
Finite-state Acceptors with Translucent Letters⋆

Benedek Nagy1 and Friedrich Otto2

1Department of Computer Science, Faculty of Informatics, University of Debrecen
4032 Debrecen, Egyetem tér 1., Hungary

2Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany

Abstract. Finite-state acceptors with translucent letters are presented. These de-
vices do not read their input strictly from left to right as in the traditional setting,
but for each internal state of such a device, certain letters are translucent, that is,
in this state the acceptor cannot see them. We describe the computational power
of these acceptors, both in the deterministic and in the nondeterministic case. The
languages accepted have semi-linear Parikh images, and the nondeterministic ac-
ceptors are sufficiently expressive to accept all rational trace languages. However,
in contrast to the classical finite-state acceptors, the deterministic acceptors are
less expressive than the nondeterministic ones.

1 Introduction

The finite-state acceptor is a fundamental computing device for accepting languages. Its
deterministic version (DFA) and its nondeterministic version (NFA) both accept exactly
the regular languages, and they are being used in many areas like compiler construc-
tion, text editors, hardware design, etc. Of course, these acceptors are much too weak
for many applications, as the expressiveness of regular languages is quite limited. Ac-
cordingly, much more powerful models of automata have been introduced and studied
like, e.g., pushdown automata, linear-bounded automata, and Turing acceptors (ma-
chines). But this larger expressive power comes at a price in that certain algorithmic
questions like the word problem or the emptiness problem become more complex or
even undecidable. Hence, when dealing with applications, for example in natural lan-
guage processing or concurrency control, it is of importance to find models of automata
that reconcile two contrasting goals: sufficient expressiveness and a moderate degree of
complexity.

In the field of natural language processing this has led to the formulation of the no-
tion of “mildly context-sensitive languages” [5, 6]. These form a subclass of the context-
sensitive languages that is much more expressive than the context-free languages. They

⋆ This work was supported by grants from the Balassi Intézet MagyarÖsztöndı́j Bizottsága
(MÖB) and the Deutsche Akademischer Austauschdienst (DAAD). The first author was also
supported by the T́AMOP 4.2.1/B-09/1/KONV-2010-0007 project, which is implemented
through the New Hungary Development Plan, co-financed by the European Social Fund and
the European Regional Development Fund.

Nagy B. and Otto F..
Finite-state Acceptors with Translucent Letters.
DOI: 10.5220/0003272500030013
In Proceedings of the 1st International Workshop on AI Methods for Interdisciplinary Research in Language and Biology (BILC-2011), pages 3-13
ISBN: 978-989-8425-42-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

contain some typical examples of non-context-free languages like{ anbncn | n ≥ 0 }
and{ anbmcndm | m,n ≥ 0 }, but at the same time they share many of the nice proper-
ties with the context-free languages. For example, they have semi-linear Parikh images
and their parsing complexity is polynomially bounded.

In the study of concurrent systems, the theory oftracesis an important area (see,
e.g., [2]), which has also received much attention in formallanguage theory. For trace
monoids the notions of recognizable and rational subsets donot coincide in general. For
recognizable trace languages a characterization in terms of automata is given through
Zielonka’s asynchronous automata (see [2]), while for rational trace languages a char-
acterization in terms of automata has only been given recently in terms of a special type
of cooperating distributed systems of restarting automata, the so-calledCD-systems of
stateless deterministic R(1)-automata[7].

The restarting automaton is a formal device motivated by considerations from lin-
guistics (see, e.g., [4]), while CD-systems of formal systems are closely related to dis-
tributed computing and multiagent systems. In fact, CD-systems of stateless determin-
istic R(1)-automata are related to thebinding-blocking automataof [1], which are bio-
logically motivated devices that do not process their inputstrictly in left-to-right order.

Here we describe an extension of the finite-state acceptor that vastly increases its
expressive power, the so-called “finite-state acceptor with translucent letters” (NFAwtl
for short). An NFAwtl does not read its input strictly from left to right as in the tradi-
tional setting, but for each of its internal states, certainletters are translucent, that is,
in this state the NFAwtl cannot see them. Accordingly, it mayread (and erase) a let-
ter from the middle or the end of the given input. Here we consider the computational
power of these acceptors. They accept certain non-regular and even some non-context-
free languages, but all languages accepted by NFAwtls have semi-linear Parikh images.
In fact, NFAwtls are sufficiently expressive to accept all rational trace languages, but
they also accept some languages that are not rational trace languages. In contrast to the
classical finite-state acceptors, the deterministic variants of the NFAwtls, the so-called
DFAwtls, are less expressive than the nondeterministic ones, as DFAwtls do not accept
all rational trace languages. Finally, closure and non-closure properties for the class of
languages accepted by NFAwtls and some decidability and undecidability results for
them are presented.

Most of these results follow from translations of our acceptors with translucent let-
ters to the CD-systems of stateless deterministic R(1)-automata and back. However, we
think that our acceptors are much simpler than these CD-systems, and that they are
more easily accessible to non-experts.

This paper is structured as follows. In Section 2 we introduce the finite-state ac-
ceptor with translucent letters, we present two examples, and we state the first results
on their expressive power. In Section 3 we consider rationaltrace languages, and in
Section 4 we present closure and non-closure results as wellas some decidability and
undecidability results. In Section 5 we summarize our work and point to a number
of open problems for future work. Finally, in Section 6 we explain in detail how our
finite-state acceptors with translucent letters relate to the CD-systems of stateless deter-
ministic R(1)-automata of [7].

4

2 Finite-state Acceptors with Translucent Letters

Here we introduce the announced variant of the nondeterministic finite-state acceptor.

Definition 1. A finite-state acceptor with translucent letters(NFAwtl) is defined as a
7-tupleA = (Q,Σ, $, τ, I, F, δ), whereQ is a finite set of internal states,Σ is a finite
alphabet of input letters,$ 6∈ Σ is a special symbol that is used as anendmarker,
τ : Q → 2Σ is a translucency mapping, I ⊆ Q is a set of initial states,F ⊆ Q is a set
of final states, andδ : Q× Σ → 2Q is a transition relation. For each stateq ∈ Q, the
letters from the setτ(q) are translucent forq, that is, in stateq the automatonA does
not see these letters.A is calleddeterministic, abbreviated as DFAwtl, if|I| = 1 and if
|δ(q, a)| ≤ 1 for all q ∈ Q and alla ∈ Σ.

An NFAwtl A = (Q,Σ, $, τ, I, F, δ) works as follows. For an input wordw ∈ Σ∗,
it starts in a nondeterministically chosen initial stateq0 ∈ I with the wordw · $ on its
input tape. Assume thatw = a1a2 · · ·an for somen ≥ 1 anda1, . . . , an ∈ Σ. ThenA
looks for the first occurrence from the left of a letter that isnot translucent for stateq0,
that is, ifw = uav such thatu ∈ (τ(q0))

∗ anda 6∈ τ(q0), thenA nondeterministically
chooses a stateq1 ∈ δ(q0, a), erases the lettera from the tape thus producing the tape
contentsuv · $, and its internal state is set toq1. In caseδ(q0, a) = ∅, A halts without
accepting. Finally, ifw ∈ (τ(q0))

∗, thenA reaches the $-symbol and the computation
halts. In this caseA accepts ifq0 is a final state; otherwise, it does not accept. Thus,A
executes the following computation relation on its setQ ·Σ∗ · $ of configurations:

qw · $ ⊢A















q′uv · $, if w = uav, u ∈ (τ(q))∗, a 6∈ τ(q), andq′ ∈ δ(q, a),
Reject, if w = uav, u ∈ (τ(q))∗, a 6∈ τ(q0), andδ(q, a) = ∅,
Accept, if w ∈ (τ(q))∗ andq ∈ F,
Reject, if w ∈ (τ(q))∗ andq 6∈ F.

Observe that this definition also applies to configurations of the form q · $, that is,
q · ε · $ ⊢A Accept holds if and only ifq is a final state. A wordw ∈ Σ∗ is accepted by
A if there exists an initial stateq0 ∈ I and a computationq0w ·$ ⊢∗

A Accept, where⊢∗
A

denotes the reflexive transitive closure of the single-stepcomputation relation⊢A. Now
L(A) = {w ∈ Σ∗ | w is accepted byA } is thelanguage accepted byA, L(NFAwtl)
denotes the class of all languages that are accepted by NFAwtls, andL(DFAwtl) denotes
the class of all languages that are accepted by DFAwtls.

The classicalnondeterministic finite-state acceptor(NFA) is obtained from the
NFAwtl by removing the endmarker$ and by ignoring the translucency relationτ , and
thedeterministic finite-state acceptor(DFA) is obtained from the DFAwtl in the same
way. Thus, the NFA (DFA) can be interpreted as a special type of NFAwtl (DFAwtl).
Accordingly, we have the following, whereREG denotes the class of regular languages.

Lemma 1. REG ⊆ L(DFAwtl) ⊆ L(NFAwtl).

However, already DFAwtls are much more expressive than standard DFAs.

5

Example 1.Let A = (Q,Σ, $, τ, I, F, δ), whereQ = {q0, q1, q2}, I = {q0} = F ,
Σ = {a, b, c}, and the functionsτ andδ are defined as follows:

τ(q0) = ∅, δ(q0, a) = {q1},
τ(q1) = {a, c}, δ(q1, b) = {q2},
τ(q2) = {a, b}, δ(q2, c) = {q0},

andδ(q, x) = ∅ for all other pairs(q, x) ∈ Q×Σ. Observe thatA is in fact a DFAwtl.

Given the wordw = abaccb as input,A will execute the following computation:

q0abaccb · $ ⊢A q1baccb · $ ⊢A q2accb · $ ⊢A q0acb · $ ⊢A q1cb · $
⊢A q2c · $ ⊢A q0 · $ ⊢A Accept,

asq0 is a final state. In fact, it can be shown that

L(A) = {w ∈ Σ∗ | |w|a = |w|b = |w|c ≥ 0,
and for each prefixu of w : |u|a ≥ max{|u|b, |u|c} }.

This language is not context-free, asL(A) ∩ (a∗ · b∗ · c∗) = { anbncn | n ≥ 0 }.

Thus, already DFAwtls accept non-context-free languages,that is, we have the
proper inclusionREG (L(DFAwtl).

An NFAwtl A = (Q,Σ, $, τ, I, F, δ) can be described by a graph, similar to the
graph representation of NFAs. A stateq ∈ Q is represented by a node labelledq, where
the node of an initial statep is marked by a special incoming edge without a label, and
the node of a final statep is marked by a special outgoing edge with label(τ(p))∗. For
each stateq ∈ Q and each lettera ∈ Σ r τ(q), if δ(q, a) = {q1, . . . , qs}, then there is
a directed edge labelled((τ(q))∗ , a) from the node corresponding to stateq to the node
corresponding to stateqi for eachi = 1, . . . , s. The graph representation of the DFAwtl
A of Example 1 is given in Figure 1, where{ε} is used instead of∅∗.

// ?>=<89:;q0

({ε},a)

����
��

��
��

�

{ε}
//

?>=<89:;q1
({a,c}∗,b)

// ?>=<89:;q2

({a,b}∗,c)

ccGGGGGGGGGGGG

Fig. 1.The graphical representation of the DFAwtlA of Example 1.

Example 2.An NFTwtl for the language

{ anw | n ≥ 1, w ∈ {a, b, c}+ satisfying|w|a = |w|b = |w|c }

is described by the diagram in Figure 2.

6

//?>=<89:;0

({ε},a)

MM

({ε},a)
//?>=<89:;1

({b,c}∗,a)

����
��

��
��

�

?>=<89:;2
({a,c}∗,b)

//?>=<89:;3
({a,b}∗,c)

//

({a,b}∗,c)

bbEEEEEEEEEEEE
?>=<89:;4

{ε}
//

Fig. 2. The graphical representation of an NFAwtl accepting the language{ anw | n ≥ 1, w ∈
{a, b, c}+ satisfying|w|a = |w|b = |w|c }.

According to the definition above, an NFAwtl may accept a wordwithout processing
it completely. For example, the NFAwtlA1 = ({q}, {a}, $, τ, {q}, {q}, δ) defined by
τ(q) = {a} andδ(q, a) = ∅ accepts each word froma∗ in a single step. This, however,
is only a convenience, as shown by the following normal form result.

Proposition 1. From a given NFAwtlA = (Q,Σ, $, τ, I, F, δ) one can effectively con-
struct an NFAwtlB = (Q′, Σ, $, τ ′, I ′, F ′, δ′) such thatL(B) = L(A), but for each
word w ∈ L(B), each accepting computation ofB on inputw consists of|w| many
reading steps plus a final step that accepts the empty word.

Observe that the DFAwtl of Example 1 and the NFAwtl of Example2 are in normal
form. Nevertheless it remains open whether Proposition 1 holds for DFAwtls in general.
If A is an NFAwtl onΣ that is in normal form, then by removing the translucency
relation fromA, we obtain a standard NFAA′ that has the following properties.

Proposition 2. By removing the translucency relation from an NFAwtlA in normal
form, we obtain an NFAA′ such thatL(A′) is a subset ofL(A) that is letter-equivalent
toL(A).

Here two languages over the same alphabetΣ = {a1, . . . , an} are calledletter-
equivalentif they have the same image under the Parikh mappingψ : Σ∗ → Nn. Thus,
we see that each language fromL(NFAwtl) is letter-equivalent to a regular language.
This yields the following consequence.

Corollary 1. All languages inL(NFAwtl) are semi-linear, that is, ifL ⊆ Σ∗ is ac-
cepted by some NFAwtl, thenψ(L) is a semi-linear subset ofNn.

As the languages{ anbn | n ≥ 0 } and{ anbncn | n ≥ 0 } do not contain regular
sublanguages that are letter-equivalent to the languages themselves, it follows from
Proposition 2 that these languages are not accepted by any NFAwtls.

3 Rational Trace Languages

Let Σ be a finite alphabet, and letD be a binary relation onΣ that is reflexive and
symmetric, that is,(a, a) ∈ D for all a ∈ Σ, and(a, b) ∈ D implies that(b, a) ∈ D,
too. ThenD is called adependency relationonΣ, and the relationID = (Σ×Σ)rD is

7

called the correspondingindependence relation. Obviously, the relationID is irreflexive
and symmetric. The independence relationID induces a binary relation≡D onΣ∗ that
is defined as the smallest congruence relation containing the set of pairs{ (ab, ba) |
(a, b) ∈ ID }. Forw ∈ Σ∗, the congruence class ofw mod≡D is denoted by[w]D, that
is, [w]D = { z ∈ Σ∗ | w ≡D z }. These congruence classes are calledtraces, and the
factor monoidM(D) = Σ∗/≡D is a trace monoid. In fact,M(D) is thefree partially
commutative monoidpresented by(Σ,D) (see, e.g., [2]).

Traces are being used in concurrency theory to describe sequences of actions that
are partially independent of each other. Leta and b symbolize two actions that are
executed in parallel. If they are independent, then in a sequential simulation it does not
matter in which order they are executed, that is,ab andba are equivalent. As such traces
have received much attention (see, e.g., [2]).

If M(D) is a trace monoid generated byΣ, then we useϕD to denote the morphism
ϕD : Σ∗ → M(D) that is defined byw 7→ [w]D for all wordsw ∈ Σ∗. We call a
languageL ⊆ Σ∗ a rational trace language, if there exists a dependency relationD on
Σ such thatL = ϕ−1

D (S) for a rational subsetS of the trace monoidM(D) presented
by (Σ,D), that is, if there exist a trace monoidM(D) and a regular languageR ⊆ Σ∗

such thatL = ϕ−1
D (ϕD(R)) =

⋃

w∈R[w]D. By LRAT we denote the class of all
rational trace languages.

Theorem 1. LRAT (L(NFAwtl).

The above inclusion is proper as the Dyck languageD′∗
1 , which is not a rational trace

language, is accepted by a DFAwtl. On the other hand, the following technical result
shows that Theorem 1 does not extend to DFAwtls.

Proposition 3. The rational trace language

L∨ = {w ∈ {a, b}∗ | ∃n ≥ 0 : |w|a = n and|w|b ∈ {n, 2n} }

is not accepted by any DFAwtl.

It follows thatL(DFAwtl) andLRAT are incomparable under inclusion.

4 Closure Properties and Decidability Results

Proposition 4.

(a) The language classL(NFAwtl) is closed under union, product, and Kleene star.
(b) The language classL(NFAwtl) is neither closed under intersection with regular

languages, nor under complementation, nor underε-free morphisms.

Thecommutative closurecom(L) of a languageL ⊆ Σ∗ is the set of all words that
are letter-equivalent to a word fromL, that is,

com(L) = ψ−1(ψ(L)) = {w ∈ Σ∗ | ∃u ∈ L : ψ(w) = ψ(u) },

8

whereψ : Σ∗ → N|Σ| denotes the Parikh mapping. IfL is accepted by an NFAwtlA in
normal form, then fromAwe obtain a finite-state acceptorA′ for a regular sublanguage
E of L that is letter-equivalent toL by ignoring the transparency relation (Proposi-
tion 2). Obviously, the commutative closurecom(L) of L coincides with the commu-
tative closurecom(E) of E. For the dependency relationD = { (a, a) | a ∈ Σ },
the trace monoidM(D) is the free commutative monoid generated byΣ. Thus,
com(E) =

⋃

w∈E[w]D is simply the rational trace languageϕ−1
D (ϕD(E)). Hence,

it follows from Theorem 1 that this language is accepted by anNFAwtl B.

Corollary 2. The language classL(NFAwtl) is closed under the operation of taking
the commutative closure.

A languageL ⊆ Σ∗ is calledcommutativeif com(L) = L holds, that is, if it
contains all permutations of all its elements. As each semi-linear language is letter-
equivalent to some regular language, it follows that each commutative semi-linear lan-
guage is the commutative closure of some regular language, and therewith it is a rational
trace language. Thus, Theorem 1 implies the following result.

Corollary 3. All commutative semi-linear languages are contained inL(NFAwtl).

If L1 ⊆ Σ∗ andL2 ⊆ Γ ∗ are languages, then theshuffleof L1 andL2 is defined as

sh(L1, L2) = { u1v1u2 · · ·unvn | n ≥ 1, u1 · · ·un ∈ L1, v1 · · · vn ∈ L2 }.

If Σ andΓ are disjoint, thensh(L1, L2) is called adisjoint shuffle.

Proposition 5. The language classL(NFAwtl) is closed under disjoint shuffle.

However, it is still open whether the language classL(NFAwtl) is closed under in-
verse morphisms or under the operation of reversal. An NFAwtl can easily be simulated
by a nondeterministic one-tape Turing machine that is simultaneously linearly space-
bounded and quadratically time-bounded. Hence, we have thecomplexity result.

Proposition 6. L(NFAwtl) ⊆ NSpaceTime(n, n2).

It follows in particular thatL(NFAwtl) only contains context-sensitive languages.
Proposition 2 yields an effective construction of a finite-state acceptorA′ from an
NFAwtl A such that the languageE = L(A′) is a subset of the languageL = L(A)
that is letter-equivalent toL. Hence,E is non-empty if and only ifL is non-empty, and
E is infinite if and only ifL is infinite. As the emptiness problem and the finiteness
problem are decidable for finite-state acceptors, this immediately yields the following
decidability results.

Proposition 7. The following decision problems are effectively decidable:
Instance : An NFAwtlA.
Question 1 : Is the languageL(A) empty?
Question 2 : Is the languageL(A) finite?

9

On the other hand, it is undecidable in general whether a rational trace language is
recognizable (see, e.g., [2]). As a rational subsetS of a trace monoidM(D) is recogniz-
able if and only ifϕ−1

D (S) is a regular language, we obtain the following undecidability
result from Theorem 1.

Proposition 8. The following decision problem is undecidable in general:
Instance : An NFAwtlA.
Question : Is the languageL(A) regular?

By a reduction from the universality problem for rational transducers, which is un-
decidable in general [3], also the following undecidability results can be derived.

Proposition 9. The following problems are undecidable in general:
Instance : Two NFAwtlsA1 andA2.
Question 1 : IsL(A1) contained inL(A2)?
Question 2 :AreA1 andA2 equivalent, that is, doesL(A1) = L(A2) hold?

5 Conclusions

We have presented finite-state acceptors with translucent letters, and we have seen that
they are quite expressive. In fact they accept a subclass of the class of all languages
with semi-linear Parikh image that properly contains all rational trace languages. As
the deterministic variants of our acceptors do not accept all rational trace languages,
it remains to characterize their expressive power. In particular, which rational trace
languages are accepted by DFAwtls? Then we have given a number of closure and non-
closure results for the language classL(NFAwtl), but it remains open whether or not
this class is closed under inverse morphisms or under the operation of reversal. Also the
closure and non-closure properties of the classL(DFAwtl) remain to be studied.

It appears that the fact that the translucency mapping only depends on the actual
state but not on the letter actually processed is one of the reasons for the limited expres-
sive power of DFAwtls. Hence, we plan to also study a variant of the DFAwtl in which
the translucency mapping depends on the actual state and theletter read (erased).

6 Proofs

The NFAwtl considered here is closely related to the so-calledcooperating distributed
system of stateless deterministic R(1)-automatathat was introduced in [7].

A stateless deterministic R(1)-automatonis a one-tape machine with a read/write
window of size 1. Formally it is described by a 5-tupleM = (Σ, c, $, 1, δ), whereΣ is
a finite alphabet, the symbols c, $ 6∈ Σ serve as markers for the left and right border of
the work space, respectively, andδ : Σ ∪ {c, $} → {MVR,Accept, ε, ∅} is a (partial)
transition function. There are three types of transition steps:move-right steps(MVR),
which shift the window one step to the right, combinedrewrite/restart steps(ε), which
delete the contenta (a ∈ Σ) of the window, thereby shortening the tape, and place

10

the window over the left end of the tape, andaccept steps(Accept), which cause the
automaton to halt and accept. Ifδ(a) = ∅, then no step is possible and the automaton
halts and rejects.

A configurationof M is described by a pair(α, β), where eitherα = ε andβ ∈
{c} · Σ∗ · {$} or α ∈ {c} · Σ∗ andβ ∈ Σ∗ · {$}; hereαβ is the current content of
the tape, and it is understood that the head scans the first symbol of β. A restarting
configurationis of the form(ε, cw$), wherew ∈ Σ∗. By ⊢M we denote the single-step
computation relation ofM , and⊢∗

M denotes the reflexive transitive closure of⊢M .

The automatonM proceeds as follows. Starting from an initial configuration
(ε, cw$), the window moves right until a configuration of the form(cx, ay$) is reached
such thatδ(a) = ε. Now the latter configuration is transformed into the restarting
configuration(ε, cxy$). This computation, which is called acycle, is expressed as
w ⊢c

M xy. A computation ofM now consists of a finite sequence of cycles that is
followed by a tail computation, which consists of a sequenceof move-right operations
possibly followed by an accept step. An input wordw ∈ Σ∗ is acceptedby M , if
the computation ofM which starts with the initial configuration(ε, cw$) finishes by
executing an accept step. ByL(M) we denote the language consisting of all words
accepted byM .

If M = (Σ, c, $, 1, δ) is a stateless deterministic R(1)-automaton, then we can par-
tition its alphabetΣ into four disjoint subalphabets:

(1.) Σ1 = { a ∈ Σ | δ(a) = MVR }, (3.) Σ3 = { a ∈ Σ | δ(a) = Accept },
(2.) Σ2 = { a ∈ Σ | δ(a) = ε }, (4.) Σ4 = { a ∈ Σ | δ(a) = ∅ }.

A cooperating distributed system of stateless deterministic R(1)-automata(or
a stl-det-local-CD-R(1)-system for short) consists of a finite collectionM =
((Mj , σj)j∈J , J0) of stateless deterministic R(1)-automataMj = (Σ, c, $, 1, δj) (j ∈
J), successor relationsσj ⊆ J (j ∈ J), and a subsetJ0 ⊆ J of initial indices.Here it
is required thatJ0 6= ∅, and thatσj 6= ∅ for all j ∈ J . Various modes of operation have
been introduced and studied, but here we are only interestedin mode= 1 computations.

A computation ofM (in mode= 1) on an input wordw proceeds as follows.
First an indexj0 ∈ J0 is chosen nondeterministically. Then the R-automatonMj0

starts the computation with the initial configuration(ε, cw$), and executes a single
cycle. Thereafter an indexj1 ∈ σj0 is chosen nondeterministically, andMj1 continues
the computation by executing a single cycle. This continuesuntil, for somel ≥ 0,
the machineMjl

accepts. Should at some stage the chosen machineMjl
be unable

to execute a cycle or to accept, then the computation fails. By L(M) we denote the
language that the systemM accepts. ByL(stl-det-local-CD-R(1)) we denote the class
of languages that are accepted by stl-det-local-CD-R(1)-systems.

If A = (Q,Σ, $, τ, I, F, δ) is an NFAwtl, then we can assign a stl-det-local-CD-
R(1)-systemM to it by definingM = ((Mj , σj)j∈J , J0) as follows. The set of indices
is J = Q× Σ, andJ0 = I ×Σ. For all pairs(q, a) ∈ J , M(q,a) = (Σ, c, $, 1, δ(q,a))
is defined by the following transition relation and successor set:

11

δ(q,a)(c) = MVR, δ(q,a)(b) = MVR for all b ∈ τ(q),
δ(q,a)($) = Accept, if q ∈ F, δ(q,a)(a) = ε, if a 6∈ τ(q) andδ(q, a) 6= ∅,

σ(q,a) =

{

δ(q, a) ×Σ, if δ(q, a) 6= ∅,
Q×Σ, otherwise.

Further,δ(q,a)(c) = ∅ for all lettersc ∈ (Σr(τ(q)∪{a})), andδ(q,a)($) = ∅, if q is not
a final state ofA. Observe that the automatonM(q,a) cannot make any rewrite/restart
step, and hence, its successor set is never used, ifa ∈ τ(q) or δ(q, a) = ∅.

A computation stepq1uav · $ ⊢A q2uv · $ of A is simulated by the component
M(q1,a) of M as(ε, c ·uav ·$) ⊢∗

M(q1,a)
(c ·u, av ·$) ⊢M(q1 ,a)

(ε, c ·uv ·$). Further, an

accepting step ofA of the formq1u ·$ ⊢A Accept is simulated by a componentM(q1,a)

as(ε, c·u·$) ⊢∗
M(q1 ,a)

(c·u, $) ⊢M(q1 ,a)
Accept. Thus, in order to simulate an accepting

computation ofA, one must guess the next letter to be deleted in each step, andchoose
the corresponding component ofM. It now follows easily thatL(M) = L(A) holds.

Conversely, ifM = ((Mj , σj)j∈J , J0) is a CD-system of stateless deterministic
R(1)-automataMj = (Σ, c, $, 1, δj) (j ∈ J), then we can associate an NFAwtlA =
(J ∪ {+}, Σ, $, τ, J0, F, δ) to M as follows. For each indexj ∈ J , we define the
translucency mappingτ and the transition functionδ as follows:

τ(j) =

{

Σ, if δj(c) = Accept,
Σ

(j)
1 , otherwise,

}

,
δ(j, a) = σj for all a ∈ Σ

(j)
2 ,

δ(j, b) = {+} for all b ∈ Σ
(j)
3 .

HereΣ(j)
1 ,Σ(j)

2 , andΣ(j)
3 are the subsets ofΣ mentioned above that correspond to the

R(1)-automatonMj. Further, we defineτ(+) = Σ and

F = { j ∈ J | δj($) = Accept } ∪ {+}.

It can now be verified thatA can simulate the accepting computations ofM in a step-
wise fashion. Thus, it follows thatL(A) = L(M) holds.

Now Proposition 1 and Theorem 1 are immediate consequences of the above cor-
respondence and the results on stl-det-local-CD-R(1)-systems presented in [7], while
the closure and non-closure results as well as the decidability and undecidability results
follow from [8].

References

1. Balan, M.S.: Automaton models inpsired by peptide computing. In: Domaratzki, M., Salo-
maa, K. (eds.): UC’07, Workshop on Language Theory in Biocomputing, Proc., Kingston,
Ontario, Canada (2007) 1–15

2. Diekert, V., Rozenberg, G. (eds.): The Book of Traces, World Scientific, Singapore (1995)
3. Ibarra, O.: Reversal-bounded multicounter machines andtheir decision problems. J. As-

soc. Comput. Mach. 25 (1978) 116–133
4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.): FCT

1995, Proc., Lecture Notes in Computer Science, Vol. 965, Springer-Verlag, Berlin Heidel-
berg (1995) 283–292

12

5. Joshi, A.K.: Mildly Context-Sensitive Grammars. http://www.kornai.com/MatLing/
mcsfin.pdf (12.11.2010)

6. Mery, B., Amblard, M., Durand, I., Retoré, C.: A Case Study of the Convergence of Mildly
Context-Sensitive Formalisms for Natural Language Syntax: from Minimalist Grammars to
Multiple Context-Free Grammars. Rapport de recherche, nr.6042, INRIA Futurs, Parc Club
Orsay Université, Orsay (2006)

7. Nagy, B., Otto, F.: CD-systems of stateless deterministic R(1)-automata accept all rational
trace languages. In: Dediu, A.H., Fernau, H., Martin-Vide,C. (eds.): LATA 2010, Proc.,
Lecture Notes in Computer Science, Vol. 6031, Springer-Verlag, Berlin Heidelberg (2010)
463–474

8. Nagy, B., Otto, F.: CD-Systems of Stateless Deterministic R-Automata with Window
Size One. Kasseler Informatikschriften 2/2010, Fachbereich Elektrotechnik/Informatik,
Universität Kassel, 2010. https://kobra.bibliothek.uni-kassel.de/handle/ urn:nbn:de:hebis:34-
2010042732682

13

