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Abstract. This paper deals with the use of ultrasound images in order to develop

a Computer Assisted Orthopaedics Surgery system. Ultrasounds are easy to use
in the Operating Room (OR), less expensive than other image modalities, and
faster. We present an automatic method to extract anatomical landmarks from
ultrasound images of femoral anterior condyles. The algorithm is based on an ac-
tive contour model that uses an attraction field derived from an Euclidian-distance
map. This segmentation process is a part of a global procedure that includes an
interactive determination of the best image that could be chosen in order to obtain
robust bone segmentation. This global procedure has been successfully tested on
11 volunteers.

1 Introduction

Ultrasound (US) images are often used in different images analysis procedures in med-
ical field. For example, in cardiology for automatically segmenting and tracking the left
ventricle : using snakes based on a mapping of intensity gradient [11], with a boundary
estimation algorithm using a Bayesian framework [10], using an adaptive version of the
fast marching level set algorithm [15] or developing an artificial neural network (ANN)
method [2]. Or, it can be used in the detection of breast cancer to distinguish benign
masses from malignant cancerous masses, with a threshold based method [6], a Neural
Network (NN) based method [3] or an expectation-maximization method [13].

When it comes to orthopaedic surgery, it is more difficult to use US images due
to several properties of the ultrasounds. Nevertheless, more and more studies had been
conducted to find a robust bone extraction from ultrasound images. It can be used to
register preoperative scans or MRI to the actual human anatomy in the OR [1], to recon-
struct directly the 3D surface of the bone [16], or to test mechanical properties of bones
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non-invasively [9]. In our case, we want to develop a CompAssisted Orthopaedics
Surgery (CAOS) dedicated to intramedullary nailing for theonstruction of tibia in
case of shaft fractures. This implies to help the surgeoeteal some anatomical struc-
tures that have been defined in a preceding clinical partisfésearch project [12].

Few methods have been developed to extract structures imdgeis. Foroughi et
al. (2007) [4] developed a dynamic programming method usielknown features of
the US images to extract the bone interface but it does ndtttesery accurate results
because they assume the bone interface as composed ofgh&ebtipixels. This can
cause errors localization of the bone interface up to 4 mnepth[7].

Hacihaliloglu et al. (2008) [5] developed a method to segiittembone surface and
to detect fractures in 3D US images using 3D local featurée. [6calization accu-
racy and mean errors in estimating fractures displacenrenprtty good. Although,
in CAOS systems, the probe usually used is a 2D probe becdube difficulty to
interpret 3D ultrasound images when you are not accustomadd ultrasounds, and
because of the cost of such a device.

The paper is organized as follow, first we explain how we wanise bone interface
segmentation in the development of a CAOS system. Then, ¢lead of segmentation
using active contours will be developed with some results.

2 Segmentation of the Bone Interface

Our final goal is to develop a CAOS system to help orthopaadtigeon to perform
intramedullary nailing in case of treatment of tibia shadictures. In case of tibia shaft
fractures, orthopaedic surgeons can use plates, intrdlagdnail, or extern fixation
as treatment. When intramedullary nailing is chosen, thgeain determines the length
and orientation of the leg, only basing himself on its ownextise. Such a decision is
critical.

Once the nail is in place, the assistance system we develaifideblp the surgeon
to respect the most the anatomy of the patient. To do so, lomgdare considered
symmetrically similar [12]. Two 3D models (one for the héglimember and one for
the injured one) are built using some anatomical landmar&atéd whether by man-
ual pointer or US probe. These landmarks are the two malesha the distal site of
fracture for the distal part of models, and the middle of tioellea, the condylar line
and the proximal site of fracture for the proximal part of retsd These one are located
with the leg in full extension. Thus, the tibia is locked redjag to the femur, and we
can use the femoral frame of reference to orientate the fillian, the system guides
the surgeon to fix the fracture such as finally, the two models fi

Some of anatomical points are located using a manual pdirtause they are near
the skin. It is not the case for the middle of the trochlea, thwedcondylar line. We use
ultrasound images and we extract these features autothatica

Figure 1 shows an US image of the femoral condyles (the eterbetween bone
and tissue is highlighted).

The bone interface in the image represents the interface between soft tissde an
femoral anterior condyles, and tlseadow is the non-echo zone under the bone inter-
face . Due to the frequency of US in orthopaedics, waves dgmeretrate the bone
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Fig. 1. An ultrasound image of the femoral condyles. We can easiiyrdjuish thébone interface
and theshadow that represents the non-echo zone under the bone.

surface. Thishadow feature is very important because it is a constant in US image
bone. In-our method, itis usedtoiinitialize automaticdily tontour. Another character-
istic about US imaging of the bone is that the bone interfasery bright in the image.
But, because the US waves and echoes propagate like spheries, the resolution is
not very good and the interface thickness can reach overdian [7]. According to
Jain and Taylor, it is more likely that the bone interfacs I the top of the fiducial
surface. We take that into account when we calculate thardistmap.

To be able to compare 3D models of the injured and the headlifg; ive have to
define a precise protocol of acquisition for the US imagesuincase, the surgeon put
the probe just under the patella with a full extension lequs;tthe US probe is locked
by the patella. Then, the surgeon has to scan the anteridytaorprofile and the CAOS
system finds the image perpendicular to the bone surfacexaratethe landmarks we
want from it.

2.1 Proposed Method

US images have a high level of speckle and intensity dropdiiss, to avoid segmen-
tation troubles and to have a continuous contour, we praptwsase an active contour
model. This class of methods was introduced by Kass et alidB]es are applied to an
initial curve causing its deformation and displacementl utnteaches an equilibrium
state.

The evolution of the snake is based on a minimization of tieeggnalong the curve.
Then, we define the total ener@,, . as:

Esnake — Z Eint (L) + Eext (L) (1)
1

The internal energyH;,:) is derived from the properties of the curve and is defined by
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Fig. 2. Movement of the snake. (&) Initial contour (b) Stabilizedlsn

Bint = a(s)l|vs(s)[1* + B(s)l|ves (s)* @)

wherea(s) controls the tension of the curve (the curve acts like a mam);5(s)
controls the rigidity, and/(s) = (z(s),y(s)) with s the curvilinear abscissa. In this
paper, we propose a new expression of the external energig timeare adapted to our
application. This energy is based on constrained euclisiap transform.
Firstly, we propose to apply a Derivative of Gaussian (Do@@rfito the original
image
Iyrad = MG + 1) 3)

Then, we threshold the cumulative histogram of the int&ssit/,,..q ), and keep only
the 3% highest values.

IBVV = chmulg% (Igrad) (4)

At this step, we have a binary image. The following step csiedio use a com-
bination of morphological operations to close the area wlileere are some gradient
points. Morphological filters are whether erosien ) or dilatation ¢z) with a struc-
turing element which is a binary mask. These filters can be combined to gosuce
(IeE = ¢egdp(I))oropening{oE = dgeg(I)). In our case, we perform two closures
with oblique lines to close the two condylar slopes, and ¢selthe logical sum with a
disk element.

Inrask = (IBw @ Ejine,s5,155)) V (IBW ® E(line,85,25))) ® E(disk,15) (5)

Thus, for line elements, the second argument is the lengthtlee third is the orienta-
tion. For the disk element, the second argument is the ra@ihes result image;qsk

is a binary mask. Afterwards, we use this mask to calculaéticlidian distance map
that attracts the active contour curve on condylar contours

Eeact - diSt(II\I(Lsk) + d7§f(11\[ask) (6)

wherel sk IS the negation of y/ s -
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In the next section, we present the 3 step procedure that eeThe first step is
the initialization of the contour on the image chosen by theruThe second step is the
tracking of the bone interface in a serie of US images, anc@titematic choice of the
particular image. Finally, the system extracts the landts&om this image.

2.2 SnakeInitialization

The initialization of the snhake is performed on an image ehdsy the user, where a
visible interface between soft tissue and bone appeasskitown that there is black
shadow under the bone surface, we initialize the active segmemtatiocess by placing
a closed curve in this part of the image. Then, we determiaddtces to be applied
to the curve so it can move to fit the bone interface. The iateiorce (£;,;) controls
stiffness and elasticity of the curve. We choose paraméiertsallows the curve to
move without depending on intensity dropouts (high sté)eand the evolution is fast
enough (high elasticity).

In order to define the external force, we calculate a comstthEuclidian distance
map on a binary mask. For that, we perform a rough regionahsatption of the
light part of the image that corresponds to soft tissues. Asewplained in previous
part, a smoothed gradient is applied by using a Derivativeaifissian (DoG) opera-
tor (Fig. 3.b). The resulting image is then thresholded tepkenly significant contour
points (Fig. 3.c). Finally the rough regional segmentattoobtained by a morphologi-
cal closing of the gradient binary image (Fig. 3.d).

Thus we obtain theé’.,.; image calculating the Euclidian distance transform (Fig-
ure 4.a). Figure 4.b shows the corresponding field of attraaif the active model
contour that leads to the final result (Fig. 2.d). This finattoor will serve to track the
bone surface in a serie of images.

2.3 Tracking of the Bone Surface

After the initial detection of the bone interface , the sungecans the region of anterior
condyles in order to find an optimal cross-section to the tsomface.

In this procedure, for each new image, the contour deteptiocess is the same than
for the initial detection described in the preceding sextaxcept that the initialization
of the active curve is realized using the last detected barface. Then, to assist the
surgeon in this localization, we sum the intensities aldwgtewly detected contour for
each new acquired image ; the maximum value is obtained éasptimal cross-section
(Fig. 5).

Then, we extract landmarks we are interested in from thédtriesage.

2.4 Finding Particular Landmarks

The landmarks the system has to extract are the middle ofdhkléa, and top of both
anterior condyles to define the condylar line. This linewaaus to orientate the 3D
model of the tibia.

Due to parameters we used for our snake, we can find our lakdrmatocal maxi-
mum for both top of condyles, and local minimum for the midafithe trochlea (Fig. 6).
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Fig. 3. Determination of a mask image (a) initial image, (b) filtem@@ge by a Derivative of the
Gaussian, (c) thresholded and filtered image (d) mask imegdting from a closing operation
applied on the binary image.
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Fig. 4. Field of attraction using to calculate external energy (agliian distance map used to
calculate the field of attraction for the snake (b) Initiabige with the field of attraction/repulsion
superimposed.

3 Results

The algorithm has been tested on 36 series of images for lthipéamurs. First results
demonstrate the validity of the global procedure. The paipulused to test the algo-
rithm is constituted of men and women, from 24 to 40 year-aid both right and left
knees. Our validation is only qualitative, but 26 seriesegagood result. So, 10 series
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Fig. 5. Result of snake evolution.

Fig. 6. Extraction of Points of Interest from the chosen image.

provide bad results because the acquisition did not follmigtly the protocol. Some
cases, like the image 7.b gives bad result due to the US psbiilpe. On the contrary,
image 7.a shows a good result.

The execution time is approximately 0.5 second per image algporithm has been
implemented on Matld®, and tested on a computer with a Dual-Core IR@€PU
(E5200 at 2.50GHz) and 1Go RAM, and the XP SP3 version of Wirs§

4 Conclusions and Per spectives

We proposed a method to extract the bone surface from US sneigthe femoral
condyles, and we applied this method in a CAOS system asgitiie surgeon per-
forming intramedullary nailing as treatment of tibia sHedictures. This method can be
used to segment bone surface in other types of images suohiad crest, and it can
also be used in some other kind of surgery, like computesi@ssbsteotomy. In work
under progress is a demonstrator of our CAOS system in thexioof an Operating
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Fig. 7. Some results of landmarks extraction. (a) Good detectitamafmarks. (b) False detection.

Room. A use of General-purpose Processing on Graphics $&iageUnits (GPGPU)
to accelerate calculus is also under progress to be abletmuumethod on real time.

We also want to extend this work to assist the surgeon on &thdrof orthopaedic

surgery (concerning iliac crest for instance).
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