
SCALESEM
Evaluation of Semantic Graph based on Model Checking

Mahdi Gueffaz, Sylvain Rampacek and Christophe Nicolle
LE2I, UMR CNRS 5158, University of Bourgogne, BP 47870, 21078 Dijon cedex, France

Keywords: Semantic graph, Model-checking, Temporal logic.

Abstract: Semantic interoperability problems have found their solutions using languages and techniques from the
Semantic Web. The proliferation of ontologies and meta-information has improved the understanding of
information and the relevance of search engine responses. However, the construction of semantic graphs is a
source of numerous errors of interpretation or modelling and scalability remains a major problem. The
processing of large semantic graphs is a limit to the use of semantics in current information systems. The
work presented in this paper is part of a new research at the border of two areas: the semantic web and the
model checking. This line of research concerns the adaptation of model checking techniques to semantic
graphs. In this paper, we present a first method of converting RDF graphs into NμSMV and PROMELA
languages.

1 INTRODUCTION

W3C1 aims to standardize the representation and the
exchange of information on the WEB. This objective
should help make the information understandable for
both automated processes and users. The
homogenization of computer exchanges took place
due to the introduction of the XML (Bray and al,
2006) standard. This standard has enabled the
program to manipulate information through
languages with hierarchical structure mark-up
defined by grammars derived from the XML
standard. However, this effort has not helped
improve the user’s understanding of information.
Thus, new standards have been developed to enable
the semantic representation of information in the
form of XML-derived languages. This base is called
Semantic Web standards and it is usually
represented as a stack of languages ranging from
automatic processes oriented languages to languages
representing more abstract concepts of formal
semantics (Berners-Lee, 2001). These languages are
used to represent the semantics associated with
information, whatever its form and structure. To
allow the construction of semantic graph, many tools
have been developed like Annotea (Kahan and al,
2001) which is a project of the W3C that specifies

1
World Wide Web Consortium.

the infrastructure for the annotation of Web
documents. The main format used in the annotation
is RDF and the types of documents can be annotated
are HTML documents or XML based. However,
none provides the functionality to verify the
consistency of semantics, and reduce errors
annotations.

This paper proposes a new way to check these
semantic graphs by model-checking in order to
reduce errors in annotation and make the data more
relevant. Model checking is an automatic
verification technique, it has been applied to many
cases in industry, for example (Katoen, 2002), in the
Netherlands, model-checking has revealed several
serious flaws in the design of control system of a
barrier protection against flooding which protects
the main port of Rotterdam against floods.

Model checking is a powerful tool for system
verification because it can reveal errors that were not
discovered by other formal methods such as testing
or simulation. Model checking uses temporal logic
to describe the properties checking the system
model.

395Gueffaz M., Rampacek S. and Nicolle C..
SCALESEM - Evaluation of Semantic Graph based on Model Checking.
DOI: 10.5220/0003334703950398
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 395-398
ISBN: 978-989-8425-51-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

2 MODEL-CHECKING
AND TEMPORAL LOGIC
OVERVIEW

Formal methods (Katoen, 2002) offer great potential
for an early inclusion of verification in the design
process, providing technical audit more efficiently
and reduce the verification time. Formal methods are
highly recommended techniques for the
development of software. Two types of formal
verification methods can be distinguished: methods
based on the proof of the theorem and the methods
based on models.

The model checker examines all relevant system
states in order to check whether they satisfy the
desired property. The model checker gives a counter
example that indicates how the model can violate the
property. With a help of a simulator, the user can
locate the error and adapt the model or the property
to prevent the violation of property (Fig. 1).

Figure 1: Model Checking Approach.

The concepts of temporal logic used for the first
time by Pnueli (Pnueli, 1977) in the specification of
formal properties are fairly easy to use. The
operators are very close in terms of natural language.
The formalization in temporal logic is simple
enough although this apparent simplicity therefore
requires significant expertise. Temporal logic allows
representing and reasoning about certain properties
of the system, so it is well-suited for the systems
verification.

3 THE SCALESEM APPROACH

We use SPIN (Ben-Ari, 2008) and NµSMV (Cimatti
and al, 2000) as model checkers to check the model
of semantic graphs. SPIN is a software tool for
verifying system models. The system is described in
a language model called PROMELA. NµSMV is the

amelioration of SMV model checker, working on the
same simple principles as SMV.

Figure 2: The Scalesem Architecture.

In Fig. 2, we present the architecture of our
approach. In this architecture, from a natural
language description, we can get the semantic graph
(RDF2) and its description in temporal logic, as
shown in the example found in the section VII. We
divide this architecture in two phases. The first
phase concerns the transformation of the semantic
graph into a model using our tools RDF2SPIN and
RDF2NμSMV. There are three steps in this
transformation. The first step is to explore the entire
RDF graph to obtain the triplets table. The second
step is to determine a root for the graph, and the last
step is to write the model that represents the
semantic graph in the PROMELA or NµSMV
languages. The second phase concerns the
verification of properties expressed in temporal logic
on the model using the model-checker SPIN or
NµSMV.

3.1 Introducing RDF

RDF is a language developed by the W3C to bring a
semantic layer to the Web (Becket and McBride,
2004). It allows the connection of Web resources
using directed labelled edges. The structure of RDF
documents is a complex labelled directed graph. An
RDF document is a set of triples <subject, predicate,
object>. These RDF graphs are not necessarily
connected, meaning they may have no root vertex
from which all the other vertices are reachable.

3.2 Exploring RDF Graph

We achieve this by appropriate explorations of the
RDF graphs, as explained below. Let us consider

2
Resource Description Framework

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

396

that an RDF graph is represented as a couple (V, E),
where V is the set of vertices and VxVE  is the set
of edges. For a vertex x, we note

 EyxVyxE ),()(the set of its successor

vertices. We use depth-first search algorithm,
illustrated below to explore graph, knowing that the
breadth-first algorithm also works in this context.

Algorithm: procedure Dfs (x):
begin
 visited(x) := true;
 // vertex x becomes visited
 p(x) := 0; // start exploring its successors
 stack := push(x, nil);
 while stack ≠ nil do

y := top(stack);
if p(y) < |E (y)| then
 // y has some unexplored successors
 z := E (y))(yp ;

 p(y) := p(y)+1;
 // take the next successor of y
 if  visited (z) then
 visited(z) := true; // visit it
 p(z) := 0;//start exploring its successors
 stack := push(z, stack)
 endif
 else //all successors of y were explored
 stack := pop(stack)
 endif
 end
end

3.3 Determining a Root Vertex

If the RDF graph has no vertex root, we must create
a root for the graph.

Algorithm: procedure RootElection():
// precondition:  x  V.visited(x) = false
Begin // first phase
 root_list := nil;
 forall x  V do
 if  visited(x) then
 Dfs(x);
 root_list := cons(x, root_list)
 endif
 endfor;
//second phase
 if |root_list|= 1 then
 root := head(root_list)
 // the single partial root is the global root
 else
 forall x  V do visited(x):= false;
 endfor;
 forall x  root_list do
 // reexplore partial roots in reverse order
 if  visited(x) then Dfs(x)
 else
 root_list := root_list \ {x}
 // partial root is not a real one

 endif
 endfor;
 if |root_list| = 1 then
 root := head(root_list)
 // a single partial root is the global root
 else
 root := new_node();
 // new root predecessor of the partial roots
 E(root) := root_list
 endif
 endif

The first phase explores the graph until it is fully
explored, and inserts in root_list all vertices that
have no predecessor. If root_list contains a single
vertex, so overall it is the global root of the graph
since all the other vertex are accessible from it and it
is useless to the second phase has passed. Otherwise,
any vertex contained in root_list could also be a root
of the graph: the role of the second phase is to
determine which of the partial root the root of the
global graph is.

The second phase performs a new wave of
exploration of the roots contained in partial root_list
in reverse order in which they were inserted in the
list. If a root in root_list is to be visited by a partial
root, it is removed from the list because it is not a
partial root. At the end of this phase, all partial roots
of the graph are present in root_list. Indeed, each
vertex is unreachable from the partial roots which
were explored during the second phase. A new root
is created (see Fig. 3), having as successor all the
partial roots of root_list, which ensures that all
vertices of the graph are accessible from the new
root. Therefore, such a summit is inaccessible from
other nodes of the graph.

3.4 Generating the Model

The third step is divided into three sub-steps. The
first and the second one consist in generating two
tables (triplets table and resources and values table).
The last one consists in producing the model writing
in PROMELA language for SPIN and in NµSMV
language for NµSMV.

4 EXAMPLE AND BENCHMARK

To illustrate our approach, we take the natural
language description as follows:
Ninety-three is a novel by Victor Hugo published in
1874, whose theme is the French Revolution. Victor
Hugo was born in February 26, 1802 in Besançon.
From the description above, we can easily extract

SCALESEM - Evaluation of Semantic Graph based on Model Checking

397

simple propositions, see Table 1. Table 2 presents
the RDF triples derived from the Table 1.

Table 1: Short list of simple propositions.

1 “Ninety-three is a novel”
2 “Ninety-three its author is Victor Hugo”
3 “Ninety-three has been published in 1874”
4 “Ninety-three’s theme is the French revolution”
5 “Victor Hugo was born in February 26, 1802”
6 “Victor Hugo was born in Besançon”

Table 2: Corresponding RDF Triples.

 Subject Predicate Object
1 Ninety-three is Novel
2 Ninety-three author Victor Hugo
3 Ninety-three Published 1874
4 Ninety-three theme French revolution
5 Victor Hugo Date_born February 26, 1802
6 Victor Hugo Place_born Besançon

From the previous description in natural
language, we can express it in temporal logic as
shown in Table 3.

Table 3: Example of Temporal Logic representation.

 Temporal logic Explanation
1 Always (Ninety-three  next

novel)
We check that ninety

three is a novel
2 Always (Ninety-three  next

Victor Hugo)
We check that ninety

three is written by
Victor Hugo

Figure 3: RDF Graph.

0

5

10

15

20

25

0 10 20 30 40 50 60

Graph size (Megabyte)

T
im

e
(S

ec
o

n
d

)

RDF2NuSMV

RDF2SPIN

Figure 4: Time conversion of semantic graphs.

Now, we will be able to transform the RDF graph in
Fig. 3 with our tools "RDF2SPIN" and
RDF2NμSMV" into a model in order to check each

formula of temporal logic described in Table 3 and
see if each formula is verified or not in the model.

0

10

20

30

40

50

60

70

80

90

100

0,0004 0,0004 0,0006 0,0009 0,0009 0,001 0,0017 0,0065 3,6 8,6 20,6 53,1

Size of the RDF graph (Megabyte)

S
iz

e
o

f
th

e
R

D
F

 g
ra

p
h

 c
o

n
ve

rt
ed

(M

eg
ab

yt
e)

RDF2NuSMV

RDF2SPIN

Figure 5: Size of the models.

5 CONCLUSIONS

This paper presents a new technique for the semantic
graphs verification by using a model-checker.
Knowing that the model-checker does not
understand the semantic graphs, we developed two
tools RDF2SPIN and RDF2NµSMV to convert them
into PROMELA and NµSMV languages in order to
be verified with the temporal logics.

In future work, we would like to convert the
SPARQL query language for RDF graphs into
queries using the operator of the temporal logic, to
have a better verification of RDF graphs
representing the building industry.

REFERENCES

Becket, D., McBride, B., 2004. RDF/ XML Syntax
Specification (Revised). W3C recommandation.
http://www.w3.org/TR/2004/REC-rdf-syntax-gramma
r-20040210/.

Ben-Ari, M., 2008. Principles of the SPIN Model Checker.
Springer. ISBN: 978-1-84628-769-5.

Berners-Lee, t., Hendler, J., and Lassila, O., 2001. The
Semantic Web. Scientific American. pp. 34–43.

Bray, T., Paoli, J., Sperberg-McQueen., C., M., Maler, E.,
Yergeau, F., Cowan, J., 2006. Extensible Markup
Language (XML) 1.1 (second edition) W3C
recommendation, http://www.w3.org/TR/2006/REC-
xml11-20060816/.

Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M., 2000.
NuSMV: a new symbolic model checker.

Kahan, J., Koivunen, M., Prud'Hommeaux, E., Swick, R.,
R, 2001. Annotea: An Open RDF Infrastructure for
Shared Web Annotations, in Proc. of the WWW 10th
International Conference, Hong Kong. http://www10.
org/cdrom/papers/488/index.html

Katoen, J. P., 2002. The principal of Model Checking.
University of Twente.

Pnueli, A., 1977. The temporal logic of programs. In proc.
18th IEEE Symp. Foundations of Computer Science
(FOCS’77), Providence, RI, USA. pages 46-57.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

398

