
CHARACTERIZING DISTRIBUTED XML PROCESSING
Moving XML Processing from Servers to Networking Nodes

Yoshiyuki Uratani
Graduate School of CS and Systems Engineering, Kyushu Institute of Technology, Iizuka, 820-8502 Fukuoka, Japan

Hiroshi Koide
Faculty of Computer Science of Systems Engineering, Kyushu Institute of Technology, Iizuka, 820-8502 Fukuoka, Japan

Dirceu Cavendish, Yuji Oie
Network Design Research Center, Kyushu Institute of Technology, Iizuka, 820-8502 Fukuoka, Japan

Keywords: Distributed XML processing, Task scheduling, Pipelining and parallel processing.

Abstract: This study characterizes distributed XML processing on networking nodes. XML documents are sent from a
client node to a server node through relay nodes, which process the documents before arriving at the server.
When the relay nodes are connected tandem, the XML documents are processed in a pipelining manner.
When the relay nodes are connected parallel, the XML documents are processed in a parallel fashion. Well-
formedness and grammar validation pipelining and parallel processing characterization reveals inherent ad-
vantages of the parallel processing model.

1 INTRODUCTION

XML technology has become ubiquitous on dis-
tributed systems, as it supports loosely coupled in-
terfaces between servers implementing Web Services.
Large XML data documents, requiring processing
at servers, may soon require distributed processing,
for scalability. Recently, distributed XML process-
ing has been proposed and studied from an algorith-
mic point of view for well-formedness, grammar val-
idation, and filtering (Dirceu Cavendish, 2008). In
that work, a Prefix Automata SyStem is described,
where (PASS) nodes opportunistically process frag-
ments of an XML document travelling from a client
to a server, as a data stream. PASS nodes can be ar-
ranged into two basic distributed processing models:
pipelining, and parallel model. The problem of al-
locating specific fragments of an XML document to
PASS nodes, in a pipeline manner, has been addressed
in (Yoshiyuki Uratani, 2009). We leverage their re-
sults into an efficient task allocation method in this
current work. Moreover, the problem of scheduling
tasks on streaming data that follows parallel paths has
been addressed in (Kazumi Yoshinaga, 2008). In that

work, we have also studied the migration of tasks be-
tween nodes depending on network congestion.

In this paper, we evaluate the two distributed
XML processing models - i) pipelining, for XML
data stream processing systems; ii) parallel, for XML
parallel processing systems - with regard to process-
ing efficiency, correlating performance with XML
document structure and processing task for well-
formedness and grammar validation tasks. The pa-
per is organized as follows. In section 2, we describe
generic models of XML processing nodes, to be used
in both pipelining and parallel processing. In section
3, we describe a task scheduler used to assign XML
document fragments to XML processing nodes. In
section 4, we describe a PC based prototype system
that implements the distributed XML processing sys-
tem, and characterize XML processing performance
of the pipeline and parallel computation models. In
section 5, we address related work. In section 6, we
summarize our findings and address research direc-
tions.

41Uratani Y., Koide H., Cavendish D. and Oie Y..
CHARACTERIZING DISTRIBUTED XML PROCESSING - Moving XML Processing from Servers to Networking Nodes.
DOI: 10.5220/0003338300410050
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 41-50
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



2 XML PROCESSING ELEMENTS

Distributed XML processing requires some basic
functions to be supported:

• Document Partition. The XML document is di-
vided into fragments, to be processed at process-
ing nodes.

• Document Annotation. Each document frag-
ment is annotated with current processing status
upon leaving a processing node.

• Document Merging. Document fragments are
merged so as to preserve the original document
structure.

XML processing nodes support some of these
tasks, according to their role in the distributed XML
system.

2.1 XML Processing Nodes

We abstract the distributed XML processing elements
into four types of nodes: StartNode, RelayNode,
EndNode, and MergeNode. The distributed XML
processing can then be constructed by connecting
these nodes in specific topologies, such as pipelining
and parallel topologies.

StartNode. StartNode is a source node that ex-
ecutes any pre-processing needed in preparation
for piecewise processing of the XML document.
This node also starts XML document transfer
to relay nodes, for XML processing. We show
components of the StartNode in Figure 1. The
StartNode has one or more threads of the type
Read/SendThread. In Figure 1, StartNode has
three next nodes. The Read/SendThreads each
reads part of an XML document per line, and add
checking and processing information. The check-
ing information is used for tag check processing.
Processing information describes which RelayN-
ode shall process which parts of the XML doc-
ument. Each Read/SendThread reads part of
the document roughly of the same size. Then,
each Read/SendThread sends the processed data
to next nodes. Read/SendThreads run concur-
rently.

RelayNode. RelayNode executes XML process-
ing on parts of an XML document. It is placed as
an intermediate node in paths between the StartN-
ode and the EndNode. We show components of
the RelayNode in Figure 2. The RelayNode has
three types of threads: ReceiveThread, TagCheck-
Thread and SendThread. The ReceiveThread re-
ceives data which contains lines of an XML docu-

Figure 1: Components of StartNode (three next nodes case).

ment, checking and processing information, stor-
ing the data into a shared buffer. The TagCheck-
Thread attempts to process the data, if the data is
assigned to be processed at the node. SendThread
sequentially sends data to a next node.

Figure 2: Components of RelayNode.

EndNode. EndNode is a destination node, where
XML documents must reach, and have their XML
processing finished. This node receives data
which contains the XML document, checking in-
formation and processing information, from a par-
ticular previous node. If the tag checking has
not been finished yet, the EndNode processes
all unchecked tags, in order to complete XML
processing of the entire document. In addi-
tion, the EndNode strips the document from any
overhead information, so as to restore the doc-
ument to its original form. Components of the
EndNode are similar to the RelayNode, except
that the EndNode has DeleteThread instead of
SendThread. The DeleteThread cleans the data
from processing and checking information, and
deletes the data from the shared buffer.

Figure 3: Components of MergeNode (two previous nodes).

MergeNode. The MergeNode receives data from
multiple previous nodes, serializes it, and sends
it to a next node, without performing any XML

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

42



processing. The MergeNode is used only in par-
allel XML processing topologies. We show a
component of the MergeNode in Figure 3. The
MergeNode has more than one thread of the type
Receive/SendThread. Each thread receives data
from a previous node. The MergeNode fur-
ther sends the data in order, so some threads
may need to wait previous data to be sent be-
fore sending its part of data. For instance, in
Figure 3, Receive/SendThread02 waits until Re-
ceive/SendThread01 finishes sending its data re-
lated to a previous part of the XML document, be-
fore sending its own data, related to a subsequent
part of the document.

2.1.1 Node Tag Checking Method

XML document processing involves stack data struc-
tures for tag processing. When a node reads a start
tag, it pushes the tag name into a stack. When a
node reads an end tag, it pops a top element from the
stack, and compares the end tag name and the popped
tag name. If both tag names are the same, the tags
match. The XML document is well-formed when all
tags match. In case the pushed and popped tags do
not match, the XML document is declared ill formed.

Checking information is added to the document,
for processing status indication: already matched; un-
matched; or yet to be processed.

Figure 4: A Node Tag Checking Example.

In Figure 4, we show a simple example for well-
formedness checking and validation checking. When
the distributed XML processing system checks well-
formedness only, the upper right box of the figure is
not executed. When the distributed XML processing
system also executes grammar validation, each node
processes validation and well-formedness at the same
time. In this case, each processing node has avail-
able DTD (Document Type Definition) files for gram-

mar validation, defining the grammar that XML docu-
ments must comply with. Each node executing gram-
mar validation reads DTD files, and generates gram-
mar rules for validation checking. We represent these
rules as a tree in the figure. Each processing node
pops/pushes the tags from/to the stack, as represented
in the lower part of Figure 4. If grammar validation
is also executed, the node also consults the grammar
rules, in order to evaluate whether the tag is allowed
to appear at a specific place in the document, accord-
ing to the grammar.

2.1.2 Node Allocation Patterns

As mentioned earlier, the distributed XML system can
execute two types of distributed processing: pipeline
and parallel processing. We show pipeline processing
in Figure 5, and parallel processing in Figure 6.

Figure 5: Pipelining Processing (two stages instance).

In Figure 5, the distributed system has two stages
pipeline. All data is transferred from StartNode to
EndNode via two RelayNodes. The StartNode reads
the XML document per line, add some information,
and sends the resulting document to the RelayN-
ode01. The RelayNode01 and the RelayNode02 pro-
cess parts of the received data, according to allocation
determined by the scheduler. The EndNode receives
data from the RelayNode02, processes all unchecked
data, and produces the final XML processing result.

Figure 6: Parallel Processing (two path instance).

In Figure 6, the distributed system has two routes
from StartNode to EndNode. The route via Re-
layNode01 relays a first part of documents, and the
route via RelayNode02 relays a second part of docu-
ments. The RelayNode01 and the RelayNode02 pro-
cess parts of the received data, according to the sched-
uler’s allocation. MergeNode receives data from the
RelayNodes, merges it, and sequentially sends it to

CHARACTERIZING DISTRIBUTED XML PROCESSING - Moving XML Processing from Servers to Networking Nodes

43



the EndNode. The EndNode receives data from the
MergeNode, processes all unchecked data, and pro-
duces the final result. Parallel processing mod-
els have an extra node, the MergeNode, as compared
with the pipeline processing models. Notice that the
MergeNode executes only extra processing overhead,
needed for merging parts of the document, in the par-
allel architecture, not executing any XML processing.
We could also have integrated such merging capabil-
ity to the EndNode, an hence obtaining an exact same
number of nodes between pipeline and parallel mod-
els. We have decided to create a specific MergeNode
in order to keep the EndNode the same across both ar-
chitectures, and the number of nodes executing XML
processing the same in both processing models.

3 TASK SCHEDULING

Task Scheduling System is a platform for parallel dis-
tributed processing. It is implemented in JavaTMand is
constructed by several modules, as illustrated in Fig-
ure 7.

Figure 7: Task Scheduling System.

Task Controller Module. Task Controller
module runs on the scheduler node. This module
allocates tasks to Task Manager Modules, which
run at worker machines, executing them. The
Task Controller implements a scheduler for deci-
sion where tasks should be allocated, and when
they should be executed.

Task Manager Module. The Task Manager
module works on each worker machine. This
module executes tasks assigned by the Task Con-
troller module.

Scheduler Class. Scheduler Class imple-
ments a scheduling algorithm, which decides al-
location of tasks and timing when tasks start.
We can install not only static scheduling algo-
rithms such as (James E. Kelley Jr, 1959) or
(Tarek Hagras, 2004) but also dynamic scheduling

algorithms such as (Kazumi Yoshinaga, 2008) or
(Manimaran G., 1998), before starting distributed
program execution. However, we use a static
scheduling algorithm which assigns all tasks be-
forehand to avoid the affect of scheduling algo-
rithms in this paper. Tasks communicate with
each other via streaming connections in the ex-
periments of this paper (Section 4). The tasks are
allocated to workers by the scheduler beforehand.
Once the tasks start, they will run until the pro-
cessing or all data is finished. Also the scheduler
does not migrate tasks to other workers, even if
some worker is idle.

Task Scheduling GUI Module. Task
Scheduling GUI is the GUI module front-end of
the Task Scheduling System (Figure 8). We can
easily define a specific distributed system and edit
nodes configurations by using this module. In
Figure 8, boxes represent specific tasks. Arrows
between boxes represent connections between
tasks. Tasks communicate data such as arguments
and processing results.

Figure 8: A Screenshot of Task Scheduling GUI.

4 DISTRIBUTED XML
CHARACTERIZATION

In this section, we characterize distributed XML well-
formedness and grammar validation processing.

4.1 Experimental Environment

We use a Sun SPARC Enterprise T5440 Server (Or-
acle, 2010) server machine as an experimental envi-
ronment. Server specification is described in Table 1.
This server has 4 CPU sockets, a total of 32 cores, and
can concurrently run up to 256 threads. In this server,
we configure hard disk storage as RAID-0 striping.

We also use Solaris Container, which is an operat-
ing system-level virtualization technology, to imple-
ment distributed XML processing nodes. These vir-

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

44



Table 1: T5440 Server Specification.

CPU
Sun Ultra SPARCR©
T2 Plus (1.2GHz)× 4

Memory 128G bytes (FB-DIMM)
OS SolarisTM10

JVM JavaTM1.5.017

tual environments are called zones. The zones can
directly communicate with each other by a machine
internal communication mechanism. We illustrate the
structure of the experimental environment in Figure
9. The Solaris Container treats one operating system
as a global zone which is unique in the system. We
can dynamically allocate resources to the zones, such
as CPU cores and memory space. We implement the
scheduler at zone 01. Each RelayNode executes in-
dependently, since the number of CPU cores, 32, is
larger than the number of nodes.

Figure 9: Zones in T5440 Server.

4.2 Node Allocation Patterns

We use several topologies and task allocation pat-
terns, for characterizing distributed XML processing,
within the parallel and pipelining models. We vary
also the number of RelayNodes, within topologies, to
evaluate their impact into processing efficiency.

• Two stages pipeline (Figure 10).

• Two path parallelism (Figure 11).

• Four stages pipeline (Figure 12).

• Four path parallelism (Figure 13).

In Figure 10–13, tasks are shown as light shaded
boxes, underneath nodes allocated to process them.

For two RelayNode case, (Figure 10 and 11), we
divide the XML documents into three parts: first two
lines, fragment01 and fragment02. The first two lines
contain a meta tag and a root tag. In Figure 10,

Figure 10: Two Stages Pipeline.

Figure 11: Two Path Parallelism.

we configure two stage pipeline topology. Data flow
from StartNode to EndNode via two RelayNodes. Re-
layNode02 is allocated for processing fragment02,
RelayNode03 is allocated for processing fragment01,
and the EndNode is allocated for processing the first
two lines, as well as processing all left out unchecked
data. In Figure 11, we configure two path paral-
lelism. The first two lines, fragment01 and related
data flow from StartNode to EndNode via RelayN-
ode01 and MergeNode. Fragment02 and related data
flow from the StartNode to the EndNode via RelayN-
ode02 and the MergeNode. RelayNode02 is allocated
for processing fragment01, RelayNode03 is allocated
for processing fragment02, whereas the EndNode is
allocated for processing the first two lines, as well as
processing all left out unchecked data.

Figure 12: Four Stages Pipeline.

Figure 13: Four Path Parallelism.

CHARACTERIZING DISTRIBUTED XML PROCESSING - Moving XML Processing from Servers to Networking Nodes

45



In four RelayNode case (Figure 12 and 13), we
divide the XML documents into five parts: first two
lines, fragment01, fragment02, fragment03 and frag-
ment04. Figure 12 shows a four stage pipeline topol-
ogy. Data flow from StartNode to EndNode via four
RelayNodes. RelayNodes fragment allocation is as
shown in the figure. The EndNode is allocated for
processing the first two lines, as well as process-
ing all left out unchecked data. Figure 13 shows
four path parallelism topology. The first two lines,
fragment01 and related data flow from StartNode to
EndNode via RelayNode02 and MergeNode. Frag-
ment02 and related data flow from the StartNode to
the EndNode via RelayNode03 and the MergeNode.
Fragment03 and related data flow from the StartNode
to the EndNode via RelayNode04 and the MergeN-
ode. Fragment04 and related data flow from the
StartNode to the EndNode via RelayNode05 and the
MergeNode. RelayNodes fragment allocation is as
shown in the figure. The EndNode is allocated for
processing the first two lines, as well as processing all
left out unchecked data. Notice that, even though the
the parallel model has one extra node, the MergeN-
ode, as compared with corresponding pipeline model,
the MergeNode does not perform any XML process-
ing per se. Hence, the number of nodes executing
XML processing is still the same in both models.

4.3 Patterns and XML Document Types

The distributed XML processing system can exe-
cute two types of processing: well-formedness check-
ing, and grammar validation checking of XML docu-
ments. Efficiency of these XML processing tasks may
be related to: processing model, pipelining and paral-
lel; topology, number of processing nodes and their
connectivity; XML document characteristics.

We use different structures of XML documents to
investigate which distributed processing model yields
the most efficient distributed XML processing. For
that purpose, we create seven types of XML docu-
ments, by changing the XML document depth from
shallow to deep while keeping its size almost the
same. We show the XML document characteristics in
Table 2, and their structures in Figure 14. Each XML
document has 10000 tag sets.

We combine four node allocation patterns, two
processing patterns and seven XML document types
to produce 56 types of experiments.

4.4 Performance Indicators

We use two types performance indicators: system per-
formance indicators and node performance indicators.

Table 2: XML Document characteristics.

XML Count of Width Depth File size
file lines [K bytes]

doc01 10002 10000 1 342
doc02 15002 5000 2 347
doc03 17502 2500 4 342
doc04 19902 100 100 343
doc05 19998 4 2500 342
doc06 20000 2 5000 342
doc07 20001 1 10000 342

Figure 14: XML Document Structures.

System performance indicators characterize the pro-
cessing of a given XML document. Node perfor-
mance indicators characterize XML processing at a
given processing node. The following performance
indicators are used to characterize distributed XML
processing:

• Job Execution Time.Job execution time is a sys-
tem performance indicator that captures the time
taken by an instance of XML document to get
processed by the distributed XML system in its
entirety. As several nodes are involved in the
processing, the job execution time results to be
the period of time between the last node (typi-
cally EndNode) finishes its processing, and the
first node (typically the StartNode) starts its pro-
cessing. The job execution time is measured for
each XML document type and processing model.

• Node Thread Working Time. Node thread
working time is a node performance indicator that
captures the amount of time each thread of a node
performs work. It does not include thread waiting
time when blocked, such as data receiving wait

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

46



time. It is defined as the total file reading time,
data receiving time and data sending time a node
incurs. For instance, in the MergeNode, the node
thread working time is the sum of receiving time
and sending time of each Receive/SendThread.
Assume the MergeNode is connected to two pre-
vious nodes, with two Receive/SendThreads. Fur-
thermore, one Receive/SendThread spends 200
msec for receiving data and sending data, whereas
the other Receive/SendThread spends 300 msec
for receiving data and sending data. In this case,
the node thread working time is 500 msecs, re-
gardless whether the threads run sequentially on
in a parallel manner. We also derive aSystem
thread working time as a system performance
indicator, as the average of node thread working
time indicators across all nodes of the system.

• Node Active Time. Node active time is a node
performance indicator that captures the amount of
time each node runs. The node active time is de-
fined from the first ReceiveThread starts receiving
first data until the last SendThread finishes send-
ing last data in the RelayNode or finishes docu-
ment processing in the EndNode. Hence, the node
active time may contain waiting time (e.g, wait
time for data receiving, thread blocking time).
Using the same MergeNode example as previ-
ously, assume two threads, one having 200 msec
node thread working time, and another having 300
msec node thread waiting time. If one thread runs
after the other, in a sequential fashion, the node
active time results to be 500 msecs. However, if
both threads run in parallel, the node active time
results to be 300 msecs. We also defineSystem
active timeas a system performance indicator, by
averaging the node active time of all nodes across
the system.

• Node Processing Time. Node processing time
is a node performance indicator that captures the
time taken by a node to execute XML process-
ing only, excluding communication and process-
ing overheads. We also defineSystem processing
time as a system performance indicator, by aver-
aging node processing time across all nodes of the
system.

• Parallelism Efficiency Ratio. Parallelism effi-
ciency ratio is a system performance indicator de-
fined as “system thread working time / system ac-
tive time”.

4.5 Experimental Results

For each experiment type (scheduling allocation and
distributed processing model), we collect perfor-

mance indicators data over seven types of XML doc-
ument instances. Figures 15 and 16 report job ex-
ecution time; Figures 17 and 18 report system ac-
tive time; Figures 19 and 20 report system process-
ing time; Figures 21 and 22 report system paral-
lelism efficiency ratio. On all graphs, X axis describes
scheduling and processing models, as well as well-
formedness and grammar validation types of XML
document processing. X axis legend is as follows:

PIP wel : Pipeline and Well-formedness checking.

PAR wel : Parallel and Well-formedness checking.

PIP val : Pipeline and Validation checking.

PAR val : Parallel and Validation checking.

Y axis denotes each performance indicator as av-
eraged over 22 XML document instance processing.

Figure 15: Job Execution Time (Two RelayNodes).

Figure 16: Job Execution Time (Four RelayNodes).

Regarding job execution time (Figures 15 and 16),
parallel processing is faster than pipeline processing
for all docs. Moreover, comparing Figs. 15 with 16,
we see that job execution time speeds up faster with
increasing the number of relay nodes in parallel pro-
cessing than in pipeline processing. In parallel pro-
cessing, StartNode reads concurrently parts of XML
documents and sends them to next nodes. Hence,
each RelayNode receives/processes/sends only part

CHARACTERIZING DISTRIBUTED XML PROCESSING - Moving XML Processing from Servers to Networking Nodes

47



Figure 17: System Active Time (Two RelayNodes).

Figure 18: System Active Time (Four RelayNodes).

Figure 19: System Processing Time (Two RelayNodes).

Figure 20: System Processing Time (Four RelayNodes).

Figure 21: Parallelism Efficiency Ratio (Two RelayNodes).

Figure 22: Parallelism Efficiency Ratio (Four RelayNodes).

of the XML document. Likewise, MergeNode re-
ceives only part of the XML document at each Re-
ceive/SendThread (Figure 3) and sends them in order
to a next node. Each thread in these nodes run con-
currently, resulting in reduced system active times for
parallel processing in Figs. 17 and 18.

Regarding system active time and document type,
the higher the document depth is, the larger the sys-
tem active time. Grammar validation task is less
sensitive to document depth for parallel processing.
Useless processing is more pronounced at each Re-
layNode for documents with higher depth, because
the RelayNodes are not able to match too many tags
within the document part allocated to them. Hence,
the EndNode is left with a large amount of process-
ing to be done. We may reduce useless processing if
we divide the document conveniently according to the
document structure and grammar checking rules. In
addition, node activity is more sensitive to the number
of RelayNodes in parallel processing than in pipeline
processing. Regarding task complexity, node activity
results are similar in pipeline processing regardless
of the task performed. Parallel processing induces
less node activity if the task is simpler, i.e., for well-
formedness checking. Figure 23 and 24 further show
node active time for each node in the system when
it processes doc01. In these graphs, “SN” means
StartNode, “RN” means RelayNode, “MN ” means

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

48



MergeNode and “EN” means EndNode. Figure 23
shows two RelayNode processing case, and Figure 24
shows four RelayNode processing case. We can see
that the active time of each node is smaller in parallel
as compared with pipeline processing.

Figure 23: Node Active Time for Processing doc01 (Two
RelayNodes).

Figure 24: Node Active Time for Processing doc01 (Four
RelayNodes).

Processing time is similar for both parallel pro-
cessing and pipeline processing (Figure 19 and 20),
which shows that the extra activity time in the pipeline
processing is due to extra sending/receiving thread
times. In addition, well-formedness checking has less
processing time than validation checking, which is ex-
pected. Also, the average processing time is much
affected by whether we can allocate XML data effi-
ciently or not. Efficient scheduling of XML docu-
ment parts to a given processing model and topology
requires further investigation.

Regarding parallelism efficiency ratio (Figures 21
and 22), parallel processing is more efficient than
pipeline in every case, because in parallel case, more
threads are operating concurrently on different parts
of the document.

Figure 25 and 26 show node thread working time
when the system processes doc01 for two and four
RelayNodes, respectively. In these graphs, we can
see that there is more XML processing in valida-
tion than in well-formedness. Moreover, comparing

Figure 25: Node Thread Working Time for Processing
doc01 (Two RelayNodes).

Figure 26: Node Thread Working Time for Processing
doc01 (Four RelayNodes).

PIP val with PAR val, there is more processing at
the EndNode in case of pipelining processing. So
pipelining is less efficient than parallel in distributed
processing XML documents of type 01. This is also
true for other types of documents, whose results are
omitted for space’s sake.

For convenience, we organize our performance
characterization results into a summary Table 3.

5 RELATED WORK

XML parallel processing has been recently addressed
in several papers. (Wei Lu, 2007) proposes a
multi-threaded XML parallel processing model where
threads steal work from each other, in order to sup-
port load balancing among threads. They exem-
plify their approach in a parallelized XML serial-
izer. (Michael R. Head, 2007) focuses on paral-
lel XML parsing, evaluating multi-threaded parsers
performance versus thread communication overhead.
(Michael R. Head, 2009) introduces a parallel pro-
cessing library to support parallel processing of large
XML data sets. They explore speculative execu-
tion parallelism, by decomposing Deterministic Fi-
nite Automata (DFA) processing into DFA plus Non-

CHARACTERIZING DISTRIBUTED XML PROCESSING - Moving XML Processing from Servers to Networking Nodes

49



Table 3: Distributed XML Processing Characterization Summary.

Two RelayNodes Four RelayNodes RelayNode increase
Pipeline Parallel Pipeline Parallel Pipeline Parallel

Job execution time Parallel is better No change Reduces

System active time
Well-formedness and

validation are similar

Active time of validation
does not depend on
document depth

Similar to two

RelayNode

Smaller than

two

RelayNode

No effect Reduces

System processing

time
Parallel is better Reduces

Parallelism

efficiency ratio
Parallel is better Parallel is significantly better

Slightly

better

Significantly

better

Deterministic Finite Automata (NFA) processing on
symmetric multi-processing systems. To our knowl-
edge, our work is the first to evaluate and compare
parallel against pipelining XML distributed process-
ing.

6 CONCLUSIONS

In this paper, we have studied two models of dis-
tributed XML document processing: parallel, and
pipelining. In general, pipeline processing is less effi-
cient, because parts of the document that are not to be
processed at a specific node needs to be received and
relayed to other nodes, increasing processing over-
head. Regardless the distributed model, efficiency
of distributed processing depends on the structure of
the XML document, as well as its partition: a bad
partitioning may result in inefficient processing. Op-
timal partition of XML document for efficient dis-
tributed processing is part of ongoing research. So
far, we have focused on distributed well-formedness
and validation of XML documents. Other XML pro-
cessing, such as filtering and XML transformations.
We are also planning on experimenting with real-
istic distributed XML processing systems, e.g., real
nodes connected via local area network. A future re-
search direction is to process streaming data at relay
nodes (Masayoshi Shimamura, 2010). In such sce-
nario, many web servers, mobile devices, network ap-
pliances, are connected with each other via an intelli-
gent network, which executes streaming data process-
ing on behalf of connected devices.

ACKNOWLEDGEMENTS

Part of this study was supported by a Grant-in-Aid for
Scientific Research (KAKENHI:18500056).

REFERENCES

Dirceu Cavendish, K. S. C. (2008). Distributed xml pro-
cessing: Theory and applications.Journal of Parallel
and Distributed Computing, 68(8):1054–1069.

James E. Kelley Jr, M. R. W. (1959). Critical-path planning
and scheduling.IRE-AIEE-ACM ’59 (Eastern), pages
160–173.

Kazumi Yoshinaga, Yoshiyuki Uratani, H. K. (2008). Uti-
lizing multi-networks task scheduler for streaming ap-
plications. International Conference on Parallel Pro-
cessing - Workshops, pages 25–30.

Manimaran G., M. C. S. R. (1998). An efficient dy-
namic scheduling algorithm for multiprocessor real-
time systems. IEEE Transactions on Parallel Dis-
tributed System, 9(3):312–319.

Masayoshi Shimamura, Takeshi Ikenaga, M. T. (2010). Ad-
vanced relay nodes for adaptive network services -
concept and prototype experiment.Broadband, Wire-
less Computing, Communication and Applications,
International Conference on, 0:701–707.

Michael R. Head, M. G. (2007). Approaching a paral-
lelized xml parser optimized for multi-core proces-
sors.SOCP’07, pages 17–22.

Michael R. Head, M. G. (2009). Performance enhance-
ment with speculative execution based parallelism
for processing large-scale xml-based application data.
HPDC’09, pages 21–29.

Oracle (2010). Sun SPARC Enterprise T5440 Server.
http://www.oracle.com/us/products/servers-storage/
servers/sparc-enterprise/t-series/031585.htm.

Tarek Hagras, J. J. (2004). A static task scheduling heuris-
tic for homogeneous computing environments.12th
Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP’04), pages 192–
198.

Wei Lu, D. G. (2007). Parallel xml processing by work
stealing.SOCP’07, pages 31–37.

Yoshiyuki Uratani, H. K. (2009). Implementation and
evaluation of a parallel application which processes
streaming data on relay nodes.IEICE Technical Re-
port, 109(228):133–138.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

50


