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Abstract: The analyses of recordings of magnetoencephalography (MEG) and other imaging techniques may require
the separation of periodic signals from the observed signals. Blind source separation (BSS) is widely used
for the separation of specific signals these days. Though several algorithms based on the BSS scheme for
the separation of periodic signals have been proposed, they usually assume the system to be well-posed,
satisfactory results often cannot be obtained for practical recordings. In this study, we show that a method
based on the joint approximate diagonalization of correlation matrices with several time delays (JADCM)
is robust and good results can be obtained by choosing the time delays carefully, especially in practical ill-
posed situations such as signal separation from MEG recordings. The performance of the proposed method is
compared with that of Periodic BSS and JADCM using the conventional parameter set.

1 INTRODUCTION

The blind source separation (BSS) scheme is a pow-
erful tool for the analysis of recordings of magnetoen-
cepharography (MEG) and other imaging techniques
to separate artifacts, noise, and brain signals. The po-
tential of BSS for use in MEG data analysis has been
confirmed in many studies (Hyvärinen et al., 2001).

Generally, we consider a linear and instantaneous
superposition of independent source signals and mul-
tidimensional observations of the form

x(t) = A ·s(t)

for the BSS problem, wherex(t)= (x1(t), · · · ,xm(t))T

denote the observations,s(t) = (s1(t), · · · , sn(t))T de-
note the unknown source signals, and the mixing ma-
trix A is the transfer function between sources and
sensors. BSS involves identifyingA and retrieving
the source signalss(t) without a priori information
about the mixing matrixA.

Many types of BSS methods have been proposed
thus far (Hyvärinen et al., 2001) (Theis and Inouye,
2006). Each of them require additional conditions for
separation, so that has each suitable data types. We
have to choose the methods and parameters carefully
depending on the entities to be separated or extracted.

MEG data to which the BSS scheme is applied
have several features such that (c1) most source sig-
nals have time structures; (c2) the number of source

signals is larger than that of observations, i.e., the
problem is ill-posed; and (c3) some sources are pe-
riodic.

The second-order statistics is useful for signal sep-
aration in case each source signal has specific auto-
correlation and no cross-correlations. In this case,
correlation matrices of source signals for arbitrary
time delays are diagonal. Furthermore, if a correla-
tion matrix for a time delay has distinct eigenvalues,
we can separate the source signals by the diagonal-
ization of the correlation matrix (Belouchrani et al.,
1997) (Ziehe and Müller, 1998). Several methods for
the separation of periodic signals have been proposed
(Barros and Cichocki, 2001) (Jafari et al., 2006).

Joint diagonalizations of several correlation ma-
trices with different time delays are effective for the
case of correlation matrices having the same or al-
most the same eigenvalues (Belouchrani et al., 1997)
(Ziehe and Müller, 1998). Several methods based on
the joint approximated diagonalization have been pro-
posed (Theis and Inouye, 2006) and applied to MEG
data analysis (Ziehe et al., 2000).

In the joint diagonalization process, we have to
choose the values and the total number of time delays
for the correlation matrices. If the problem is well-
posed, as assumed in most proposed methods, the se-
lection of the time delays does not critically affect the
results of the separation. On the other hand, in the
case of practical application to MEG data, the number

372 Fukai H..
A ROBUST AND PRACTICAL METHOD TO SEPARATE PERIODIC SIGNALS FROM MEG DATA USING SECOND ORDER STATISTICS.
DOI: 10.5220/0003296103720377
In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-2011), pages 372-377
ISBN: 978-989-8425-35-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



of source signals is larger than that of observations,
so that the problem is ill-posed (c2). In this case,
the information has already been lost during obser-
vation, and generally, we can only get approximated
source signals from any decomposing process. There
is no matrix that diagonalizes all the correlation ma-
trices simultaneously. The approximated results vary
considerably depending on the selection of the values
of time delays, but very few reports have discussed
the selection of the values of time delays (Tang et al.,
2005).

In order to observe and separate specific signals,
we can use the features of the signals for the selec-
tion of parameters of the method. In this paper, we
propose practical and effective values and numbers of
time delays for the extraction of periodic signals (c3)
from MEG data.

In this paper, we treat 60 Hz power supply noise
as an example of separate and eliminate periodic sig-
nals from MEG data. The BSS-type method we
use is based on the approximately joint diagonal-
ization of several time-delayed correlation matrices
without noise term (Ziehe and Müller, 1998). We
use the Jacobi-like joint diagonalization method (Car-
doso and Souloumiac, 1996). The performance of
the proposed method is compared with that of con-
ventional usage of JADCM and Periodic BSS (Jafari
et al., 2006), which is a sequential algorithm based on
second-order statistical information.

2 METHODS

2.1 Experimental Procedure

MEG data were obtained by using a whole-
head helmet-shaped 64-channel SQUID sensor array
(Model 100, CTF Systems Inc.) in a magnetically
shielded room. Each MEG sensor has an axial gra-
diometer that approximately measures the magnetic
field in the normal direction. One healthy volunteer
(32-year-old male) participated this study. After ex-
plaining the nature of the study, informed consent
was obtained from him. The experimental procedures
were in accordance with the Declaration of Helsinki.
The subject had no history of neurological and psy-
chiatric disorders. During recording, the subject was
seated relaxed under a helmet-shaped device. The
sampling ratio was 625 Hz.

2.2 Blind Separation using
Second-order Statistics

The problem of blind source separation (BSS)
consists of recovering unknown source signals
s(t) = (s1(t), . . . ,sn(t))T from observationsx(t) =
(x1(t), . . . ,xm(t))T , generated by the mixing model

x(t) = As(t)

where the mixing operatorA ∈ R
m×n is a fixed but

unknown matrix andt is discrete time index (Ziehe
and Müller, 1998).

Generally, we suppose well-posed problem, i.e.,
the matrixA has full column rank. In the case where
the number of sources is equal to the number of mea-
surementsm = n, the model becomes exactly deter-
mined problem. The separating system then estimates
the original source signals according to

y(t) = Bx(t) = BAs(t) = ΛPs(t) ∝ s(t),

wherey(t) = (y1(t), . . . ,ym(t))T represents the recov-
ered sources. MatricesB, Λ andP ∈ R

m×m are sep-
arating, scaling and permutation matrix respectively.
Because we cannot know the variances of sources, we
assume the correlation matrix ofs(t) as unit matrix
and eachs(t) has mean zero without losing generality.
In the joint diagonalization scheme, we consider cor-
relation matricesCx(τ) of time-lagged mixed signals
x(t),

Cx(τ)
def
= E{x(t)xT(t + τ)}

whereE{·} denotes statistical expectation overt and
τ is a time-shift parameter. Practically the expecta-
tion is computed from the available data with a finite
sample sizeN as a sample average

Ĉx(τk) =
1
N

N−τk

∑
t=1

(x(t)xT(t + τk)).

We see that the correlation ofx(t) is related to the
correlation ofs(t) according to

Cx(τ) = E{(As(t))(As(t + τ))T}

= AE{s(t)s(t + τ)T}AT

= ACs(τ)AT

due to the linearity of the expectation operator and the
mixing model. Here, all cross-correlation terms ofs
which are the off-diagonal elements ofCs(τ) are zero
for independent signals and thusCs(τ) is a diagonal
matrix. If A is invertible, this can also be written as

BCx(τ)BT = Cs(τ)

where the matrixB = A−1 diagonalizesCx(τ).
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We take two steps to identifyB, i.e., whitening
stepandjoint-diagonalization step.

The whitening step is achieved by applying tox(t)
a whitening matrixW satisfying:

E{Wx(t)x(t)TWT}= WCx(0)WT = WAATWT = I.

In other words, whitening step correspond to principal
component analysis (PCA) procedure which removes
correlations between the observationsx(t). This fol-
lows that if W is a whitening matrix, then there ex-
ists a orthogonal matrixU such thatWA = U for
any whitening matrixW. With the orthogonal ma-
trix U, the mixture matrixA can be determined as
A = W−1U. The whitening step reduces the determi-
nation of the matrixA to that of a orthogonal matrix
U.

The next joint-diagonalization step is achieved
by finding U as a rotetion matrix which diagonalize
the time-delayed correlation matricesE{Wx(t)x(t +
τk)

TWT} simultaneously. Here, any rotating proce-
dure does not change the correlation matrix of zero
time delay.

Though only one additional time delayed corre-
lation matrix is required theoretically (Tong et al.,
1991)(Molgedey and Schuster, 1994), we may fail to
find the diagonalization matrixB if Cx(τ) does not
have distinct eigenvalues. This can be avoided by
simultaneous diagonalization of multipleCx(τk),1≤
k ≤ K (Belouchrani et al., 1997)(Ziehe and Müller,
1998). We use Jacobi like algorithm proposed by
Cardoso and Souloumiac (Cardoso and Souloumiac,
1996) based on several Givens rotations to findU.

2.3 Selection of Time Delays for
Periodic Sources on Ill-posed
Problem

In most theoretical discussions on the BSS problem,
we treat exactly determined problem in which we
can get exact solutions. In the joint-diagonalization
scheme, not much focus on the selection of time
delays is required if the problems are well-posed.
Theoretically, in case each source signals(t) has its
auto-correlations and the correlation matrix for the
time delay has distinct eigenvalues, only one time de-
lay is required. Several time delays and their joint-
diagonalizations are effective in case the correlation
matrices have the same or almost the same eigen-
values (Belouchrani et al., 1997)(Ziehe and Müller,
1998).

However, the problems are ill-posed in most prac-
tical cases, especially in MEG recordings, and only
approximated solutions can be obtained. There is
no orthogonal matrix that makes all the correlation

matrices with the time delay diagonal on the prac-
tical ill-posed situations. In this case, the joint-
diagonalization algorithm minimizes the sum of the
off-diagonal values to obtain the target orthogonal
matrix.

Generally, in ill-posed problems, the separation
performance depends on the trade-off between the
source signals. In the case of joint-diagonalization,
the results vary depending on the selection of the set
of the time delayτ. If specific sources have to be ex-
tracted, we have to set the number and value of time
delays depending on the condition and achive good
separation performance.

In case the target signals have specific features in
the auto-correlation function, we can select the values
of time delays depending on that. If the signals are
periodic with cycleT, the auto-correlation function
has peaks on the time delaykT, k = 1, 2, · · · and we
can get larger evaluation values to minimize the peaks
by settingτ = kT, k = 1, 2, · · · .

Furthermore, if brain signals are not the target to
be separated, it is important to choose the time delays
to avoid the effect of brain signals. Because almost all
brain signals have prominent auto-correlation values
within 1 s of the time delay, it is effective to choose
time delays over 1 s to avoid the effect of brain sig-
nals.

In conclusion, for the separation and elimination
of power supply noise of 60 Hz, we set the time delay
asτ = kT, k= 61, 62, · · · , andT = 1/60 (s). The total
number ofτ may be chosen such that it is sufficient for
convergence.

3 RESULTS

As an example of the separation of periodic signals
from MEG data, we tried to separate 60 Hz power
supply noise and eliminate them from the data.

Figure 1 shows auto-correlation functions of sep-
arated signals (SS). We selected five signals from sep-
arated 64 signals, labeled SS1 to SS4, which have
remarkable peaks showing time delays associated
with 60 Hz cycle and its higher harmonics on auto-
correlation functions. The peak values become con-
stant over 0.05 s, which approximately indicates the
noise originated power supply has little temporal fluc-
tuations. On the other hand, the signals originate from
the brain activities have temporal fluctuations, so that
the values of auto-correlations decrease after a short
period (SS9). This difference is a useful factor for the
separation. The time delay parameter used here was
τ = kT, k = 61,62, · · · ,80, T = 1/60 (s) for 60 Hz
power supply noise. This parameter set was chosen
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Figure 1: Auto-correlation functions of separated signals
related to power supply noise (SS1–SS4) and brain signal
(SS9).

to utilize peaks of auto-correlation functions of target
signals and circumvent the effect of auto-correlation
values of signals originating from brain activities.

Figure 2 shows the performance indexes of sep-
aration to estimate a sufficient number of correlation
matrices. The abscissas are total number of correla-
tion matrices, used for joint-diagonalization, the num-
ber of τ. The performance index is defined as aver-
age of auto-correlation values of each separated sig-
nal y(t) on the peaks correspond to 60Hz. The index
values are calculated as

1
K2−K1

K2

∑
k=K1

1
N

N−kT

∑
t=1

(y j(t)y j(t +kT)), j = 1, · · · ,64,

where (K1,K2) was set as(61,80) after auto-
correlation functions originating from other biologi-
cal signals decrease. All index values calculated for
64 components are plotted.

Using conventionalτ set, τ = 1, 2, · · · , we need
over 10 correlation matrices until we get converged
results (Fig.2 (1)). On the other hand, the index val-
ues converge at the total number ofτ is about 3 or 4
with proposedτ set,τ = kT,k = 61, 62, · · · , 80. This
smaller total number of correlation matrices for joint-
diagonalization has an advantage in calculation time.

τ

τ

Figure 2: Performance Indexes of separation improved as
total number of correlation matrix to diagonalize increase.

Furthermore, the score of the performance index af-
ter convergence is also better on proposedτ set (Fig.2
(2)).

The separation performance is also compared with
Periodic BSS (Jafari et al., 2006). Figure 3 shows
the performance indexes of separated signals obtained
by Periodic BSS (dashed), by JADCM with a con-
ventional parameter set,τ = 1, 2, · · · (dotted), and
by JADCM with proposed parameter setτ = kT, k =
61, 62, · · · , 80 (solid). The separated signals are
sorted according to the performance index, and on
10 from 64 signals are shown. In the case of an ill-
posed system, the proposed method shows good per-
formance.

To evaluate the noise reduction performance of
the proposed method, we reconstructed the original
MEG sensor signals from output signals after reject-
ing four components that were related to power sup-
ply noise corresponding to SS1 to SS4 (Fig.1). Figure
3 (1) shows the power spectral density function of the
original row data from MEG channel L42. Promi-
nent peaks can be confirmed at frequencies close to
those of the power supply and also at higher harmon-
ics. Even after noise reduction using Periodic BSS
(Fig.3 (2)) nor JADCM with the ordinary parameter
set,τ = 1, · · · , 20, (Fig.3 (3)) the peaks are still ob-
served. After noise reduction using the proposed pa-
rameter set,τ = kT, k = 61, 62, · · · , 80, peaks related
to power supply noise are hardly found.
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Figure 3: Performance indexes of SSs separated by Peri-
odic BSS (dashed), JADCM with conventional parameter
setτ = 1, 2, · · · , 20 (dotted), and by JADCM with proposed
parameter setτ = kT,k = 61, 62, · · · , 80 (solid). The SSs
are sorted according to the performance indexes.

Figure 4: Power spectral density of MEG channel L42.
(1) original row data, (2) after noise reduction using Pe-
riodic BSS, (3) after noise reduction using JADCM with
conventional parameter setτ = 1, 2, · · · , 20, and (4) after
noise reduction using JADCM with proposed parameter set
τ = kT, k = 61, 62, · · · , 80.

4 CONCLUSIONS

Several methods to separate periodic signals from
multichannel recordings have been proposed thus far.
However, they usually assume the problem to be ex-
actly determinable as a result of which their perfor-
mance in practical signal processings is not good.

In this report, we proposed a robust and prac-
tical to those method to extract periodic signals of
an ill-posed system. This method is based on the
jointdiagonalization of several time-delayed correla-
tion matrices. We showed the importance of select-
ing time delay parameters for the extraction of spe-
cific signals. We also verified the efficiency of the
proposed method in reducing power supply noise in
MEG recordings. We compared results with those of
Periodic BSS method and JADCM with the conven-
tional parameter set.

Because the power supply noise is artificial, it has
little fluctuations in its period and auto-correlation
functions are constant even for long time delays. The
same feature is also found in periodic brain responses,
indicating that the method is effective.
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