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Abstract: In mosaic art images made from bricks, tiles, or counted cross-stitch patterns, artists would need to divide 
the original image into small parts of reasonable sizes and shapes and represent the colors of each part using 
just one “closest” color selected from a given  color palette. Using standard methods to automate this 
process, the resulting mosaic image may contain undesirable visual artifacts of patches and color bandings. 
Error-diffusion dithering algorithms have been used to reduce such artifacts. We observe that image parsing 
directions are critical for diffusing errors, and  we present  a new error-diffusion scheme called “Four-Way 
Block dithering” (FWB) to correct certain artifacts caused by existing methods, including the directional 
and latticed appearance produced by Floyd and Steinberg’s dithering (FSD). FWB divides the input image 
into blocks of equal size with each block consisting of four sub-blocks such that the size of each sub-block 
is suitable for an underlying error-diffusion algorithm. Scanning the blocks from left to right and from top to 
bottom, for each block being scanned, FWB starts from the center of the block and diffuses errors along 
four directions on each sub-block. We show that FWB can better retain the original structure and reduce 
unstructured artifacts. We also show that FWB dithering produces much better peak signal-to-noise ratios 
on mosaic images over those generated by FSD. 

1 INTRODUCTION  

Photographic images are used widely in digital forms. 
Uploading self portraits or other images to blogs, for 
example, has become a common practice. As an 
application of digitized images, we have worked with 
brick and tile companies during the past several years 
to develop a web-based system that creates automated 
mosaic art images with small pieces of colored tiles or 
bricks. Based on current technology, tile 
manufacturers can only produce tiles of limited 
colors. In particular, the tile manufacturers we have 
worked with can typically produce 48 different colors 
on square tiles of small size, which can be as small as 
½ cm × ½ cm. These 48 colors form our color palette 
(see Figure 1). We chose to work on 1 cm × 1 cm 
square tiles for the purpose of reducing manufacturing 
cost and easing the labor on assembling the pieces 
together. We also need to resize the original image to 
fit in standard picture frames. A typical picture frame 
is 50 cm wide with its height determined by the 
width/height ratio of the original image.  

Our process can be described as follows: We first 
resize the original image of size w × h pixels to the 
desired size of w’ pixels wide and w’h/w pixels high, 
where w represents width and h represents height. For 
example, the original image of da Vinci’s painting of 
Mona Lisa (the portion of the head) is 136 × 182 
pixels. We resize it by retrieving its own embedded 
thumbnail and scale it to the size 50 × 64 pixels (see 
Figure 2 (a)). If the image does not contain an 
embedded thumbnail image, we create a thumbnail 
image to size 50 × 64 pixels by scaling the main image. 
This resized image is referred to as the input image. 
Most of the colors in the input image may be 
unavailable in the given color palette.  

 
Figure 1: The color palette available for tiles. 
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Next, for each pixel in the input image, we 
calculate the Euclidean distance from its RGB value to 
the RGB value of each of the 48 available colors in the 
color palette (note that each RGB value may be 
viewed as a 3-dimensional vector), and select a color 
with the smallest Euclidean distance. If there is more 
than one color with the same smallest distance, we 
select one from these colors with the smallest 
Euclidean distance from their HSB (Hue, Saturation, 
and Brightness) values to the HSB value of the pixel. 
Figure 2 (b) shows the result of this process.  

 
(a) (b) (c)

Figure 2: Size of these images: 50 pixels wide and 67 pixels 
high. (a) Input image. (b) The image with reduced color 
using the limited color palette. (c) The image produced by 
Floyd-Steinberg dither . 

This process is likely to yield color bandings and 
patches that produce dramatically different visual 
effect from the input image (as shown in Figure 2 (b)) 
because of color reduction. To enhance the visual 
quality of the image, we need to find ways to conceal 
or minimize these artifacts. This process is referred to 
as color quantization. 

Dithering is a useful technique to transform an 
image of continuous tone to an image of limited given 
colors. A number of dithering algorithms have been 
devised during the past three decades, including 
threshold dithering, random dithering, pattern 
dithering, and error-diffusion dithering. Error 
diffusion dithering intends to diffuse the quantization 
error of a given pixel to its neighboring pixels. 
Published in 1975, Floyd and Steinberg’s error 
diffusion dithering algorithm (Floyd and Steinberg,   
1975), referred to as FSD, has been the most popular 
dithering algorithm. It uses a set of values of 1/16, 
5/16, 3/16, and 7/16 to diffuse a pixel’s error to its 
lower left, lower, lower right, and right neighbors, 
respectively, producing a dithering image shown in 
Figure 2 (c).  

Listed below are a number of other error-diffusion  
methods.  

Coefficient error diffusion dithering. Jarvis, 
Judice, and Nink (Judice and Ninke, 1976) devised a 
dithering algorithm using a much more complex 

error diffusion coefficient matrix than the one used in 
FSD. Shiau and Fan’s dithering algorithms (Shiau and 
Fan, 1993), Stucki’s dithering algorithm (Stucki, 1981), 
Burkes’ dithering algorithm (Daniel Burkes, 1988), and 
Atkinson’s dithering algorithm (Atkinson, 2003) all 
use different sets of error diffusion coefficient 
matrices. 

Changing image parsing direction. Dithering is 
often carried out by scanning a pixel one at a time, 
from left to right and from top to bottom. Other 
parsing directions may be applied. For example, one 
may parse an image following a serpentine path 
using the FSD error diffusion coefficient matrix, 
instead of parsing it line by line or with a space-
filling curve (Riemersma, 1998).  

Variable coefficients error diffusion. 
Ostromoukhov (Ostromoukhov, 2001) proposes to use 
variable error diffusion coefficent matrix based on 
the input image. 

Block error diffusion and sub-block error 
diffusion. Both algorithms parse image four pixels at 
a time, which were proposed by Damera-Venkata 
and Evans (Damera-Venkata and Evans, 2001), 
respectively.  The sub-block error diffusion improves 
block error diffusion, using four 2 × 2 error diffusion 
matrices for pixels contained in one block. 

Reported in (Caca Labs., 2010), the serpentine 
dithering, block dithering, and sub-block dithering 
tend to produce poorer image quality than FSD.  
Hocevar and Niger (Hocevar and Niger, 2008) 
confirmed that the original FSD coefficients were 
indeed amongst the best possible for raster scan. 
However, as observed by others and confirmed by 
our studies, FSD still contains a number of 
drawbacks. For example, FSD tends to produce 
noticeable visually distributing artifacts in highlight 
and dark areas. More ever, on certain intensity levels 
close to ½, 1/3, 2/3, ¼, and ¾, patches of regular 
structure are likely to appear. Uneven transitions 
between “structure” and unstructured” areas may be 
clearly visible (Ostromoukhov, 2001).For example, 
as shown in Figure 2 (c), Mona Lisa’s right eye 
displays a serious defect—it is much narrower than 
that shown in Figure 2 (a) and (b), which makes the 
right eye look like half closed. 

FSD parses an image in raster scan. Observed by 
Hocevar and Niger (Hocevar and Niger, 2008) and 
confirmed by our experiments, errors in FSD tend to 
propagate to the lower-left direction of each pixel or 
to the lower-right direction. Thus, the output image 
may look tilted.  We observe from a large number of 
imaging experiments that the image parsing direction 
is crucial in error diffusion. This is probably due to 
the fact that, once a pixel completely diffuses 
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quantization error to its neighbors, only one direction 
of the quantization error would be nicely diffused, 
but not the errors in other directions. This effect 
seriously affects the image quality and causes the 
output image to appear directional and latticed.  For 
example, Figure 3 produced by FSD clearly depicts 
the vertical directions and lattice appearance. More 
explanations why this could happen will be presented 
in Section 3. 

 
Figure 3: An image produced by FSD clearly depicts 
vertical directions and lattice appearance. Size of the 
output image: 50 pixels wide and 47 pixels high. 

To retain the original image structure and resolve 
the directional and latticed appearance, we device a 
new error diffusion scheme called Four-Way Block 
(FWB) diffusion. FWB divides the input image into 
blocks of equal size with each block consisting of 
four sub-blocks such that the size of each sub-block 
is suitable for an underlying error-diffusion algorithm. 
For example, when we use FSD, the size of sub-
blocks may be set to 3k pixels wide and 2k pixels 
high for the same positive integer k. Scanning blocks 
from left to right and from top to bottom, for each 
block being scanned, FWB starts from the center of 
the block and diffuses errors along four directions on 
each sub-block. This process has the effect of 
diffusing errors backward. This is different from the 
existing error-diffusion dithering methods that 
always move and diffuse errors forward in the 
direction it parses the image. This mechanism helps 
to diffuse errors without leaving a visible trace of 
error propagation. We show that FWB can improve 
the quality of mosaic images. In particular, we show 
that FWB produces much better peak signal-to-noise 
ratios (PSNR) on mosaic images over those 
generated by FSD. 

The rest of the paper is organized as follows. In 
Section 2 we will briefly describe the FSD algorithm. 
We present our new FWB error-diffusion scheme in 
Section 3 and provide detailed dissemination. In 
Section 4 we provide running comparisons of FSD 
and FWB using FSD as the underlying error-
diffusion algorithm. We conclude the paper in 

Section 5. In Appendix we provide a number of 
examples of mosaic art images.  

2 FLOYD-STEINBERG ERROR 
DIFFUSION DITHERING 

FSD is widely used in dithering images of continuous 
tone. The quantization error, which is the difference 
between the color in the input image and the closest 
color in the limited color palette, will be distributed to 
its four neighboring pixels by the coefficient error 
diffusion matrix shown in (1). FSD scans the original 
image from left to right and from top to bottom as 
shown in Figure 4.  

1/16 *  0 0 00 ݔ 71 5 3൩ (1)

 
Figure 4: Floyd-Steinberg dithering scans an image file 
from top to bottom and from left to right one pixel at a time. 
Each cell in the Figure represents one pixel. 

3 FWB, A NEW SCHEME FOR 
ERROR DIFFUSION 

How to reduce artifacts caused by FSD is a central 
issue in generating automated mosaic art images. We 
devise FWB based on the following three 
observations. 

1. FSD has a simple parsing mechanism based on a 
nice error-diffusion coefficient matrix. Other 
error-diffusion algorithms may also work nicely 
for certain type of images. 

2. The image parsing direction is crucial in error 
diffusion.  

3. The existing error diffusion algorithms only 
diffuse errors in a forward direction. We note that 
making diffusion backward may help diffuse 
errors better. 

The FWB error-diffusion scheme follows the 
following four steps: 
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1. Choose an underlying error-diffusion algorithm 
(FSD, for example). 

2. Divide a given input image to blocks of equal 
size with each block consisting of four sub-
blocks of equal size (except the bottom and right-
hand edges) suitable for the underlying error-
diffusion algorithm. For example, when FSD is 
chosen, we may set the sub-block size to be 3k 
pixels wide and 2k pixels height for some 
positive integer k. 

3. Scan the blocks from left-to-right and from top to 
bottom. For each block being scanned, apply the 
underlying error-diffusion algorithm in four 
directions on each sub-block starting from the 
center point of the block.  If a block is already 
parsed, then it does not allow its neighboring 
blocks to rewrite its values.  

4. Use both Euclidean distances of RBG and HSV 
values to select the closest color from the given 
color palette for the output pixel.  

Note that FWB may not be able to divide a given 
image evenly, that is, if we divide the image starting 
from the upper-left pixel, then, we may not be able to 
obtain full blocks at the bottom or at the right-hand 
side. When this happens, we will just apply the 
underlying error-diffusion algorithm on these blocks 
in the usual manner. This is a small price to pay, and 
the majority of the pixels will receive better error 
diffusion. 

Denote by FWB-XYZ the FWB scheme with 
XYZ being the name of the underlying error-diffusion 
algorithm.  

3.1   Block Size 

The size of the block is crucial for achieving a good 
image quality. Based on our experiments, FWB-FSD 
produces the best image quality when k = 1. That is, 
the size of each sub-block is 3 × 2 pixels. Unless 
otherwise stated, we assume that the default block 
size is 6 × 4 pixels. 
In the next section we will use other block sizes to 
show that the best block size is 6 × 4 pixels for FWB-
FSD.  In this section, we will use the sub block size 6 
× 4 pixels to explain FWB-FSD. 

3.2  Sub-block Parsing Directions 

To prevent the latticed and directional appearance in 
the output image and keep the structure of the input 
image, we observed that the parsing order is critical . 
We have explored a number of different parsing 
orders   and   discovered  that  under  a  given  parsing 

 
Figure 5: An input image divided into blocks, where each 
block consists of 4 sub-blocks of equal size, except the 
bottom and the right-hand edges. 

order, color bandings of different input images would 
tend to appear in the same direction. For example, 
Figure 6 (a) and (c) are output images obtained from 
two different vertical parsing directions:  top-down in 
(a) and bottom-up in (c). These two output images 
both depict vertical directional artifact color bandings. 
Figure 5 (b) is an output image obtained from a 
horizontal parsing of right to left. It depicts a 
horizontal directional artifact color banding.  

 
(a) (b) (c) 

Figure 6: Observable directional artifacts: (a) and (c) are 
output images from vertical parsing, while (b) is an output 
image from a horizontal parsing. 

In the FWB error-diffusion scheme each sub-
block in a block is parsed in a different direction. 
Sub-block 1 in Figure 5 is parsed bottom-up and from 
right to left using FWB-FSD. Sub-block 2 is parsed 
top-down and from left to right. Sub-block 3 is parsed 
top-down and from right to left. Sub-block 4 is parsed 
top-down and from left to right. The directions 
between sub-blocks have the effect of asteroid 
emission, which prevents double compensation on 
one pixel and keeps 4 pixels in each block from being 
diffused by other pixels (see Figure 7).  This helps to 
remain the structure of the input image. 

 
Figure 7: For each block being scanned, FWB parses each 
sub-block in a different direction. 
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3.3 The Euclidean Distance for 
Selecting the Best Color for a Pixel 

We want to select the closest color from the given 
color palette to that of the original input pixel. Early 
research has indicates that perceived differences 
between colors are well represented by the Euclidean 
distance of the RGB vectors.  The color models can 
be presented by RGB, MYK, CIEXYZ, CIELAB, 
HSB and YIQ. 

The application is based on the Microsoft window. 
RGB is a device dependent color space of Microsoft 
window.  HSB is that it often used by artists because 
it is often more natural to think about a color in terms 
of hue and saturation than in terms of additive or 
subtractive color components. HSB is a 
transformation of an RGB color space, and its 
components and colorimetric are relative to the RGB 
color space from which it was derived.  

We use the RGB color space and the HSB values 
to represent colors. A particular RGB color space is 
defined by the three chromaticties of red, green, and 
blue. HSB stands for Hue, Saturation, and Brightness, 
which is one of the most common cylindrical-
coordinate representations of points in an RGB color 
model. HSB rearranges the geometry of RGB that is 
more perceptually relevant than the Cartesian 
representation. We calculate the closest color using 
both RGB and HSB values:  We first calculate the 
Euclidean distance of RGB value for each pair of a 
given input color and a color in the given set of 
limited color palette. Select the color with the 
smallest distance.  If there are two or more such pairs 
with the same Euclidean distance, we will compute 
the Euclidean distance on the HSB values on these 
pairs, and select the one with the smallest distance  

In particular, we use c to represent the value in 
RGB space. Let c = (ܿ, ܿ, ܿ) be the RGB vector of 
a pixel in the input image and X = {(ݔೝ, ,ݔ ݅ | (್ݔ = 0, … , ݊ − 1} be the given set of colors in the 
color palette. 

We want to find the shortest Euclidean distance d. ݉݅݊ ൜݀ | ݀ = ට(ܿ – ݔೝ)ଶ  (ܿ − )ଶݔ   (ܿ – ݔ್)ଶ ൠ           (2) 

where ( ,ೝݔ ,ݔ ್ݔ ) is one of the colors in X, ݅ = 0, … , ݊ − 1. 
If there are two or more colors in X with the same 

shortest distance to c, we will calculate the shortest 
Euclidean distance of the HSB values of these colors 
to the HSB value of c and select the color with the 
shortest Euclidean distance of HSB values. Since the 
Hue value is much larger, we will first normalize it 
(dividing it by 360) to a value between 0 and 1 before  

calculating the Euclidean distance. 
We may also use rectilinear distance to find the 

“closest” color. Shown in Figure 8 are two output 
images, where Figure 8 (a) is obtained by finding the 
first shortest rectilinear distance difference of the 
RGB vectors of c and the colors in X. Figure 8 (b) is 
created by finding the shortest Euclidean distances of 
both the RGB space and HSB values, which incur 
lesser color bandings and result in a smoother image 
than Figure 8 (a).  

Figure 9 shows two examples of color selection 
mechanism used in FWB-FSD. The first row 
indicates an input color of RGB space and HSB in the 
coordinates x and y. In each of these two examples 
there are two colors in the second and third rows with 
the same shortest Euclidean distance of the RGB 
vector in the original image. The second row in 
Figure 9 is selected by the RGB space and has the 
same Euclidean distance with the third row. The third 
row in Figure 9 is selected by the HSB and has the 
same Euclidean distance with second row. With the 
help of HSB values, we are able to select the color 
that is closest to the original.  

 
(a)                                          (b) 

Figure 8: (a) Selecting colors by the shortest rectilinear 
distances difference of RGB vectors. (b) Selecting colors by 
the shortest Euclidean distances of RGB vectors and HSB 
values. 

 

 
Figure 9: The column Dist is for distance of HSB, H for 
Hue, S for Saturation and B for Brightness. The color in the 
second row was selected without the HSB values 
comparison, while the color in the last row was selected in 
Fig. 8 (b), which is closer to the original color.  
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3.4 Error Diffusion in Blocks 
and Sub-blocks 

FWB-FSD uses the FSD error-diffusion coefficient to 
parse pixels in each sub-block and distributes the 
quantization error to its neighboring pixels. After 
selecting the closest color, it diffuses the quantization 
error to its neighbors. How neighboring pixels will be 
compensated is determined by the locations of the 
parsing pixel of sub-block in the block (see Figure 
10).   

 
Figure 10: Under FWB-FSD the pixel number 3-1 grains 
the different portion of quantization error from different 
directions. 

 
Figure 11: The pixel number 3-1 in FSD gets error diffusion 
from different quantization error of different pixels in only 
one direction. 

The portions of quantization error are obtained 
differently between pixels depending on the locations 
of sub-blocks. We note that if a block is already 
parsed, then it will not be parsed by the unprocessed 
blocks again.  For example, pixel #3-1 shown in 
Figure 10 receives 4 portions of error quantization 
including the two portions from the sub-block above, 
a portion from pixel #1-6, and a portion from pixel 
#3-4. Thus, the sequence of the portions it receives 
will be 5/16, 3/16, 3/16, and 3/16. Major differences 
between FWB-FSD and FSD are that pixel #3-1 in 
FWB-FSD receives error diffusions from more 
directions than FSD and the pixels #1-6, #3-4, #2-1 
and #4-1 shown in Figure 10 keep the same RGB 
values without being compensated from other pixels. 
There are four cells in the sub block will not 
propagate its error-diffusion to its next neighbors. 
They are the last cell in the sub block 1 of the first 
block, the last cell in the sub block 2 of the last block 
of first row, the last cell in the sub block 3 of last row 
of the first block and the last cell in the sub block 4 of 

the last row of the last block in the image which 
comparison with FSD that its last cell in the image.  
As the result, FWB-FSD not only better maintain the 
image quality without losing too much information of 
the input image but also reduce directional and 
latticed appearance in the output image. Figure 12 
depicts the differences in the output images using 
these two methods.  The difference is particularly 
noticeable in Mona Lisa’s right eye: It is blurry in 
Figure 12 (a) under FSD, which looks like half closed. 
It is much clearer in Figure 12 (b) under FWB-FSD. 
We will provide more details in the next section.   

 
(a)                                            (b) 

Figure 12: (a) Output image by FSD. It is clearly noticeable 
that Mona Lisa’s right eye is blurry and looks half closed.  
(b) Output image by FWB-FSD. The eye problem in (a) is 
corrected. 

3.5 Running Time 

We note that FWB-FSD scans each pixel only once as 
in FSD. For each pixel it scans, FWD-FSD carries the 
same number of operations as FSD except that FWD-
FSD may be in a different direction. Thus, the 
running time of FWD-FSD is the same as FSD. 
Likewise, it is easy to see that the running time of 
FWD-XYZ is the same as error-diffusion algorithm 
XYZ. 

4 RESULT AND EVALUATION 

Parsing direction plays a crucial role in error-
diffusion dithering for achieving good quality and 
retaining detailed information of the input image. 
The direction to obtain good quality depends on the 
colors of the input image. Thus, using different 
directions to diffuse errors can enhance quality of the 
output image.   

This section presents comparisons of more output 
images under FSD and FWB-FSD (see Figures. 13 to 
15). We first use images of continuous tone and 
different shapes to compare the output images 

IMAGAPP 2011 - International Conference on Imaging Theory and Applications

130



produced FWB-FSD and FSD. For images of 
extremely simple shape (e.g. a rectangle) of one 
continuous simple color, we observe uneven 
structure in the output image produced by FWB-FSD 
(see Figure. 13). However, for images of simple 
shapes (such as rectangles, stars, and circles) with 
more colors, FWB-FSD produces much smoother 
images than FSD (see Figure 14).  The orange square 
in the Figure 14 is smoother than left side image.  

 
Figure 13: The left-side image is processed by FSD and the 
right-side image is processed by FWB-FSD with one 
block. 

 
Figure 14: The left-side image is processed by FSD; the 
square of orange color shows an uneven structure. The 
right-side image is processed by FWB-FSD with one 
block; the square appears smoother. 

We also used the peak signal-to-noise ratio 
(PSNR) to evaluate the final images processed with 
different block sizes. In particular, we will PSNR 
values to analyze the quality of the proposed method 
and evaluate the optical mixture correctness of the 
dithering process (Cheuk-Hong, Oscar, Ngai-Man, 
Chun-Hung and Ka-Yue, 2009).  

When comparing input images, PSNR is often 
used as an approximation to human perception of 
reconstruction quality. The PSNR computes the ratio 
between two images. This ratio is often used as a 
quality measurement between the original and a 
reconstruction image. The higher PSNR has the 
better quality of the reconstructed image. Denote by 
Y(i, j) the input image. The input image produced by 
FSD or FWB-FSD is denoted by X(i, j). Denote by w 
the width of an image and h its height. The 
expression of PSNR is shown below: ܧܵܯ =  ଵ௪ × × ∑ ∑ [|ܻ(݅, ݆) − ܺ(݅, ݆)|]ଶ௪ିଵୀିଵୀ      ܴܲܵܰி=10× logଵ ቀଶହହమெௌாቁ           

                                 

Table 1 lists the results of PSNRs on the input 
image of Mona Lisa (50 × 67 pixels) and its output 
images produced by, respectively, FSD and FWB-
FSD with a few reasonable block sizes.  Table 2 lists 
the results of PSNRs on the original image of Mona 
Lisa (136 × 182 pixel) as the input image and its 
output images produced by, respectively, FSD, FWB-
FSD with one block and FWB-FSD with block size of 
6 × 4 pixels, where FWB-FSD with one block means 
to divide the image into four parts of equal size by 
connecting the middle points on each side of the 
image. We note that FWB-FSD with block size of 6 × 
4 pixels produces the best PSNR. Additional 
comparisons are presented in the appendix. 

Table 1: The results of PSNRs on the input image of Mona 
Lisa (50 × 67 pixels) and its output images. 

The algorithm to process value 

FSD 22.42 

FWB-FSD with one block 22.53 

FWB-FSD with block size 6×4 
pixels 22.64 

FWB-FSD with block size 12×8pixel 22.46 

FWB-FSD with block size 
24×16pixel 22.46 

Table 2: The results of PSNRs on the original image of 
Mona Lisa (136 × 182 pixel) as the input image and its 
output images. 

The Algorithm to Process Value

FSD 22.54

FWB-FSD with one block 22.68 

FWB-FSD with block size 6 × 4 
pixels 23.04 

5 CONCLUSIONS 

The output image generated by FSD tends to be rigid 
with directional and latticed appearance, which could 
lose the vividness of the original image. This is 
undesirable in an art product. The images generated 
by FWB-FSD have corrected these problems. We 
have demonstrated that our FWB error-diffusion 
scheme is a promising new method for achieving 
mosaic images of higher quality. We have tested a 
large number of other input images not presented 
here, and found that FWB-FSD with block size of 6 
× 4 pixels always produces the best PSNR values 
compared to FSD and FWB-FSD with other block  
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sizes.   
We note that for PSNR values below 3.00, it is 

often difficult for human eyes to detect differences 
between two images. But mosaic art images enlarge 
each pixel, and so it is easier to observe differences 
between two pictures with PSNR value below 3.00. 
We have shown that FWB-FSD is a better algorithm 
on mosaic art images and other types of images that 
require enlargement of pixels. In particular, we found 
that the FWB scheme works better when the input 
image has abundant colors and is rich in shapes.   

Finally, we note that we can use other error-
diffusion algorithms to go with the FWB scheme. For 
certain type of images, using a different underlying 
error-diffusion algorithm may be more appropriate 
than using FSD. 
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APPENDIX 

DEMONSTRATION OF MOSAIC ART IMAGES 

We present four examples of mosaic art images using 
FWB-FSD and compare them with the images 
generated by FSD (see Figure 15, 16, 17). The 
images shown in Figure 17 and 18 are the simulated 
mosaic art images while Figure 18 is the real mosaic 
art made by a total of 3,350 pieces of 1cm × 1cm 
tiles. 

(a) (b) (c) 

Figure 15: (a) The input image. (b) The output image with 
size 50 × 59 pixels generated by FSD. (c) The output 
image of the same size generated by FWB-FSD. Image (b) 
has the error quantization diffused to neighbor pixels that 
destroy the structure of the mouth. It has the latticed and 
unstructured look surrounding the mouth and cheeks. 
Image (c) is much better  than Image (b) in all aspects. 

Table 3: The results of PSNRs on the input image shown in 
Figure 16(b) and 16(c), both comparing the output image 
with the original image. 

The algorithm to process Value 
FSD 24.14 
FWB-FSD with block size 6×4 pixels 24.48 

Table 4: The results of PSNRs on the input image shown in 
Figure 17(b) and 17(c), both comparing the output image 
with the original image. 

The algorithm to process value 
FSD 24.13 
FWB-FSD with block size 6×4 pixels 24.85 
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(a)                                                  (b)                                             (c) 

Figure 16: (a) The input image. (b) The output image with size 50 × 47 pixels generated by FSD. (c) The output image of 
the same size generated by FWB-FSD. Image (b) has unstructured cheeks that divide the face into two parts. Image (c) has 
corrected this problem. 

 
(a)                                       (b)                                   (c) 

Figure 17: Mona Lisa images. (a) Input Image. (b) The output image which simulated mosaic art with 50 × 67 tiles 
generated by FSD. (c) The output image which simulated mosaic art with 50 × 67 tiles generated by FWB-FSD. Image (c) 
is clearly much better than Image (b). 

 
(a)                                                 (b) 

Figure 18: (a) The image which simulated mosaic art generated by FWB-FSD.  (b) Mosaic Art with size 50 × 67 on 1 cm × 
1 cm square tiles. 
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