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Abstract: Reinforcement Learning is a powerful technique for agents to solve unknown Markovian Decision Processes,
from the possibly delayed signals that they receive. Most RL work, in particular for multi-agent settings,
assume a discrete action set. Learning automata are reinforcement learners, belonging to the category of policy
iterators, that exhibit nice convergence properties in discrete action settings. Unfortunately, most applications
assume continuous actions. A formulation for a continuous action reinforcement learning automaton already
exists, but there is no convergence guarantee to optimal decisions. An improve of the performance of the
method is proposed in this paper as well as the proof for the local convergence.

1 INTRODUCTION

Since Artificial Intelligence emerged, it has been try-
ing to emulate human behavior with the hope that
some day computers will learn how to act as perfect
humans. Reinforcement Leaning is the way animals
learn how to maximize their profits in certain situa-
tions. It is based on random but not uniform explo-
ration. The basis of Reinforcement Learning is to ex-
plore actions and reinforce positively those that re-
sulted in a good outcome for the learner, or reinforce
negatively the ones that produced bad results.

The mathematical abstraction of this learning is
already formulated for discrete actions, but in many
engineering applications it is necessary to control
continuous parameters. Continuous formulations of
Reinforcement Learning are not developed as good as
discrete action learners. For single agents there is al-
ready quite a lot of work on continuous action learn-
ing but there is not much work done in multi-agent
settings.

This paper performs an analysis of the perfor-
mance of Continuous Action Reinforcement Learn-
ing Automaton (CARLA) (Howell et al., 1997) on its
usefulness for future exploration in Multi-agent Sys-

tems (MAS). Classical definition of random variable
(RV), will be used as well as the probability integral
transformation for the generation of random numbers
following a given probability distribution (Parzen,
1960). Next section introduces the LA and as a first
contribution of this paper, subsection 2.2 shows how
the numerical calculations can be reduced by some
mathematical derivations. Following subsection 2.3
introduces the local convergence proof as well as the
way to manage theλ parameter to improve this con-
vergence as a second contribution. To support the the-
oretical results, some experiments are presented in the
section 3. Finally, conclusions and future work are
stated in section 4.

2 LEARNING AUTOMATA

The learning automaton is a simple model for adap-
tive decision making in unknown random environ-
ments. The concept of a Learning Automaton (LA)
originated in the domain of mathematical psychology
(Bush and Mosteller, 1955) where it was used to an-
alyze the behavior of human beings from the view-
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point of psychologist and biologists (Hilgard, 1948;
Hilgard and Bower, 1966).

The engineering research on LA started in the
early 1960’s (Tsetlin, 1961; Tsetlin, 1962). Tsetlin
and his colleagues formulated the objective of learn-
ing as an optimization of some mathematical perfor-
mance index (Thathachar and Sastry, 2004; Tsypkin,
1971; Tsypkin, 1973):

J(A) =

∫

A
R(a,A)dP (1)

whereR(a,A) is a function of an observation vector
a with A the space of all possible actions. The perfor-
mance indexJ is the expectation ofR with respect to
the distributionP. This distribution includes random-
ness ina and randomness inR.

The model is well presented by the follow-
ing example introduced by Thathachar and Sastry
(Thathachar and Sastry, 2004). Consider a student
and a teacher. The student is posed a question and
is given several alternative answers. The student
can pick one of the alternatives, following which the
teacher responds yes or no. This response is proba-
bilistic – the teacher may say yes for wrong alterna-
tives and vice versa. The student is expected to learn
the correct alternative through such repeated interac-
tions. While the problem is ill-posed with this gener-
ality, it becomes solvable with an added condition. It
is assumed that the probability of the teacher saying
‘yes’ is maximum for the correct alternative.

All in all, LA are useful in applications that in-
volve optimization of a function which is not com-
pletely known in the sense that only noise corrupted
values of the function for any specific values of argu-
ments are observable (Thathachar and Sastry, 2004).
Some standard implementations are introduced below

2.1 Learning Automata
Implementations

The first implementation we would like to refer
to is the Continuous Action Learning Automata
(CALA) introduced by Thathachar and Sastry in 2004
(Thathachar and Sastry, 2004). The authors imple-
mentedP as the Normal Probability Distribution with
meanµt and standard deviationσt . At every time step
t an action is selected according to a normal distri-
butionN (µt ,σt). Then, after exploring actionat and
observing signalβt (at) , the update rules (2) and (3)
are applied resulting in a new value forµt+1 andσt+1.

µt+1 = µt + λ
βt (at)−βt (µt)

max(σt ,σL)

at −µt

max(σt ,σL)
(2)

σt+1 = σt +λ
βt (at)−βt (µt)

max(σt ,σL)

[

(

at −µt

max(σt ,σL)

)2

−1

]

−λK (σt −σL)
(3)

whereλ is the learning parameter controlling the step
size (0< λ < 1), K is a large positive constant andσL
is a lower bound ofσ. Authors also introduced the
convergence proof for this automaton and tested it in
games with multiple learners.

Notice that this first formulation presented in ex-
pressions (2) and (3) works with a parametric Proba-
bility Density Function (PDF) so it is simple and fast
to incorporate the signal into the knowledge of the
automaton. Thathachar and Sastry (Thathachar and
Sastry, 2004) introduced several examples of how to
manage a game of multiple automata meaning that
these automata can be used for controlling multiple
variables in a MAS. Notice that the update rule needs
information about the response of the environment for
the selected actionat but it also needs the feedback
for the action which corresponds to the mean of the
probability distribution, beingµt . In most of practical
engineering problems it is impossible to explore both
actions. Additionally, the convergence proof assumes
that the function to optimize should be integrable and
the minimal achievable standard deviationσL is very
sensitive to noise: the stronger the noise, the higher
the lower boundσL. These constraints are really re-
strictive for practical applications.

The second implementation we would like to re-
call is the CARLA (Howell et al., 1997). The authors
implementedP as a PDF as well but nonparametric
this time. Starting with the uniform distribution over
the whole action spaceA and after exploring action
at ∈ A in time stept the PDF is updated as (4) shows.

ft+1 (a)=







γt

(

ft (a)+ βt (at)αe−
1
2(

a−at
λ )

2
)

a∈ A

0 a /∈ A
(4)

This second formulation (4) saves the unneces-
sary exploration and the function to optimize is not
required to be integrable, just not chaotic. The prob-
lem is that it controls the strategy for the action selec-
tion of the automaton with a nonparametric PDF so it
becomes computational very expensive. The solution
is to numerically approximate the function but still,
some heavy numerical calculations are necessary for
γt . No convergence proof is given either.

If the computational cost of this method could be
decreased and the convergence proof shown, then the
CALA introduced by Thathachar and Sastry could be
substituted by the CARLA providing a better way for
solving practical problems with a MAS approach.
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2.2 CARLA Update Rule

Let us restart the analysis on expression (4) in order
to look for possible reductions on the computational
cost. Leta− = min(A) anda+ = max(A) be the mini-
mum and maximum possible actions. The normaliza-
tion factorγt can be computed by expression (5).

γt =
1

∫ a+
a−

(

ft (a)+ βt (at)αe−
1
2(

a−at
λ )

2
)

da
(5)

The original formulation is for the bounded con-
tinuous action spaceA which makes the analytical cal-
culation of the normalisation factorγ unlikely. Let
us relax this constraint and work over the unbounded
continuous action spaceℜ. Then the PDF update rule
introduced in (4) should be redefined as (6) where
fN(at ,λ) is the normal PDF with meanat and standard
deviationλ. Analogously, (5) is transformed into (7).
Notice that numerical integration is no longer needed
for calculatingγt .

ft+1 (a) = γt

(

ft (a)+ βt (at)αe−
1
2(

a−at
λ )

2
)

= γt

(

ft (a)+ βt (at)αλ
√

2π fN(at ,λ) (a)
)

(6)

γt =
1

∫ +∞
−∞
(

ft (a)+ βt (at)αλ
√

2π fN(at ,λ)

)

da

=
1

1+ βt (at)αλ
√

2π

(7)

Let δt , introduced in (8), be the extra area added
to the PDF by stretching the curve beyond the interval
[a−,a+] then (7), can be written as (9) and (6) as (10).

δt = βt (at)αλ
√

2π (8)

γt =
1

1+ δt
(9)

ft+1 (a) = γt
(

ft (a)+ δt fN(at ,λ) (a)
)

(10)

In order to generate the actions following the
policy ft the cumulative density function (CDF) is
needed (Parzen, 1960) which is introduced in (11).

Ft+1 (a) =

∫ a

−∞
ft+1 (z)dz

=

∫ a

−∞
γt
(

ft (z)+ δt fN(at ,λ) (z)
)

dz

= γt
(

Ft (x)+ δtFN(at ,λ) (a)
)

= γt

(

Ft (x)+ δtFN(0,1)

(

a−at

λ

))

(11)

Although there is no analytical definition for the
normal CDFFN(µ,σ) it can be approximated by means
of numerical integration. So still numerical integra-
tion is needed however one single CDF is required,
beingFN(0,1) which can be calculated at the beginning
of learning – only once – and there is no more need
for integration during the learning process.

Finally, the original constraint has to be met for
practical solutions, that is∀t : at ∈ A – see (4). So
γt andFt+1 defined in (9) and (11) should be trans-
formed as shown in (12) and (13) whereFdi f f

t (x,y) =
FN(0,1)

( y−at
λ
)

−FN(0,1)

( x−at
λ
)

.

γt =
1

1+ δtF
di f f
t (a−,a+)

(12)

Ft+1 (a)=











0 a < a−
γt

(

Ft (a)+ δtF
di f f
t (a−,at)

)

a∈ A

1 a > a+

(13)
For a practical implementation of this method,

equations (8), (12) and (13) are sufficient to avoid
numerical integration saving lot of calculation time
during learning process. We would like to stress
that without this reformulation the method was really
computationally too heavy to be applied in practice,
but with this change it turns to be computationally
feasible. In the next subsection we will perform an
analysis ofλ used in expression (8) which will result
in better convergence properties.

2.3 CARLA Convergence

The analysis will be performed for normalized reward
signalsβ : ℜ → [0,1] – no generality is lost because
any closed interval can mapped to this interval by a
linear transformation. The final goal of this analysis
is to find the necessary restrictions to guarantee con-
vergence to local optima.

The sequence of PDF updates is a Markovian pro-
cess, where for each time-stept an actionat ∈ A is
selected and a newft is returned. At each time-stept,
ft will be updated as shown in expression (10). The
expected valuēft+1 of ft+1 can be computed follow-
ing equation (14).

f̄t+1 (a) =

+∞
∫

−∞

ft (z) ft+1 (a | at = z)dz (14)

Let γtz = γt |at = z be the value forγt if at = z and
γ̄t the expected value ofγt then (14) could be rewritten
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as (15).

f̄t+1 (a) =

+∞
∫

−∞

ft (z)γtz

(

ft (a)+αβt (z)e−
1
2(

a−z
λ )

2
)

dz

= ft (a) γ̄t +α
+∞
∫

−∞

ft (z)γtz (z)βt (z)e−
1
2(

a−z
λ )

2

dz

(15)
Let us have a look at the right member of the in-

tegral. ft (z) is multiplied by the factor composed by
the normalization factor given thatat = z, the feed-

back signalβt (z) and the distance measuree−
1
2(

a−z
λ )

2

which can be interpreted as the strength of the relation
of actionsa andz, the higher the value of this prod-
uct, the bigger the relation of these actions. Let us call
this composed factorGt (a,z) andḠt (a) its expected
value at time-stept with respect toz. Then equation
(15) could be finally formulated as (16).

f̄t+1 (a) = ft (a) γ̄t + αḠt (a)

= ft (a)

(

γ̄t +
αḠt (a)

ft (a)

)

(16)

The sign of the first derivative offt depends on the

factor γ̄t + αḠt (a)
ft(a) of expression (16) so it behaves as

shown in (17).

∂ ft
∂t



















< 0
(

γ̄t +
αḠt(a)

ft(a)

)

< 1

= 0
(

γ̄t +
αḠt(a)

ft(a)

)

= 1

> 0
(

γ̄t +
αḠt(a)

ft(a)

)

> 1

(17)

Notice γ̄t is a constant for alla ∈ A and
∫ +∞
−∞ ft (z)dz= 1 so:

∃b1,b2∈A : Ḡt(b1)
ft(b1)

6= Ḡt (b2)
ft(b2)

=⇒
∃A+,A−⊂A,A+∩A−= /0,∀a+∈A+,a−∈A− :
(

∂ ft(a+)
∂t > 0

)

∧
(

∂ ft(a−)
∂t < 0

) (18)

From logical implication (18) it can be assured
that the sign of∂ ft (a)

∂t will be determined by the ra-

tio Ḡt(a)
ft(a)

. Notice subsetsA+ andA− are composed by
the elements ofA that have not reached their value for
the probability density function in equilibrium with
Ḡt (a). That is, theA+ subset is composed by alla∈A
having a value of probability density function which
is too small with respect tōGt (a) and vice versa for
A−.

Let a∗ ∈ A be the action that yields the highest

value for
∫ +∞
−∞ βt (z)e−

1
2(

a−z
λ )

2

dz for all time-steps as
shown in (19). It is important to stress thata∗ is not
the optimum ofβt but the point yielding the optimal

vicinity around it and defined bye
− 1

2

(

a∗−z
λ

)2

which
depends onλ.

∀t∈ℵ,a∈A :

+∞
∫

−∞

βt (z)e−
1
2(

a∗−z
λ )

2

dz≥
+∞
∫

−∞

βt (z)e−
1
2(

a−z
λ )

2

dz

(19)
It is a fact that∀a∈A : Ḡt (a)≤ Ḡt (a∗) and since the

first derivative depends onḠt(a)
ft(a) , the value offt (a∗)

necessary for keeping∂ ft(a∗)
∂t = 0 is also higher than

any otherft (a):

∀a∈A : ft (a) ≥ ft (a
∗) ⇒ ∂ ft (a)

∂t
<

∂ ft (a∗)
∂t

(20)

Notice that the maximum update thatft (a∗) may
receive is obtained whenat = a∗ – centering the bell
at a∗ –, then if ft (a∗) reaches the value 1

λ
√

2π , its first
derivative will not be higher than 0 as shows (21)
sinceβ : ℜ → [0,1].

ft+1 (a∗) = γt

(

ft (a)+ βt (at)αe−
1
2(

a−at
λ )

2
)

≤ 1

1+ αλ
√

2π

(

1

λ
√

2π
+ α
)

≤ 1

1+ αλ
√

2π

(

1+ αλ
√

2π
λ
√

2π

)

≤ 1

λ
√

2π

(21)

Then the equilibrium point offt (a∗) has the
higher bound 1

λ
√

2π . Notice that the closer theβt (a∗)

to 1, the closer the equilibrium point offt (a∗) to its
higher bound.

∂ ft (a∗)
∂t











< 0 ft (a∗) > 1
λ
√

2π
= 0 ft (a∗) = 1

λ
√

2π
> 0 ft (a∗) < 1

λ
√

2π

(22)

We can conclude from (20) and (22) that the high-
est value forf will be achieved ata∗ as shown in (23)
which has the higher bound1

λ
√

2π
.

∀a∈A\{a∗} :limt→∞ ft (a) < ft (a
∗)

limt→∞ ft (a
∗) ≤ 1

λ
√

2π
(23)

Finally

limλ↓0limt→∞ ft (a
∗) = ∞

∀a 6=a∗ : limλ↓0limt→∞ ft (a) = 0
(24)

This analysis has been developed under really re-
strictive assumptions, such ast → ∞, λ ↓ 0, α is
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small enough – the bigger theα the bigger the first
derivative of probability law through time allowing
a fast convergence but also the bigger the difference
between the actual probability law and its expected
value – and the reward function is noiseless enough
to assure (19).

The best solution for the problem stated above
about the constrains ofλ is to start with a wide enough
bell – allowing enough exploration – and make it thin-
ner as it approaches the optimum – to meet (24). A
good measure of convergence could be the standard
deviation of the actions selected lately. When the
standard deviation of actions is close to theλ that is
been used to update the probability density function
then the maximum value forft (a∗) has been reached
as stated in (23).

Since f0 is the Uniform Density Function, the
standard deviation of actions should start atσ0 =
max(A)−min(A)√

12
. We are proposing to use expression

(25) for the convergence (convt) value of the method
given the standard deviation of actionsσt . Then, (26)
could be used asλ necessary in equation (8) for each
time-stept improving the learning process of the au-
tomaton.

convt = 1−
√

12σt

max(A)−min(A)
(25)

λt = λ(1−convt) (26)

3 EXPERIMENTAL RESULTS

In order to validate these ideas the standard method
will be tested against the new proposal in 2 scenarios:
noiseless and noisy. All examples will be introduced
by the characteristic function form (von Neumann and
Morgenstern, 1944). Formally, a characteristic func-
tion form game is given as a pair(N,v), whereN de-
notes a set of players andv : SN −→ ℜ is a character-
istic function withS⊂ ℜ being the action space.

3.1 Noiseless Scenarios

Three examples will be introduced in this subsection
(

{la},βi
)

,
(

{la},βii
)

and
(

{la},βiii
)

where la is a
learning automaton. Their analytical expressions are
presented in (27), (28) and (29) respectively. Figure
1 shows them graphically. The operator union is de-
fined asa

⋃

b = a+ b− ab and the bell function as

Bell(a,a0,σ) = e
− 1

2

(

a−a0
σ

)2

βi (at) = Bell(at ,0.5,0.2) (27)

βii (at) = 0.8Bell(at ,0.2,1) (28)

βiii (at) = (0.9Bell(at ,0.2,0.4))
⋃

Bell(at ,0.9,0.3)

(29)

0

1

0.5

i
0.6

0.8

0.2

ii
0.8

1

0.2

0.9

0.9

iii

Figure 1: Characteristic function for scenariosi, ii andiii .

Figure 2 shows the average reward obtained over
time. The selected learning rate was 0.1 andλ0 = 0.2.
The gray curve, shows the rewards collected with the
standard method and the black one shows the same
but using the convergence to tune the bell through
time. It is clear that the results obtained with the im-
provement show better convergence properties. These
differences are more remarked for the first scenario
which has a very easy to learn function. The differ-
ences for the other two scenarios are not so big.

0.5
0.6
0.7
0.8
0.9

1

0 6000iteration
0.5
0.6
0.7
0.8
0.9

1

0 6000iteration
0.5
0.6
0.7
0.8
0.9

1

0 6000iteration

Figure 2: Average rewards.

3.2 Noisy Scenarios

We can add some random noise to the previous for-
mulations as (30), (31) and (32) shows. Figure 3 plots
these functions.

βi′ (at) = 0.8βi (at)+ rand(0.2) (30)

βii ′ (at) = 0.875βii (at)+ rand(0.2) (31)

βiii ′ (at) = 0.8βiii (at)+ rand(0.2) (32)

0

1

0.5

i′

0.5

0.9

0.2

ii ′

0.6

1

0.2 0.9

iii ′

Figure 3: Reward functions for scenariosi′, ii ′ andiii ′.

Figure 4 shows the average rewards collected over
time. The same parameter setting was used here. The
results obtained here are similar to the ones of the pre-
vious subsection.

Table 1 sums up results for 100 runs of the algo-
rithms for the above mentioned examples. Better re-
sults are observed for the new learner since the im-
proved method reducesλ through the learning pro-
cess. In case of environments with a high noise level,
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Figure 4: Average rewards.

λ cannot be reduced that much, and both methods give
similar results.

Table 1: Average long-run reward

standard improved
noiseless i 0.62 0.96

ii 0.85 0.86
iii 0.80 0.88

noisy i′ 0.60 0.87
ii ′ 0.74 0.76
iii ′ 0.74 0.75

A final remark. Notice that the standard automa-
ton did not show good convergence properties for
none of the scenarios introduced in this paper. Despite
the new derivation of the method to reduce theλ as the
learner reaches better convergence levels for more dif-

ficult functions such as
(

{la},βii ′
)

and
(

{la},βiii ′
)

–

where the difference in the signal received for actions
around the optimum are quite similar or there are mul-
tiple optima – the learner does not converge to the op-
timum as fast as necessary. Future work should be
focussed on the amplification of the perception of the
learner of the signals to allow a more accurate conver-
gence to the optimum.

4 CONCLUSIONS

Learning automata are reinforcement learners, be-
longing to the category of policy iterators, that ex-
hibit nice convergence properties in discrete action
settings. In this paper an improve of the performance
of the method was proposed in order to avoid unnec-
essary numerical integration – speeding up the calcu-
lations – as well as the proof for the local convergence
and a way to adjust theλ parameter during learning to
speed up the learning itself.

In future work we want to investigate the conver-
gence of these LA in multi-agent settings. It has been
shown that a set of agents applying independently
from each other an LA update scheme can converge
to a Nash equilibrium in a discrete action games. We
will study if this convergence result can be extended
to continuous action games.
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