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Abstract: Transfer learning leverages an agent’s experience in a source task in order to improve its performance in a
related target task. Recently, this technique has received attention in reinforcement learning settings. Training
a reinforcement learning agent on a suitable source task allows the agent to reuse this experience to signif-
icantly improve performance on more complex target problems. Currently, reinforcement learning transfer
approaches focus almost exclusively on speeding up learning in single agent systems. In this paper we inves-
tigate the potential of applying transfer learning to the problem of agent coordination in multi-agent systems.
The idea underlying our approach is that agents can determine how to deal with the presence of other agents
in a relatively simple training setting. By then generalizing this knowledge, the agents can use this experience
to speed up learning in more complex multi-agent learning tasks.

1 INTRODUCTION

Transfer learning (TL) attempts to leverage an agent’s
experience in a source task in order to improve its per-
formance in a related target task. Recently, this tech-
nique has gained interest in reinforcement learning
domains (Taylor and Stone, 2009). In these settings
TL allows agents to generalize knowledge across dif-
ferent tasks. It has been shown an effective tool
for speeding up learning and to apply reinforcement
learning in ever more complex settings.

In this paper we consider transfer learning as a
method for achieving coordination in multi-agent re-
inforcement learning. One of the main challenges
of learning in an environment which is shared with
other agents, is that a learner must deal with the influ-
ences of these agents, in addition to trying to optimize
its own performance. While techniques exist which
let agents coordinate in a full joint state-action space
(Claus and Boutilier, 1998; Hu and Wellman, 2003;
Greenwald and Hall, 2003), these may prove costly in
terms of learning overhead and as such do not scale
well. This issue has lead to a number of recent tech-
niques which, in addition to solving the reinforcement
learning problem, also include techniques to specif-
ically learn when and how to coordinate with other
agents (Kok and Vlassis, 2004; Melo and Veloso,
2009; De Hauwere et al., 2010).

We propose a related approach which allows
agents to learn when to coordinate by first training th-

em on a separate source task. This source task allows
agents to interact in a simple training environment.
In this environment the agents can then determine
when and how they should take into account other
agents. More specifically, we let a learning agent train
a classifier system which differentiates between situ-
ations requiring coordination and situations in which
the agent can learn individually. The agent then learns
how to resolve situations which the classifier marks as
requiring coordination. This knowledge can also be
transferred to more complex multi-agent target tasks.
By pre-training the agent in this way, we allow our
agent to focus on its target learning task and fall back
on previous experience when coordination with other
agents is necessary.

The remainder of this paper is structured as fol-
lows. In the next section we describe related work
both on transfer learning and on multi-agent coordina-
tion. Section 3 introduces necessary background ma-
terial on single and multi-agent reinforcement learn-
ing. The following section explains the CQ-learning
framework, which is the main learning method used
in this paper. We describe our transfer method for
multi-agent RL in Section 5, and provide empirical
results in Section 6. This is followed by a discussion
of possible future extensions. We conclude in Sec-
tion 8.
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2 RELATED WORK

Recently, transfer learning has gained interest in
the reinforcement learning community. Various ap-
proaches have been developed to reuse source task ex-
perience in a target task. These include the inter-task
mappings framework (Taylor, 2008) and the frame-
work for transfer in batch RL by Lazaric (Lazaric,
2008). The work described here is most related to
so called rule transfer approaches (Taylor and Stone,
2007), in which the transferred knowledge consists of
set of learned rules.

However, all these efforts in transfer learning for
RL concern only single agent systems. A recent
overview paper of transfer learning for reinforcement
learning (Taylor and Stone, 2009) noted only 2 at-
tempts at using transferred experience in multi-agent
RL. These approaches (Kuhlmann and Stone, 2007;
Banerjee and Stone, 2007) both deal with extensive
form games. In this paper we consider a novel con-
cept which applies transfer learning to the problem
of multi-agent coordination in more general Markov
games.

Our goal is to allow agents to learn when to co-
ordinate in a generic training setting and then reuse
this knowledge while solving more complex tasks.
Agents learn when they have to include information
on other agents in their state information, as well as
how to use this information. While we are not aware
of previous work on transfer learning for this prob-
lem, the need to identify situations where agent co-
ordination is required, has been recognized in sev-
eral previous studies. In (Kok et al., 2005; Kok and
Vlassis, 2004) agents learn in a joint action space
only in a set of specified coordination states. In all
other system states, the agents learn using only their
private action space. These coordination states are
specified using coordination graphs describing agent
dependencies (Guestrin et al., 2002) and can either
be specified by users beforehand, as is the case in
(Kok and Vlassis, 2004), or can be learned on-line
as in (Kok et al., 2005). These approaches do as-
sume that agents always observe each other and as
such reduce the problem’s action space but not the
state space. The issue of multi-agent learning using
an adaptive state space is considered in (Melo and
Veloso, 2009; De Hauwere et al., 2010). In (Melo and
Veloso, 2009) the authors provide the agents with an
additional meta-action that allows the agent to locally
expand its state space to include information on other
agents. In (De Hauwere et al., 2010) the approach
used in this paper, called Coordinating Q-learning, is
introduced. This approach applies statistical tests to
determine whether the agent’s state space should be

expanded with information on other agents. In the
Section 4 we explain this system in more detail.

3 BACKGROUND

We now describe some necessary background mate-
rial on reinforcement learning. In the next section
we will come back to this information to describe the
learning method used in this paper.

3.1 MDPs and Q-learning

Reinforcement Learning allows an on-line learning
agent to maximize a possibly delayed, stochastic re-
ward signal. This approach is usually applied to solve
sequential decision problems which can be described
by a Markov Decision Process (MDP). An MDP can
is a tuple (S;A;R;T ) , where S = fs1; : : : ;sNg is the
learning state space and A = fa1; : : : ;arg is the ac-
tion set available to the agent. Each combination of
starting state si, action choice ai 2 Ai and next state
s j has an associated transition probability T (si;ai;s j)
and immediate reward R(si;ai). The goal is to learn
a policy p, which maps states to actions so that the
expected discounted reward Jp is maximized:

Jp � E

"
¥

å
t=0

g
tR(s(t);p(s(t)))

#
(1)

where g2 [0;1) is the discount factor and expectations
are taken over stochastic rewards and transitions. This
goal can also be expressed using Q-values which ex-
plicitly store the expected discounted reward for every
state-action pair:

Q�(s;a) = R(s;a)+ gå
s0

T (s;a;s0)max
a0

Q(s0;a0) (2)

So in order to find the optimal policy, one can
learn the optimal Q-function Q� and subsequently use
greedy action selection over Q-values in every state.
Watkins (Watkins, 1989) describes an algorithm for
iteratively approximating Q�. The Q-learning algo-
rithm stores a state-action table, with each table en-
try containing the learner’s current estimate Q̂(s;a) of
the actual value Q(s;a). The Q̂-values are updated
according to following update rule:

Q̂(s;a) Q̂(s;a)
+at [R(s;a)+ gmaxa0 Q̂(s0;a0)� Q̂(s;a)]

(3)

where at is the learning rate at time step t.
Provided that all state-action pairs are visited in-

finitely often and a appropriate learning rate is chosen,
the estimates Q̂ will converge to the optimal values Q�

(Tsitsiklis, 1994).
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3.2 Markov Game Definition

Markov Games or stochastic games (Littman, 1994),
provide an extension of the MDP framework to mul-
tiple agents. Actions in a Markov game are the joint
result of multiple agents choosing an action individ-
ually. Ak = fa1

k ; : : : ;a
r
kg is now the action set avail-

able to agent k, with k : 1 : : :n, n being the total num-
ber of agents present in the system. Transition prob-
abilities T (si;ai;s j) now depend on a starting state si,
ending state s j and a joint action from state si, i.e.
ai = (ai

1; : : : ;a
i
n) with ai

k 2 Ak. The reward function
Rk(si;ai) is now individual to each agent k, meaning
that agents can receive different rewards for the same
state transition. Since rewards are individual, a policy
which maximizes the reward for all agents simultane-
ously, may fail to exist. As a consequence most multi-
agent learning approaches attempt to reach an equilib-
rium between agent policies (Hu and Wellman, 2003;
Greenwald and Hall, 2003). These systems need each
agent to calculate equilibria between possible joint ac-
tions in every state and as such assume that each agent
retains estimates over all joint actions in all states.

4 COORDINATING Q-LEARNING

The approach we take in this work is based on the
Coordinating Q-learning (CQ-Learning) framework
(De Hauwere et al., 2010). CQ-Learning extends
the basic Q-learning algorithm and aims to achieve
good multi-agent learning performance by adapting
the learning state space when needed. It avoids the ex-
ponential increase of the state space that is often seen
multi-agent systems and allows the agents to learn in
a localized state space. The idea behind this technique
is that agents start with a minimal state space, which
is expanded to deal with other agents when necessary.

The algorithm is based on the insight that it is
rarely necessary for learning agents to always take
into account all agents in the system. Frequently,
agents only affect each other’s performance in very
specific situations. For instance, in the navigation
tasks considered in Section 6 agents only affect each
other by colliding. Therefore, whenever another agent
is too far removed for there to be a risk of collision,
there is no point in taking its location into account
while learning. CQ-learning deals with this issue by
letting agents rely on a basic state representation (e.g.
the agent’s own location), which is expanded with ad-
ditional state variables only when needed (e.g. the
location of another agent is added when there is a risk
of collision).

4.1 Algorithm

We now describe the CQ-Learning implementation
and learning setting used in the remainder of this pa-
per. we assume a general Markov game setting, with
system states that have a factored representation. That
is, the global system state s is described by a vector
(s1; : : : ;sn) of state variables s j, each taking values
in some finite, discrete set Dom(s j). At each time
step the current state s(t) thus consists of realizations
s j(t) 2 Dom(s j) of all variables s j. In this paper we
restrict our attention to multi-agent navigation tasks
in grid worlds. In this setting the system state con-
sists of variables describing the current location of
each agent in the system. Each agent has a number of
available actions which move it one step in any direc-
tion. At every time step all agents individually select
a move to perform. The outcome of these moves also
depends on other agents, however, as collisions be-
tween agents may prevent a move from completing.

Initially the agent starts by applying standard Q-
learning in a minimal state space, which we call the
local state. In this state space representation, state
variables describing the local states (e.g. the loca-
tions) of other agents are ignored. Thus, we can
distinguish between the global system state, which
contains all state variables and the local agent states,
which are subsets of this global state. Since the agents
ignore the values of some state variables, they assign
the same Q-values to a whole range of global sys-
tem states at the same time. This allows the agents to
learn in a smaller state space and significantly speed
up learning, but may have a detrimental effect if the
ignored variables have significant influence on the
agent’s performance. To deal with this issue we pro-
vide a method for the agent to expand the state space
and to consider the values of additional state vari-
ables only in specific system states. While learning,
the agent collects samples of the immediate rewards
received for observed (local) state action pairs. At
regular intervals the agent applies a statistical test to
the collected samples to determine if the currently ig-
nored, additional state variables provide useful infor-
mation. The specific test system used in this work was
inspired by the F-race algorithm for tuning parameters
for metaheuristics (Birattari et al., 2002).

Assume that we have a problem with the system
state s consisting of 2 variables (s1;s2)

1. A learning

1For the sake of simplicity we describe here a system
with 2 state variables. With more state variables, we test
each additional variable separately. When multiple variable
values are found to be dangerous in a certain state, this state
is further split off and treated as a new state. Also see the
algorithm pseudo code.
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agent can then start learning in a local state space by
assigning Q-values to each realization of the first vari-
able, and ignoring the value of the second variable.

In order to now test the influence of the ignored
variable in a local agent state s1 = s, we consider all
reward samples observed for state action pairs in lo-
cal state s. These samples are grouped based on the
value of the ignored variable, i.e. we have sets of sam-
ples for each of the observations (s;s1); : : : ;(s;sr)
with s1; : : : ;sr the observed values of the additional
variable. Each set of samples is then considered as
a different treatment. A Friedman test2 can then be
applied to determine whether there is a difference be-
tween these treatments. Whenever a significant differ-
ence is detected, the worst performing state (s;sw) is
marked as a danger state and split off from the local
state s. This means that this state (s;sw) is no longer
treated as part of the local agent state s, but is treated
as a separate state with its own Q-values. This system
allows the agent to specifically condition its strategy
on values of the state variables which it has learned
are dangerous. In this paper we simply expand the
agent’s state information, but still rely on basic Q-
learning, i.e. we do not use a more advanced multi-
agent coordination techniques in the danger states.

Expand

Generalize

32

7 98

5

1

4 6

4-1 4-2 4-3 6-1 6-2

Classifier

Figure 1: Idea behind the CQ-learning approach used in this
paper. Local states are expanded to include additional state
information. A classifier can then be trained to generalize
over these expanded states.

Consider for example the navigation problems de-
scribed below. In these problems, the global system
state consists of the current locations of all agents in
the system. The local state of each agent is its own
location. When applying CQ-learning, each agent
starts the learning process using only its own location
as state information. Locations of the other agents
are initially ignored, but over time the algorithm will
learn to take this information into account whenever
other agents are close enough to collide. Pseudo-code
for the complete CQ-Learning algorithm used here is
given in Algorithm 1.

2Other statistical tests and sampling methods can be
used within the CQ-learning framework, see for instance
(De Hauwere et al., 2010)

Algorithm 1: CQ-Learning.
Require: g;a;e
//initialization
t=0
s(0)= start-state
Qi(s,a)=0 8 s,a,i
//main loop
repeat

//determine agent observation
for all agents i do

obs=si(t) //local state
for all ignored state vars s j do
if dangerous (si(t);s j(t)) then

obs= obs [ s j(t)
end if

end for
ai= e-greedy(obs,Qi) //select action

end for
-execute actions
-observe new system state s(t+1)
-observe rewards ri(t+1)
for all agents i do

//update Q-values
Qi(obs,ai)= Qi(obs,ai)
+a[r(t)+gmaxa Qi(si(t+1),a)-Qi(obs,ai)]

//collect samples
//perform statistical test
for all ignored state vars s j do

-add ri(t+1) to samples for
(si(t);s j(t);ai)
-Friedman test difference between
(si(t);s;ai);s 2 Dom(s j)
if difference found then

-mark worst (si(t);s) as dangerous
end if

end for
end for
t=t+1

until termination condition

4.2 Generalizing Coordination

In (De Hauwere et al., 2010) it was already noted that
it is possible to avoid the need to sample rewards for
each state by generalizing over already identified dan-
ger states. The authors propose to use already identi-
fied dangerous states as training samples for a classi-
fier. This classifier can then generalize the concept of
a danger state to previously unseen cases.

(De Hauwere et al., 2010) achieve this by training
a feedforward neural network. This network is trained
by providing samples of danger states. To allow for
better generalization, training samples are first con-
verted to an agent-centric representation. By this we
mean that, rather than providing the network with ab-
solute locations as inputs, samples were described by
the relative position of the agents, i.e. the differences
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Figure 2: The target tasks.

in horizontal (Dx) and vertical position (Dy). For ex-
ample, if the agents occupy grid locations (3;2) and
(4;2) in a danger state, input values to the network
were (�1;0), indicating that they are 1 step removed
horizontally, but on the same line vertically. It was
shown that after training with previously learned sam-
ples of danger states, the network could successfully
identify possible conflict situation, i.e. when given the
relative position of other agents, the network could
predict whether there was a risk of collision.

In this paper we use a similar generalization tech-
nique not just to generalize within a problem, but to
transfer knowledge between problems. We do not
use a neural network, however, but employ a propo-
sitional rule learner to let agents learn simple rules,
which describe the concept of a danger state. For this
purpose we use rule system based on Ripper (Cohen,
1995), implemented in the Weka toolkit (Hall et al.,
2009). Ripper was previously also used to learn prob-
lem descriptions for rule transfer in single agent re-
inforcement learning (Taylor and Stone, 2007). An
important advantage of this system is that the output
can be easily interpreted by humans. This provides
a clear insight into learning result transferred to the
target task. In the next section we will describe the
transfer learning system in detail.

5 TRANSFER LEARNING
FOR MULTI-AGENT
COORDINATION

We now describe the setup for transfer learning. The
idea is that agents learn how to deal with the influence
of other agents on a simple training problem and then
transfer this experience to more complex learning set-
tings. We apply transfer learning to navigation in grid
worlds. In these target tasks multiple agents must find
a path to their individual goal location, while avoid-
ing collisions with the other agents. The objective of
applying transfer learning here, is to allow agents to
learn how to avoid collisions in the source task, in or-
der to let them focus on their navigation problem in
the target task. Therefore, we train the agents on a

source task which does not require navigation to goal
location, but rather focusses on learning when a risk
of collisions exists.

1 2 3 4 5

1

2

3

4

5

Figure 3: The Source task.

The training problem we use as the source task
for transfer learning is shown in Figure 3. It consists
of a simple 5 by 5 grid world setting. Agents can
move around in the grid by taking single steps in any
of the 4 compass directions. If an agent selects a move
that would lead outside the grid, it stays in its current
location. When agents attempt to move into the same
grid location they collide. This means both agents
stay in their current location and receive a collision
penalty of -10. All other moves in the grid receive a
reward of 0.

To train an agent on the source task, it is put in
the grid environment together with a single opponent
agent. The agent is allowed a fixed number of learn-
ing steps before transfer. Both the learning agent and
its opponent use random action selection. The learn-
ing agent uses the CQ-Learning algorithm, described
in Section 4 to update Q-values and identify danger
states. The agent starts by using only its own location
as state representation and tests to see if it should take
into account the location of the other agent. When-
ever a system state is marked dangerous, it is added
to the state space. In order to facilitate transfer, we
do not represent these danger states based on the ab-
solute agent positions but rather based on the relative
horizontal and vertical position of the agents (Dx;Dy).
This means that multiple danger states can be mapped
to the same Q-Values. For example, the dangerous sit-
uations with the agent in locations (2;3) and (1;4) or
with the agents in grid locations (3,4) and (2,5) are
both mapped to Q-values for situation (�1;1). This
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allows the agents to gather general experience, based
on their mutual configuration, rather than on absolute
positions. This representation can also be more eas-
ily transferred, as it relies only on the agents relative
position and not on the actual environment structure.

When the maximum amount of learning steps has
been reached, the transfer agent uses the examples of
danger states to train a Ripper rule classifier. For this
purpose, we again use the relative position representa-
tion. The classifier is given both positive and negative
examples, and is trained to distinguish between dan-
ger states and safe states based on the relative posi-
tion of the agents. In the next section, we will give an
example of the output obtained for this rule learning
process. When the agents are moved to their target
task, they transfer 2 pieces of information: the trained
classifier and the Q-values for the danger states. In
the target task the agent then relies on the classifier to
identify danger states. It no longer performs sampling
or statistical tests. This means it will no longer iden-
tify new danger situations once it has started in the
target task. Whenever the transferred agent first en-
counters a state which is indicated by the classifier as
dangerous, this state is added as a separate state (i.e.
based on absolute locations), but Q-values are initial-
ized using the transferred Q-values from the source
task. The idea is that the transferred Q-values will as-
sign a lower Q-value to actions that might lead to a
collision in this situation.

6 EXPERIMENTAL RESULTS

We now evaluate the transfer approach empirically,
using a number of different settings. In each case the
transfer agents were trained individually on the source
task described above for 50000 time steps, before be-
ing transferred to their target problem.

6.1 2-Agent Problems

In a first series of experiments we transfer agents to a
variety of target grid environments based on naviga-
tion problems from RL literature. Each environment
includes a single opponent agent (using the same
learning algorithm). The target tasks used in this pa-
per are shown in Figure 2. These environments were
also described in (De Hauwere et al., 2010). Before
giving results on the target tasks, we first show the
experience gathered in the training process. Table 1
gives an example rule set learned on the source task.
From these rules, it is immediately clear that this clas-
sifier will correctly mark any state in which agents can
move into the same location with a single step as a

dangerous state.

Table 1: Example classifier learned by Ripper after training
on the source task.

IF Dx� 1 AND Dy� 1 AND Dx��1 AND Dy��1
) DANGEROUS
IF Dx� 0 AND Dx� 0 AND Dy� 2 AND Dy��2
) DANGEROUS
IF Dy� 0 AND Dy� 0 AND Dx��2 AND Dx� 2
) DANGEROUS
ELSE) SAFE

In each task both agents start from a random lo-
cation and must reach their individual goal location
(marked G1 and G2, for agents 1 and 2 respectively).
When an agent reaches its goal, it stays there until all
agents have finished and the episode ends. The trans-
fer agents are compared with agents using standard
CQ-learning. Previous research has already demon-
strated that CQ-learning outperforms both indepen-
dent Q-learners and joint learners on these learning
tasks. Results comparing CQ-learning with other
algorithms in these environments can be found in
(De Hauwere et al., 2010). The transfer learners
and CQ-learning are each allowed 2000 start-to-goal
episodes on the target tasks. Both algorithms used
identical Q-learning settings using learning rate 0:1,
discount factor 0:9 and e-greedy action selection with
a fixed e = 0:2.

Figure 4 shows the results on each of the target
tasks. We evaluate the algorithms’ performance based
on the number of steps agents require to reach their
goal and the total number of collisions the agents
have. All results are averaged over 25 experiments.
When looking at the number of collisions during
learning, the transfer agents clearly perform better.
They immediately start out with a lower number of
collisions, and keep outperforming CQ-learners even
in the long run.

When evaluating the learners with regard to the
number of step criterion, it should first be noted that
the transfer agents do not actually transfer any expe-
rience with regards to the navigation tasks, but only
use transfer to avoid collisions. However, the trans-
fer algorithm does show a better initial performance
in terms of the number of steps to goal needed in the
ISR and CIT environments. In these larger environ-
ments the CQ-learners eventually match the transfer
agents and asymptotically show a slightly better per-
formance. In most cases this seems to be caused by
the transfer agents preferring a safe action (i.e. move
away from the other agent) in states which are marked
dangerous by the classifier, but which do no lead to
collisions under the greedy policy. CQ-learning tends
not to mark these states as dangerous and does not
have this problem. In the small TunnelToGoal envi-
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Figure 4: Empirical results on the 2 agent tasks. Each row corresponds to a different environment. The left-hand column
shows the number of steps each agent requires to reach the goal. The right-hand column plots the total amount of collisions
per episode. All results show a running average over the last 100 episodes.

ronment the CQ-learning agents show a better perfor-
mance over the entire run.

6.2 Interactions with Multiple Agents

To show that the system described above extends be-
yond 2 agent problems we now give results for envi-
ronments including 3 agents. This introduces 2 new
difficulties: there are more agents to collide with and
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it is possible to encounter dangerous situations with
multiple agents at the same time. In order to still use
the transferred knowledge from the source task, we
consider interactions between agents pairwise. Each
agent tests the locations of all other agents separately,
using the transferred classifier. When more than one
agent is identified as potentially dangerous, this is
treated as a separate danger situation. Thus to deter-
mine which Q-values to use, the agent first checks if
then if it is in a danger state including all 3 agents,
then checks if it is in a danger state including 2 agent
or finally relies only on its local state. For these new
danger situations including 3 agents, we currently do
not transfer Q-values, i.e. all Q-values in these states
are initialized to 0. We again give results for the both
algorithms averaged over 25 trials. Parameter settings
were identical to those used above.

The first problem is an extension of the Tunnel-
ToGoal environment including 3 agents, as shown in
Figure 2(d). Results on this problem are shown in Fig-
ure 5 (top row). The experimental outcome parallels
the results on the 2 agent TunnelToGoal problem. The
transfer agents outperform CQ-learning with respect
to the number of collisions, but require more steps to
reach their goals during the initial phases of learning.

The second problem we consider is again the ISR
environment from the previous section, but now in-
cluding 3 agents. Results are shown in Figures 5 (bot-
tom row). As is clear from these graphs, this prob-
lem seems especially challenging for the CQ-learners.
The agents suffer a large amount of collisions and re-
quire a very large amount of steps to their goals during
the first few hundred episodes. After this initial bad
period their final performance does match that of the
transfer agents.

6.3 The Cost of Transfer

In the previous subsections we have demonstrated
that transfer learning is an effective tool for multi-
agent coordination and can significantly improve per-
formance. The results shown above, however, do not
take into account he costs associated with transfer
learning. We consider only the performance on the
target task and neglect the time spent training on the
source task. Table 2 now gives the total collisions and
steps over all 2000 episodes. For the transfer agents
these totals do not include the 50000 initial training
steps. We see that, while the transfer agents clearly
perform best in terms of collisions, they are outper-
formed on the ’total number of steps’ criterion on both
TunnelToGoal environments. If we count the 50000
training steps, this difference becomes even larger and
the transfer agents also lose out on the standard ISR

environment. On the most difficult problems CIT and
ISR with 3 agents, however, the transfer learners per-
form much better, even including their training time.
From these results, we can conclude that our transfer
mechanism is most suitable to apply in more complex
problems, or in small problems where the cost of fail-
ing to coordinate is very high.

Finally, we also give results for the influence of
the amount of time spent on the source task. Fig-
ure 6 shows the total number of collisions and aver-
age number of steps after different amounts of train-
ing time on the source task. We show the average
amount of steps to the goal required by the agent (over
the first 500 episodes) and the total amount of colli-
sions during these first episodes. All results were ob-
tained in the CIT environment with the experimental
settings described above and averaged over 25 trials.
We show results for a training time of 10000, 25000,
50000, 75000 and 100000 time steps before transfer.
For lower amounts of training time we see a signif-
icantly lower performance, this is mainly due to the
fact that the agent is not able to learn a classifier which
perfectly identifies the danger states (as the one shown
in Table 1). This means the agents are not able to pre-
dict all conflicts. Additionally, since the agents do
not identify additional conflict situations after trans-
fer, they may not be able to resolve these situations,
which also means agents require more steps to reach
their goals.

7 DISCUSSION AND FUTURE
WORK

We now consider some ways in which the meth-
ods developed here could be further improved. A
first question that remains is whether our method
for coordination transfer can be combined with ex-
isting forms of value function transfer mechanisms,
e.g (Taylor, 2008). Using the transfer learning mech-
anism described in this paper, agents transfer expe-
rience on agent coordination, but the target naviga-
tion task has to be learned from scratch. Ideally,
this system should be combined with previous single
agent transfer techniques, speeding up both the coor-
dination and navigation subtasks. Another important
question is to determine if the system can be extended
to deal with delayed penalties for failing to coordi-
nate. Currently, the need for coordination is detected
based on samples of the immediate reward. While this
has proven an effective method in the settings con-
sidered in this paper, this system may fail to resolve
situations where a failure to coordinate leads to prob-
lems only after multiple time steps. For this to work

ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence

270



0 200 400 600 800 1000
0

50

100

150

200

250

300

episodes

st
ep

s 
to

 g
oa

l

steps to goal (TunnelToGoal−3)

 

 

transfer learning
CQ−Learning

0 500 1000 1500 2000
0

5

10

15

episodes

co
lli

si
on

s

collisions (TunnelToGoal−3)

 

 

transfer learning
CQ−Learning

0 200 400 600 800 1000
0

50

100

150

200

250

300

episodes

st
ep

s 
to

 g
oa

l

steps to goal (ISR − 3 agents)

 

 

transfer learning
CQ−Learning

0 500 1000 1500 2000
0

50

100

150

200

250

episodes

co
lli

si
on

s

collisions (ISR − 3 agents)

 

 

transfer learning
CQ−Learning

Figure 5: Steps to goal and number of collisions for the 3 agent tasks. The top row corresponds to the TunnelToGoal-3
environment. Bottom row shows results for the ISR environment, now with 3 agents. All results show a running average over
the last 100 episodes.

Table 2: Total results over entire run (2000 episodes) on each problem. For each algorithm the top row gives the total amount
of steps required, while the second row gives the total number of collisions. Averaged over 25 trials, standard deviation given
between parentheses.

TTG ISR CIT TTG3 ISR3

transfer 40845(10845) 34059(2975) 39848(4429) 68839(20091) 65365(6684)
117(35) 205(46) 297 (104) 1415(188) 519(83)

CQ-learning 22108(2679) 32042(12726) 136650(228690) 34423(10929) 2151608(2986543)
484(22) 558(62) 517(102) 19923(40891) 1620(89)
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Figure 6: The influence of training time. This plot shows
the total amount of collisions and steps per episode during
the first 500 episodes, for different amounts of training time
on the source task.

the CQ-framework and corresponding transfer mech-
anism would have to be extended to work based on
samples of the Q-values rather than rewards.

A third possible extension would be to allow

the transfer learning agents to continue coordination
learning after their transfer to the target task. Cur-
rently, the agents rely fully on the transferred clas-
sifier to identify possible conflicts. This however,
leaves the possibility of missing danger states when
the classifier is not perfectly trained, or of being
overly cautious since the classifier does not take into
account current agent policies. A more advanced
method could possibly start from the same transferred
data, but adapt the coordination strategy based on ob-
servations in the target task in order to remedy these
issues.

8 CONCLUSIONS

This paper introduces a novel application of transfer
learning to the problem of multi-agent coordination.
By training agents on how to coordinate with other
learners in a simple source task, the agents can avoid
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much of the complexity of multi-agent learning while
working in the target task. Our system is based on
the Coordinating Q-learning framework, which iden-
tifies potential conflict situations by applying a sta-
tistical test to samples of the immediate rewards re-
ceived by the agent. In order to transfer its previous
experience, the algorithm uses previously identified
problem states as samples to train a rule based clas-
sifier, which generalizes the notion of a conflict sit-
uation. This classifier is then able to predict conflict
situations in unseen task environments. We demon-
strate our system on a number of multi-agent naviga-
tion tasks in grid world environments. Our transfer
based algorithm is empirically shown to outperform
agents not using transfer learning.
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