage of the end mill cutter 
diameter. End mill cutter geometry parameters can 
be seen in Figure 1. 

The above parameters were combined with 
cutting depth (mm), cutting speed (rpm) and tool 
feed (mm/flute) using an L18 (21x37) orthogonal 
matrix experiment and the results were used to built 
a NN model in order to predict/estimate the surface 
roughness indicator response according to the 
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geometry and cutting parameters of the end milling 
process. 

 

Figure 1: Two flute end mill cutter geometry (front view). 

NNs have also been effectively used in the past 
not only for modelling and optimization of 
manufacturing processes but also in case of highly 
non-linear non-manufacturing problems 
(Chryssolouris et al., 2004; Kechagias and 
Iakovakis, 2009; Markopoulos et al., 2006). 

2 EXPERIMENT 

Aluminum alloy 5083 is a non-heat treatable alloy. It 
has very good corrosion resistance; it is easily 
welded and is of high strength.  

End milling pockets were performed on a 
DECKEL MAHO DMU 50V-monoBLOCK 5-axis 
universal high speed machining center. The max 
power of the machine tool and the max spindle 
speed were 18,9 kW and 14.000 r/min respectively. 
The two flute carbide end mill cutters were 
manufactured using the five axis Hawemat 2001 
grinding machine. NAMROTO CAM program was 
used to simulate the grinding process in order to 
avoid collision among machine components. 

Table 2 was designed using the Taguchi 
methodology (Phadke, 1989) and corresponds to the 
standard L18 (21x37) orthogonal array. In this 
method, the main parameters, which are assumed to 
have an influence on the process results, are located 
in different rows in a designed orthogonal array and 
the results can be analyzed using an analysis of 
means and analysis of variance, in a similar way as a 
full factorial design, were conducted. 

The geometry parameter values of each of the 
eighteen two-flute end mill cutters are shown in 

columns A to E of Table 2. All of the eighteen 
carbide cutters have a diameter of 8 mm. The cutting 
parameter values during eighteen pockets are shown 
in columns F to H of Table 2, too. 

Each of the eighteen end mill cutters cut a pocket 
of 100 mm x 64 mm and 15 mm in depth on the two 
faces of an Al 5083 plate of 500 mm x 280 mm and 
60 mm in depth. The two faces were finished with a 
face mill cutter, 50 mm in diameter, and two 
recesses were constructed in order to fix the Al plate 
on to the machine center chuck. The cutting 
parameter values for each pocket are depicted in 
columns F, G, and H of Table 2. The surface texture 
parameters measured were the arithmetical mean 
roughness (Ra), maximum peak (Ry) and ten-point 
mean roughness (Rz).  

 

Figure 2: Surface roughness measurements. 

Surface roughness measurements were taken 
using a RUGOserf tester. Each surface roughness 
parameter (Ra, Ry, and Rz) was measured three 
times, parallel to the arrows (Figure 2), and an 
average of each was calculated for each of the 
eighteen pockets (see last three columns of Table 2). 

3 TAGUCHI DESIGN 
OF EXPERIMENTS 

The Taguchi design method is a simple and robust 
technique for optimizing the process parameters. In 
this method, the main parameters, which are 
assumed to have an influence on the process results, 
are located in different rows in a designed 
orthogonal array. With such an arrangement 
randomized experiments can be conducted. In the 
case of the surface quality indicators (Ra, Ry, Rz), 
lower values are desirable. Table 1 summarises the 
parameter values (levels) used in the orthogonal 
matrix experiment in Table 2.  

An analysis of means and variance on the 
experimental results show that the optimum values 
for the geometry parameters are: core diameter 
(50%), flute angle (38o), rake angle (22o), relief 
angle 1st (22o), and relief angle 2nd (30o). 
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Table 1: Parameter levels. 

  Levels 
 Parameters 1 2 3 

A Core diameter (%) 48 50 - 
B Flute angle (o) 38 45 50 
C Rake angle (o) 18 20 22 
D Relief angle 1st (o) 20 22 25 
E Relief angle 2nd (o) 25 28 30 
F Cutting depth (mm) 0.5 1.0 1.5 
G Cutting speed (rpm) 5000 6000 7000 
H Feed (mm/flute) 0.05 0.08 0.10 

Table 2: Parameter design according to L18 (21x37) 
orthogonal array and performance measures. 

No. 
Columns Perform. Measures 

A B C D E F G H Ra Ry Rz 

1 48 38 18 20 25 0.5 5000 0.05 0.08 0.93 0.73 

2 48 38 20 22 28 1.0 6000 0.08 0.17 1.27 1.17 

3 48 38 22 25 30 1.5 7000 0.10 0.18 1.30 1.07 

4 48 45 18 20 28 1.0 7000 0.10 1.66 5.73 6.83 

5 48 45 20 22 30 1.5 5000 0.05 0.12 1.47 0.90 

6 48 45 22 25 25 0.5 6000 0.08 0.19 2.10 1.13 

7 48 50 18 22 25 1.5 6000 0.10 0.22 1.80 1.27 

8 48 50 20 25 28 0.5 7000 0.05 1.33 12.13 7.10 

9 48 50 22 20 30 1.0 5000 0.08 0.19 1.27 1.27 

10 50 38 18 25 30 1.0 6000 0.05 0.13 1.20 0.93 

11 50 38 20 20 25 1.5 7000 0.08 0.19 1.47 1.23 

12 50 38 22 22 28 0.5 5000 0.10 0.17 1.27 1.10 

13 50 45 18 22 30 0.5 7000 0.08 0.11 1.03 1.10 

14 50 45 20 25 25 1.0 5000 0.10 0.13 1.27 1.03 

15 50 45 22 20 28 1.5 6000 0.05 0.14 0.77 0.70 

16 50 50 18 25 28 1.5 5000 0.08 0.22 1.37 1.10 

17 50 50 20 20 30 0.5 6000 0.10 0.15 1.20 0.97 

18 50 50 22 22 25 1.0 7000 0.05 0.16 1.37 0.90 

4 MODELLING FRAMEWORK 

In the frame of this modelling work a NN was 
developed in order to predict the surface roughness 
parameters (Ra, Ry, and Rz) during end milling on 
the surface texture of Al alloy 5083. The eight (8) 
factors studied were used as input parameters of the 
NN model.  

The 18 experimental data samples (Table 2), 
were separated into three groups, namely the 
training, the validation and the testing samples. 
Training samples are presented to the network 
during training and the network is adjusted 
according to its error. Validation samples are used to 
measure network generalization and to halt training 
when generalization stops improving. Testing 
samples have no effect on training and so provide an 

independent measure of network performance during 
and after training (confirmation runs). 

Nine (9) samples (50%) were used for training, 
four (4) samples (20%) for validation and five (5) 
samples (30%) for testing purposes. The samples 
that were used for ANN training were selected 
following the L9 Taguchi orthogonal array (i.e. 
experiments 1-3, 7-9, and 13-15). For the validation 
process were used the samples 4, 12, 16, and 18. The 
remaining ones (i.e. 5-6, 10-11, and 17) were used 
for testing purposes. 

There are many possible types of architecture for 
ANN. In this work, the feed-forward with back-
propagation learning (FFBP) architecture has been 
selected to predict the surface roughness. These 
types of networks have an input layer of X inputs, 
one or more hidden layers with several neurons and 
an output layer of Y outputs. In the selected ANN, 
the transfer function of the hidden layer is 
hyperbolic tangent sigmoid, while for the output 
layer a linear transfer function was used. The input 
vector consists of the eight process parameters of 
Table 2. The output layer consists of the 
performance measures, namely the Ra, Ry and Rz. In 
order to compute the best number of neurons and 
hidden layers, several trial and errors have taken 
place for the initial learning phase. It was found that 
network architecture (8-7-5-4-3) with three hidden 
layers of seven (7) neurons in the first hidden layer, 
five (5) neurons in the second hidden layer and four 
(4) neurons in the third hidden layer exhibits a 
minimal error between the output values estimated 
by the NN and the data samples provided by the 
experimental data.  

Back-propagation NNs are prone to the 
overtraining problem that could limit their 
generalization capability (Tzafestas et al., 1996). 
Overtraining usually occurs in ANNs with a lot of 
degrees of freedom (Prechelt, 1998) and after a 
number of learning loops, in which the performance 
of the training data set increases, while the 
performance of the validation data set decreases.  

The performance of the network is measured by 
the MSE of the estimated output with regards to the 
values of the experimental data. Mean Squared Error 
is the average squared difference between network 
output values and target values. Lower values are 
better. Zero means no error. The best validation 
performance is equal to 0.0069 when the training of 
the ANN stops, which means very good network 
efficiency. Another performance measure for the 
network efficiency is the regression (R). Regression 
values measure the correlation between output 
values and targets. The acquired results show a very 
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good correlation between output values and targets 
during training (R=1), validation (R=0.89) and 
testing procedure (R=0.93). 
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Ry vs. Cutting speed & Feed
(Core diameter = 50 %, Flute angle = 38o, Rake angle = 22o, Relief angle 1st = 22o, 

Relief angle 2nd = 30o, Cutting depth = 1,5 mm)

 

Figure 3: Response surface diagram of Ry in relation to the 
cutting speed and feed, while cutting depth is 1,5 mm. 

The trained NN model can be used for the 
optimization of the surface roughness parameters 
during CNC end milling. This can be done by testing 
the behaviour of the response variables (Ra, Ry and 
Rz) under different variations in the values of 
geometry and cutting parameters. In order to ensure 
accurate prediction of the surface roughness 
parameters, the values concerning the eight input 
parameters should be inside the range of values that 
are defined during the experimental setup. 

Figure 3 presents an example of a surface 
response diagram for the roughness parameter Ry 
while cutting speed and feed rate vary within their 
range of values. In this diagram all the geometry 
parameters were kept constant at their optimum 
values. This figure shows that when the cutting 
speed increases, as well as in the case of feed rate 
reduction, the response variable (surface roughness, 
Ry) decreases. 

5 CONCLUSIONS 

A FFBP-NN model was built to estimate the surface 
roughness indicator response according to the 
geometry and cutting parameters of the process. The 
performance of the network was found to be 
efficient providing very good correlation between 
outputs and targets during training (R=1), validation 
(R=0.89) and testing procedure (R=0.93). 

Furthermore, the response surface diagram in 
Figure 3 shows that when the geometry parameters 
take their optimum values, the increase of cutting 
speed, as well as the decrease of feed rate, results in 

deduction of the surface roughness, which is also in 
accordance with the machining theory. Multi-
parameter investigation of the process according to 
other quality indicators will be studied and analyzed 
in future work. 
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