
THE MVC-WEB DESIGN PATTERN

Ralph F. Grove and Eray Ozkan
Department of Computer Science, James Madison University, Harrisonburg, VA, U.S.A.

Keywords: Web, Web framework, Design patterns, Model view controller pattern.

Abstract: The Model-View-Controller design pattern is cited as the architectural basis for many web development
frameworks. However, the version of MVC used for web development has changed as it has evolved from
the original Smalltalk MVC. This paper presents an analysis of those changes, and proposes a separate
Web-MVC pattern that more accurately describes how MVC is implemented in web frameworks.

1 INTRODUCTION

The Model-View-Controller (MVC) design pattern
is cited as the basis for the architecture of several
web application frameworks, such as ASP .Net,
Rails, and Struts. The MVC pattern was originally
implemented in the Smalltalk-80 programming
environment developed at Xerox PARC (Goldberg
and Robson, 1985). As it has been adapted for web
frameworks the MVC pattern has evolved in
different ways, resulting in implementations that
differ significantly from each other and from the
original Smalltalk implementation.

The first goal of this paper is to present the MVC
design pattern, both in its original form (section 2)
and the variations currently used in well-known web
application frameworks (section 3). Second, we
present an evaluation of the changes in the pattern as
it has evolved and the effectiveness of the evolved
version (section 3). Finally, we propose a standard
MVC-Web design pattern description that reflects
the current use of the pattern in web frameworks
while maintaining the original desirable qualities of
MVC (section 4).

Revisions of the MVC-based web application
framework design have been proposed (Chun,
Yanhua, and Hanhong, 2003) (Barrett and Delaney,
2004). This paper, however, does not propose a new
MVC architecture, rather it analyzes and documents
the evolution of the MVC pattern as it was adapted
from Smalltalk to web frameworks.

2 SMALLTALK MVC

The MVC design pattern was introduced with the
Smalltalk programming environment as a way to
structure interactive applications in a modular
fashion (Krasner and Pope, 1988). As the name
implies, the MVC design pattern decomposes
functionality into three major components.

The model component encapsulates the domain-
specific structure and functionality of the
application. This essentially includes the state of the
application and operations that can change state. The
model also maintains dependencies of view and
controller components, which it notifies in the event
of changes in state. This behavior is an instance of
the Observer pattern (Gamma, Helm, Johnson and
Vlissides, 1995). The view component presents
information to the user through a graphical user
interface. There may be multiple views of different
types operating within the application, presenting
different views to multiple users. Views may also be
hierarchical, constructed from smaller (subview)
elements. When information contained in a view is
updated (by a model component that is responsible
for that information) the view is notified by the
model and then the view may query the model to
obtain information that it needs to present. The
controller component responds to user actions via
the user interface. It is responsible for passing
transactions to the model for execution. Controllers
exist in a one-to-one correspondence with views.
The hierarchy of views is therefore also replicated
among the corresponding controllers. When a
controller receives input, it yields to its active

127F. Grove R. and Ozkan E..
THE MVC-WEB DESIGN PATTERN.
DOI: 10.5220/0003296901270130
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 127-130
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

subcontrollers first, so that input is processed at the
lowest levels of the controller hierarchy first.

User input and output devices form an implicit
fourth component of the MVC pattern. The
Smalltalk system was based on a graphical display
and standard user input devices, primarily a
keyboard and mouse. User menus were also
considered to be a type of virtual device that
transmitted input to the controller hierarchy just as
the keyboard or mouse did. Though menus were
implemented in the GUI, they were not considered
as view components.

The primary benefit of the MVC design pattern
is separation of concerns and the resulting
modularity. The design isolates user interface
presentation from user input handling, and isolates
both of these from application state and transaction
processing. This makes it possible to modify or
replace one component without needing to modify or
even understand the others. It also facilitates
extensibility by making it possible to add a
view/controller pair for a new interface medium, or
to add new functionality to the model independently
of the other components.

3 MVC IN WEB FRAMEWORKS

ASP .Net MVC 2 is the latest version of the
Microsoft web development framework (Esposito,
2010). It adds the MVC design architecture to earlier
versions of ASP .Net based on Web Forms. The
ASP .Net MVC 2 framework uses a single handler
for HTTP requests that determines and instantiates
an appropriate controller for each request.
Controllers are responsible for handling incoming
requests, orchestrating transaction processing by the
model, preparing data for the subsequent view
element, and activating that view element to
generate the response. A controller class can include
multiple actions that respond to different types of
requests, each action being a unique public method
of the class. Views are defined in ASP files, which
are HTML templates with server-side scripts that
can generate dynamic content. Each view receives
information from the controller that activated it,
either as native objects or as view-model objects,
which are unique compilations of data from the
model, each designed for a specific view. The model
component is intended to contain application logic
and database access. A differentiation is made
between view models, which are data structures
intended to convey information to a specific view
element, and application models, which are domain

entities and related transactions that operate on
them. The model component also provides object-
relational mapping, which hides the details of how
application domain objects are mapped to database
tables.

Rails is a web application framework developed
for use with the Ruby programming languages
(Thomas and Hansson, 2007). HTTP requests are
handled in Rails through a central router that directs
requests to the appropriate ActionController class
and method within the controller component.
ActionController objects are responsible for filtering
request parameters, for orchestrating transactions by
invoking methods of appropriate model elements,
and for arranging the appropriate view response.
ActionControllers also arrange for view elements to
have access to data from the model. The controller
elements are also responsible for web session
management, including cookie management. The
user interface (view component) is presented
through dynamic document templates that are
standard HTML documents with embedded Ruby
scripts, similar to ASP, PHP, JSP, etc. View
elements can access the model component as
necessary to obtain data for presentation. The Rails
model component includes elements that encapsulate
application logic and transaction processing
(ActiveModel), and an object relational mapping
scheme (ActiveRecord) that associates each database
table with a model element. The model also includes
ActiveResource elements that provide access to
external resources.

The Apache Struts 2 framework is based on Java
2 Enterprise Edition (J2EE) and Java Server Pages
(JSP) technology. Struts2 view components are JSP
documents with embedded tags that provide a
variety of functionality, including flow of control
(iteration, conditionals), access to Java Beans
(model components), and streamlined HTML Forms
construction. Controller components of a Struts2
web application are embodied in actions, which are
Java classes. An action can respond to user input
from one or more JSPs. The primary responsibilities
of each action are to validate user input and to
orchestrate transaction processing by invoking
appropriate model operations. Actions are defined
and configured through an XML configuration file
or through the Java annotation mechanism. This
configuration information also controls the flow of a
web application by determining what view follows
each action, depending upon the outcome of the
action. A central part of Struts2 is the Value Stack,
where information flowing between view and
controller is stored and converted as needed. This

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

128

eliminates much of the detail involved in handling
HTTP request parameters and in providing
information for JSPs to display.

All three of these web frameworks are consistent
with the MVC pattern in that user interface
components (View) are separated from application
logic (Model) and control functions (Controller).
They differ from the original MVC pattern in several
respects, however.

 No inherent view->model dependency
(Observer pattern): The model component in
web applications does not notify view
elements of changes to the model. Rather, the
controller determines view behavior,
depending on the outcome of model
transaction processing.

 No 1-1 view-controller correspondence: In the
original MVC, each view element has a
unique controller element that is defined for
that view element alone.

 The Front Controller pattern: All three
frameworks use this pattern, in which a single
controller element is responsible for routing
incoming HTTP requests, based upon the
requested URL and configuration data.

 The controller specifies view dynamics: The
controller decides which view follows each
controller action, based upon the action
outcome. This amounts to what is essentially a
view=>controller dependency.

 Controller elements are responsible for data
validation: Transaction parameter validation is
essentially a model function. Validation logic
can be pushed into the model component, but
the responsibility for executing the validation
function is still with the controller.

 The model is not clearly defined: All of the
frameworks lack a clear definition of the
Model component. It is assumed to involve
application logic and data management, but
there is no clear structure to define the model
or to cleanly separate it from the controller.

 Model classes are instantiated on demand:
Rather than a persistent model component as
envisioned in the original MVC, the web
frameworks instantiate model objects as
needed to handle transactions and to
encapsulate domain entities. The database or
data persistence layer of the application can be
a persistent model component, however.

These changes to the MVC pattern reflect the
fundamental nature of the client-server architectural
style underlying the Web. The view platform (client)

is physically separated from the other components,
and so the view component has become less closely
tied to the controller and model in structure and
operation. At the same time, the view has taken on
some of the model responsibility in order to provide
a more responsive user interface. The added
responsibility of the controller (front controller
functions and view sequencing) are necessary
because of the need to explicitly manage the flow of
control inherent in the user experience.

4 MVC-WEB DESIGN PATTERN

The MVC-Web design pattern described in this
section is a model for how the MVC pattern is now
being interpreted in web application frameworks.
MVC-Web reflects the evolutionary changes that
have occurred in the MVC design pattern as it has
been implemented in web frameworks.

The MVC-Web model component is generally
responsible for maintaining the application state. Its
responsibilities include:

 Data persistence: maintain a database or an
abstract database interface

 Transaction processing: execute application
logic that operates on the application state

 External interface: manage interactions with
external agents, such as web services or
legacy systems

 Query handling: provide information to view
and controller elements in response to queries.

The MVC-Web view component presents a user
interface, including data presentation and input
devices. Its responsibilities include:

 Information retrieval and display: present
information to the user; query the model as
necessary to obtain information to be
displayed

 User input: present input forms and controls
that allow the user to interact with the
application

 Client-side dynamic behavior: provide an
interactive client-side experience for the user
(using JavaScript, Ajax, or other means); This
may include input completion, input
validation or other implementations of
application-specific rules or functions that are
otherwise a responsibility of the model
component.

The MVC-Web controller component has three
primary responsibilities.

THE MVC-WEB DESIGN PATTERN

129

 Front controller: receive incoming requests
and route them to the appropriate handler

 Action handlers: receive request parameters;
validate request parameter syntax (this may
repeat validation done by view elements);
orchestrate request handling by invoking
appropriate model elements

 Control flow: invoke the appropriate view
element as a response to the request being
processed, depending upon the outcome of the
action invoked.

Components of the MVC-Web pattern interact in
the following ways.

 Model-view: View elements may query the
model to obtain information to be displayed to
the user

 Model-controller: Controller action elements
call on model elements to carry out requested
transactions. Model functions can include
executing application logic, updating the
database, or invoking services of external
agents. Controller elements may request data
from the model to be passed to view elements.

 Controller-view: Controller elements respond
to requests originating with view elements.
The controller also determines which view
element will be presented to the user in
response to a request. Controller elements
may prepare information for use by view
elements.

This version of MVC differs from the original
(Smalltalk) version in several important ways:

 The Observer pattern is not used to inform the
view and controller of model updates. The
controller has a more prominent role instead
in propagating updates.

 There is no 1-1 correspondence between view
and controller elements. The relationship is
many-many instead.

 The controller must be able to route requests
from multiple view elements (Front Controller
pattern) and to manage the flow of the
application in response. The controller may
pass information from model to view as part
of this function.

 Some application logic (e.g., for validation or
completion of input data) can be present in the
view and controller components. This
muddies the separation of concerns, but
improves efficiency of the application by
providing faster response to users.

This MVC-Web pattern is intended to reflect the
current implementation of MVC in web application

frameworks. The pattern is not necessarily stable,
however. Evolution of the MVC-Web pattern
continues, for example in Ajax-based user interfaces
that are becoming richer and more responsive. Such
changes may further cloud the boundaries between
MVC-Web components and reduce the degree of
modularity that the pattern provides.

REFERENCES

Barrett, R., Delany, S., 2004, openMVC: A Non-
proprietary Component-based Framework for Web
Applications, WWW2004.

Chun, L., Yanhua, W., Hanhong, L., 2003, A Novel Web
Application Frame Developed by MVC, Software
Engineering Notes, 28(2).

Esposito, D., 2010. Programming Microsoft ASP.NET
MVC, Microsoft Press.

Fowler, M., 2003. Patterns of Enterprise Application
Architecture, Addison-Wesley, Boston.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.
Design Patterns, Addison Wesley, Reading, MA.

Goldberg, A., Robson, D., 1985. Smalltalk-80: the
language and its implementation, Addison-Wesley.

Krasner, G. E., Pope, S. T., 1988. A Cookbook for Using
the Model-View Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented
Programming, 1(3), 26-49.

Mahmoud, Q., 2003. Servlets and JSP Pages Best
Practices, http://www.oracle.com/technetwork/articles
/javase/servlets-jsp-140445.html.

Thomas, D., Hansson, D.H., 2007. Agile Web
Development with Rails. The Pragmatic Bookshelf.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

130

