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Abstract. Finite-state acceptors with translucent letters are presented. These de-
vices do not read their input strictly from left to right as in the traditional setting,
but for each internal state of such a device, certain letters are translucent, that is,
in this state the acceptor cannot see them. We describe the computational power
of these acceptors, both in the deterministic and in the nondeterministic case. The
languages accepted have semi-linear Parikh images, and the nondeterministic ac-
ceptors are sufficiently expressive to accept all rational trace languages. However,
in contrast to the classical finite-state acceptors, the deterministic acceptors are
less expressive than the nondeterministic ones.

1 Introduction

The finite-state acceptor is a fundamental computing device for accepting languages. Its
deterministic version (DFA) and its nondeterministic version (NFA) both accept exactly
the regular languages, and they are being used in many areas like compiler construc-
tion, text editors, hardware design, etc. Of course, these acceptors are much too weak
for many applications, as the expressiveness of regular languages is quite limited. Ac-
cordingly, much more powerful models of automata have been introduced and studied
like, e.g., pushdown automata, linear-bounded automata, and Turing acceptors (ma-
chines). But this larger expressive power comes at a price in that certain algorithmic
guestions like the word problem or the emptiness problem become more complex or
even undecidable. Hence, when dealing with applications, for example in natural lan-
guage processing or concurrency control, it is of importance to find models of automata
that reconcile two contrasting goals: sufficient expressiveness and a moderate degree of
complexity.

In the field of natural language processing this has led to the formulation of the no-
tion of “mildly context-sensitive languages” [5, 6]. These form a subclass of the context-
sensitive languages that is much more expressive than the context-free languages. They
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contain some typical examples of non-context-free langadige{ a"0"c” | n > 0}
and{ a™b™c*d™ | m,n > 0}, but at the same time they share many of the nice proper-
ties with the context-free languages. For example, theg kami-linear Parikh images
and their parsing complexity is polynomially bounded.

In the study of concurrent systems, the theoryratesis an important area (see,
e.g., [2]), which has also received much attention in forlaaguage theory. For trace
monoids the notions of recognizable and rational subset®tcoincide in general. For
recognizable trace languages a characterization in tefmstomata is given through
Zielonka's asynchronous automata (see [2]), while fooral trace languages a char-
acterization in terms of automata has only been given rgcierterms of a special type
of cooperating distributed systems of restarting autopthtaso-calledCD-systems of
stateless deterministic R(1)-autom§ifq

The restarting automaton is a formal device motivated bysictamations from lin-
guistics (see, e.g., [4]), while CD-systems of formal systere closely related to dis-
tributed computing and multiagent systems. In fact, CCtesys of stateless determin-
istic R(1)-automata are related to thimding-blocking automataf [1], which are bio-
logically motivated devices that do not process their irgtrittly in left-to-right order.

Here we describe an extension of the finite-state accepabivstly increases its
expressive power, the so-called “finite-state acceptdn wénslucent letters"NFAwtl
for short). An NFAwtl does not read its input strictly fronftiéo right as in the tradi-
tional setting, but for each of its internal states, certatters are translucent, that is,
in this state the NFAwtl cannot see them. Accordingly, it megd (and erase) a let-
ter from the middle or the end of the given input. Here we odeisthe computational
power of these acceptors. They accept certain non-regutbeden some non-context-
free languages, but all languages accepted by NFAwtls femélnear Parikh images.
In fact, NFAwtls are sufficiently expressive to accept atiamal trace languages, but
they also accept some languages that are not rational lagaages. In contrast to the
classical finite-state acceptors, the deterministic wsiaf the NFAwtls, the so-called
DFAwtls, are less expressive than the nondeterministic ones, asil¥do not accept
all rational trace languages. Finally, closure and nomswale properties for the class of
languages accepted by NFAwtls and some decidability anéaiddbility results for
them are presented.

Most of these results follow from translations of our acoeptvith translucent let-
ters to the CD-systems of stateless deterministic R(1Qraata and back. However, we
think that our acceptors are much simpler than these Cesystand that they are
more easily accessible to non-experts.

This paper is structured as follows. In Section 2 we intredine finite-state ac-
ceptor with translucent letters, we present two examples vee state the first results
on their expressive power. In Section 3 we consider ratitnage languages, and in
Section 4 we present closure and non-closure results asawstbme decidability and
undecidability results. In Section 5 we summarize our warkl @oint to a number
of open problems for future work. Finally, in Section 6 we lkp in detail how our
finite-state acceptors with translucent letters relatbéddD-systems of stateless deter-
ministic R(1)-automata of [7].



2 Finite-state Acceptors with Translucent Letters

Here we introduce the announced variant of the nondetestidfiinite-state acceptor.

Definition 1. A finite-state acceptor with translucent lett¢k=Awtl) is defined as a
7-tupled = (Q, X, $, 7,1, F,6), whereQ is a finite set of internal stated] is a finite
alphabet of input letters$ ¢ X' is a special symbol that is used as andmarker
7:Q — 2% is atranslucency mappind C Q is a set of initial statesF’ C @ is a set
of final states, and : Q x ¥ — 2 is atransition relationFor each state; € Q, the
letters from the set(q) are translucent fog, that is, in state; the automatom does
not see these letterdl is calleddeterministi¢ abbreviated as DFAwtl, iff| = 1 and if
16(g,a)| < 1forallgc Qandalla € ¥.

An NFAwtl A = (Q, X, $, 7,1, F, 0) works as follows. For an input word € X*,
it starts in a nondeterministically chosen initial stagec I with the wordw - $ on its
input tape. Assume that = ayas - - - a,, forsomen > 1 anday,...,a, € ¥. ThenA
looks for the first occurrence from the left of a letter thatdg translucent for staig),
that is, ifw = uawv such that: € (7(qp))* anda €& 7(qo), thenA nondeterministically
chooses a statg € d(qo, a), erases the letter from the tape thus producing the tape
contentsuv - $, and its internal state is set ¢9. In cased(qo, a) = 0, A halts without
accepting. Finally, ifv € (7(go))*, thenA reaches the $-symbol and the computation
halts. In this casel accepts ifyy is a final state; otherwise, it does not accept. Thus,
executes the following computation relation on its@etX* - $ of configurations:

duv- 8, if w=uav, u e (7(q))*, a € 7(q), andq’ € 6(q,a),
Reject, if w = uav, u € (1(q))*, a € 7(q0), andd(q,a) = 0,
Accept, if w € (7(¢q))* andq € F,
Reject, if w € (7(q))* andq & F.

quw-$ 4

Observe that this definition also applies to configuratiohthe form ¢ - $, that is,
q-<-$ 4 Accept holds if and only ifg is a final state. A wordy € X* is accepted by
A if there exists an initial statg € I and a computatiogyw - $ F* Accept, wheret*
denotes the reflexive transitive closure of the single-stapputation relatiof 4. Now
L(A) = {w € X* | wis accepted by } is thelanguage accepted hyt, £L(NFAwtl)
denotes the class of all languages that are accepted by MrAntlC (DFAwtl) denotes
the class of all languages that are accepted by DFAwtls.

The classicaihondeterministic finite-state accept@XFA) is obtained from the
NFAwtl by removing the endmarkérand by ignoring the translucency relationand
the deterministic finite-state accept@DFA) is obtained from the DFAwtl in the same
way. Thus, the NFA (DFA) can be interpreted as a special typéFéwtl (DFAwtl).
Accordingly, we have the following, wheREG denotes the class of regular languages.

Lemma 1. REG C £(DFAwtl) C £(NFAwtl).

However, already DFAwtls are much more expressive thardatarDFAS.



Example 1.Let A = (Q, X, $, 7,1, F,0), whereQ = {qo0,q1,92}, I = {qo} = F,
XY = {a, b, c}, and the functions andj are defined as follows:

7(q0) = 0, (g0, a) = {aq1},
7(q1) = {a, c}, 5(q1,b) = {q2},
T(q2) = {CL, b}v 5(QQa C) = {QO}a

andé(q, z) = 0 for all other pairdq, ) € Q x 3. Observe thatl is in fact a DFAwtI.
Given the wordw = abaccb as input,A will execute the following computation:

goabacch - $ F4 qrbaceh - $ 4 gaacch - $ F4 goach - $ -4 qieb - $
Fagqec-$ Fago-$ 4 Accept,

asq is a final state. In fact, it can be shown that

L(A) = {we X" | jwla = [w]y = [w|c >0,
and for each prefix. of w : |u|, > max{|ulp, |u|.} }-

This language is not context-free, B64) N (a* - b* - ¢*) = {a™b"c" | n > 0 }.

Thus, already DFAwtls accept non-context-free languates, is, we have the
proper inclusiorREG C £(DFAwtl).

An NFAwtl A = (Q, X, 8,7, I, F, ) can be described by a graph, similar to the
graph representation of NFAs. A statec @ is represented by a node labellgdvhere
the node of an initial stategis marked by a special incoming edge without a label, and
the node of a final stateis marked by a special outgoing edge with laf€lp))*. For
each statg € @ and each letter € X \ 7(q), if 6(q,a) = {q1, ..., ¢s}, then there is
adirected edge labellddr(q))*, a) from the node corresponding to statto the node
corresponding to statg for eachi = 1, ..., s. The graph representation of the DFAwtl
A of Example 1 is given in Figure 1, whefe} is used instead df*.

@ =

=
({a,b}"

}.a)

—_—
S \

{e
({a,c}*,b)

Fig. 1. The graphical representation of the DFAutlof Example 1.

Example 2.An NFTwtl for the language
{a"w|n>1, we {a,b,c} satisfying|w|, = |w|p = |w|. }

is described by the diagram in Figure 2.



({e}a)

(0)
N/
({a:b}" )

({e}a) ({bsc}* )
3 (1)
({a,c}*,b) 2/ ({ab}r,e) 2/

Fig. 2. The graphical representation of an NFAwtl accepting thglage{ a"w | n > 1, w €
{a,b,c}" satisfying|w|, = |w|y = |w|c }.

According to the definition above, an NFAwtl may accept a waittiout processing
it completely. For example, the NFAwWHl, = ({¢},{a},$, 7, {q},{q},d) defined by
7(q) = {a} andd(q, a) = 0 accepts each word fromt in a single step. This, however,
is only a convenience, as shown by the following normal foesuit.

Proposition 1. From a given NFAwWtA = (Q, X, $, 7, I, F, 0) one can effectively con-
struct an NFAWLIB = (@', X, 8,7/, I', F',¢") such thatL(B) = L(A), but for each
wordw € L(B), each accepting computation & on inputw consists ofw| many
reading steps plus a final step that accepts the empty word.

Observe that the DFAwtl of Example 1 and the NFAwtl of Exantblre in normal
form. Nevertheless it remains open whether Propositiondsfor DFAwtls in general.
If Ais an NFAwtl on X' that is in normal form, then by removing the translucency
relation fromA, we obtain a standard NFA’ that has the following properties.

Proposition 2. By removing the translucency relation from an NFAwtlin normal
form, we obtain an NFA4’ such thatL(A’) is a subset of.(A) that is letter-equivalent
to L(A).

Here two languages over the same alphabet {a,...,a,} are calledetter-
equivalenif they have the same image under the Parikh mappingZ* — N™. Thus,
we see that each language fralfNFAwtl) is letter-equivalent to a regular language.
This yields the following consequence.

Corollary 1. All languages inL(NFAwtl) are semi-linear, that is, i. C X* is ac-
cepted by some NFAwtl, ther{L) is a semi-linear subset af".

As the language$§a™b™ | n > 0} and{a"b"c" | n > 0} do not contain regular
sublanguages that are letter-equivalent to the langudmesselves, it follows from
Proposition 2 that these languages are not accepted by ahytNF

3 Rational Trace Languages

Let X be a finite alphabet, and I be a binary relation o’ that is reflexive and
symmetric, that is(a,a) € D for all a € ¥, and(a,b) € D implies that(b,a) € D,
too. ThenD is called adependency relationn X, and the relatiodp = (X' x X)\ Dis



called the correspondingdependence relatio®bviously, the relatiod is irreflexive
and symmetric. The independence relatigninduces a binary relatios, on X* that
is defined as the smallest congruence relation containiegeéh of pairs{ (ab, ba) |
(a,b) € Ip }. Forw € X*, the congruence class @fmod=p, is denoted byw]p, that
is, [wlp = {z € X* | w =p z}. These congruence classes are cdllades and the
factor monoidM (D) = X*/ =p, is atrace monoidIn fact, M (D) is thefree partially
commutative monoidresented by, D) (see, e.g., [2]).

Traces are being used in concurrency theory to describeesegs of actions that
are partially independent of each other. leetindb symbolize two actions that are
executed in parallel. If they are independent, then in aeetial simulation it does not
matter in which order they are executed, thatisandba are equivalent. As such traces
have received much attention (see, e.g., [2]).

If M (D) is atrace monoid generated By then we use p to denote the morphism
vp : X* — M(D) that is defined byw — [w]p for all wordsw € X*. We call a
languagel, C X* arational trace languaggif there exists a dependency relatibnon
X such thatl = ;' (S) for a rational subse$ of the trace monoid/ (D) presented
by (X, D), that is, if there exist a trace monald (D) and a regular language C X*
such thatL = ¢5' (¢p(R)) = Uyerlw]p. By LRAT we denote the class of all
rational trace languages.

Theorem 1. LRAT C L(NFAwtl).
The above inclusion is proper as the Dyck langu&gé which is not a rational trace
language, is accepted by a DFAwtl. On the other hand, theviiillg technical result
shows that Theorem 1 does not extend to DFAwtIs.
Proposition 3. The rational trace language

Ly ={we{a,b}"|In>0:|wl, =nand|w|, € {n,2n}}

is not accepted by any DFAwtI.

It follows that £L(DFAwtl) andLR.AT are incomparable under inclusion.

4 Closure Properties and Decidability Results

Proposition 4.

(a) The language clas§(NFAwtl) is closed under union, product, and Kleene star.
(b) The language clasg(NFAwtl) is neither closed under intersection with regular
languages, nor under complementation, nor urgénee morphisms.

Thecommutative closureom(L) of a languagd. C X* is the set of all words that
are letter-equivalent to a word frof, that is,

com(L) = (L)) ={we X*|Juec L : Pw)=1(u)},



wherey : ©* — NI*| denotes the Parikh mapping.lfis accepted by an NFAWH in
normal form, then fromd we obtain a finite-state acceptdf for a regular sublanguage
E of L that is letter-equivalent td, by ignoring the transparency relation (Proposi-
tion 2). Obviously, the commutative closutem(L) of L coincides with the commu-
tative closurecom(E) of E. For the dependency relatidd = { (a,a) | a € X'},
the trace monoidV (D) is the free commutative monoid generated by Thus,
com(E) = |, cglwlp is simply the rational trace languags,' (¢p(E)). Hence,

it follows from Theorem 1 that this language is accepted biNBAwtl B.

Corollary 2. The language clasg(NFAwtl) is closed under the operation of taking
the commutative closure.

A languageL. C X* is calledcommutativef com(L) = L holds, that is, if it
contains all permutations of all its elements. As each damaar language is letter-
equivalent to some regular language, it follows that eachroatative semi-linear lan-
guage is the commutative closure of some regular languadeharewith it is a rational
trace language. Thus, Theorem 1 implies the following tesul

Corollary 3. All commutative semi-linear languages are contained {NFAwtl).
If L, C ¥* andL, C I'™* are languages, then tebuffleof L; and L. is defined as
sh(L1, Lo) = {uiviug - - - unvn | > 1,u1 -ty € Ly, 01+ v, € Lo }.
If X andI” are disjoint, thesh(L1, Lo) is called adisjoint shuffle
Proposition 5. The language clas§(NFAwtl) is closed under disjoint shuffle.

However, it is still open whether the language cl@¥®lFAwtl) is closed under in-
verse morphisms or under the operation of reversal. An NFéavt easily be simulated
by a nondeterministic one-tape Turing machine that is semelously linearly space-
bounded and quadratically time-bounded. Hence, we haveotimlexity result.

Proposition 6. £L(NFAwtl) C NSpaceTime(n,n?).

It follows in particular thatZ(NFAwtl) only contains context-sensitive languages.
Proposition 2 yields an effective construction of a finitats acceptord’ from an
NFAwtl A such that the languagé = L(A’) is a subset of the languade= L(A)
that is letter-equivalent td. Hence,FE is non-empty if and only if_ is non-empty, and

E is infinite if and only if L is infinite. As the emptiness problem and the finiteness
problem are decidable for finite-state acceptors, this idiately yields the following
decidability results.

Proposition 7. The following decision problems are effectively decidable
Instance : An NFAwtl A.

Question 1 :Is the languagd.(A) empty?

Question 2 :1Is the languagéd.(A) finite?
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On the other hand, it is undecidable in general whether arratitrace language is
recognizable (see, e.g., [2]). As a rational sulsset a trace monoid/ (D) is recogniz-
able if and only ify ;' (S) is a regular language, we obtain the following undecidabili
result from Theorem 1.

Proposition 8. The following decision problem is undecidable in general:
Instance : An NFAwtl A.
Question : Is the languagd.(A) regular?

By a reduction from the universality problem for rationarisducers, which is un-
decidable in general [3], also the following undecidapitésults can be derived.

Proposition 9. The following problems are undecidable in-.general:
Instance : Two NFAwtlsA; and As.

Question 1 :1s L(A;) contained inL(A3)?

Question 2 :Are A; and A, equivalent, that is, does(A;) = L(A3) hold?

5 Conclusions

We have presented finite-state acceptors with transluetiats, and we have seen that
they are quite expressive. In fact they accept a subcladseoflass of all languages
with semi-linear Parikh image that properly contains aflaal trace languages. As
the deterministic variants of our acceptors do not accdpttibnal trace languages,
it remains to characterize their expressive power. In @aldr, which rational trace
languages are accepted by DFAwtls? Then we have given a mahtlesure and non-
closure results for the language cla&dNFAwtl), but it remains open whether or not
this class is closed under inverse morphisms or under thextipe of reversal. Also the
closure and non-closure properties of the cladSFAwtl) remain to be studied.

It appears that the fact that the translucency mapping osbedds on the actual
state but not on the letter actually processed is one of #sores for the limited expres-
sive power of DFAwtls. Hence, we plan to also study a varidithe DFAwtl in which
the translucency mapping depends on the actual state alettéreread (erased).

6 Proofs

The NFAwtl considered here is closely related to the scedalboperating distributed
system of stateless deterministid Rautomatahat was introduced in [7].

A stateless deterministic(R-automatornis a one-tape machine with a read/write
window of size 1. Formally it is described by a 5-tupgle= (X, ¢, $, 1, 6), whereX' is
a finite alphabet, the symbols& ¢ X' serve as markers for the left and right border of
the work space, respectively, afid > U {¢, $} — {MVR, Accept, ¢, 0} is a (partial)
transition function There are three types of transition stepsive-right stepg§MVR),
which shift the window one step to the right, combinedrite/restart stepgs), which
delete the content (¢ € X) of the window, thereby shortening the tape, and place
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the window over the left end of the tape, amctept stepgAccept), which cause the
automaton to halt and accept.difa) = (), then no step is possible and the automaton
halts and rejects.

A configurationof M is described by a paiix, 3), where eitherx = ¢ andg €
{¢} - X* - {$}ora € {c}- X*andB € ¥* - {$}; hereas is the current content of
the tape, and it is understood that the head scans the firdiadyoh 3. A restarting
configurationis of the form(e, cw$), wherew € X*. By k), we denote the single-step
computation relation od/, and-3, denotes the reflexive transitive closure-qf;.

The automatonM proceeds as follows. Starting from an initial configuration
(e, cw$), the window moves right until a configuration of the fotor, ay$) is reached
such thaté(a) = e. Now the latter configuration is transformed into the restgr
configuration(e, cxy$). This computation, which is called @ycle is expressed as
w S, xy. A computation ofM now consists of a finite sequence of cycles that is
followed by a tail computation, which consists of a sequesfamove-right operations
possibly followed by an accept step. An input warde X* is acceptedby M, if
the computation of\/ which starts with the initial configuratiofe, cw$) finishes by
executing an accept step. B M) we denote the language consisting of all words
accepted by/.

If M= (X, ¢$,1,0) is a stateless deterministic Bfautomaton, then we can par-
tition its alphabet” into four disjoint subalphabets:

(1)X1={aeX|d(a) =MVR}, (3.) X3 ={aec X|d(a) =Accept},
(2) Xy ={aec X |da)=c¢c}, (4) X, ={aecX|d(a)=0}.

A cooperating distributed system of stateless determiniBil)-automata (or
a stl-det-local-CD-R()-system for short) consists of a finite collectiolt =
((Mj,04)jes,Jo) of stateless deterministic Rtautomatal/; = (X,¢,$,1,4;) (j €
J), successor relations; C J (j € J), and a subsel, C J of initial indices.Here it
is required thatly # ), and thaw; # ) for all j € J. Various modes of operation have
been introduced and studied, but here we are only intergstadde= 1 computations.

A computation of M (in mode= 1) on an input wordw proceeds as follows.
First an indexj, € Jo is chosen nondeterministically. Then the R-automaidy
starts the computation with the initial configuratién cw$), and executes a single
cycle. Thereafter an inde) € o;, is chosen nondeterministically, aidd;, continues
the computation by executing a single cycle. This continued, for somel > 0,
the machinel/;, accepts. Should at some stage the chosen madiinebe unable
to execute a cycle or to accept, then the computation fayysLBM) we denote the
language that the system accepts. ByC(stl-det-local-CD-R(1)) we denote the class
of languages that are accepted by stl-det-local-CDHRystems.

If A =(Q,%,$,7,1,F,0)is an NFAwtl, then we can assign a stl-det-local-CD-
R(1)-systemM to it by definingM = ((M;, 0;);es, Jo) as follows. The set of indices
isJ=Q x X,and.Jy = I x X. For all pairs(q,a) € J, M40y = (¥,€,$,1,6(4,0))
is defined by the following transition relation and successo:
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8(q,a)(€) = MVR, (q,0)(b) = MVR forall b € 7(q),
0(g,a)($) = Accept,if g€ F,  0(ga)(a) =¢, ifad(q)andi(q,a)#0,

[ (g a) x X,if §(q,a) # 0,
9@a)  TIQx ¥, otherwise

Furtherdq,q)(c) = O for alllettersc € (XN (7(q)U{a})), anddq q)($) = 0, if ¢ is not
a final state ofA. Observe that the automatard, ,) cannot make any rewrite/restart
step, and hence, its successor set is never used; if(¢) or é(q,a) = 0.

A computation stegpuav - $ Fa guv - $ of A is simulated by the component
Mg, ,0) Of M @as(e, ¢ uav-8$) by, - (¢ u,av-3) Far,, ) (€,€-uv-$). Further, an
accepting step aofl of the formg,u-$ -4 Accept is simulated by a componeft,, ,)
as(e, c-u-9) MM o (¢-u,$) =ny,, ., Accept. Thus, in order to simulate an accepting
computation of4, one must guess the next letter to be deleted in-each stephande
the corresponding component.®f. It now follows easily tha.(M) = L(A) holds.

Conversely, ifM = ((M;,0;);cs, Jo) is a CD-system of stateless deterministic
R(1)-automataM,; = (X,c,$,1,0;) (j € J), then we can associate an NFAuAl =
(JU{+} 2.8, 7,Jo, F,5) to M as follows. For each index € J, we define the
translucency mapping and the transition functiofi as follows:

() = {E,‘ if 3;(¢) = Accept,} 5(j,a) =0, forallac £,
x7), otherwise " 5(j,b) = {+} forallb e .

Herex”), £ andx{” are the subsets df mentioned above that correspond to the
R(1)-automaton/;. Further, we define(+) = X' and

F={jeJ]|J$)=Accept}U{+}.

It can now be verified thatl can simulate the accepting computations\dfin a step-
wise fashion. Thus, it follows thdt(A) = L(M) holds.

Now Proposition 1 and Theorem 1 are immediate consequelitks above cor-
respondence and the results on stl-det-local-CDH-Rystems presented in [7], while
the closure and non-closure results as well as the dedityadild undecidability results
follow from [8].
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