
EXTENDING THE USE OF VIRTUAL WORLDS
AS AN EDUCATIONAL PLATFORM

Network Island: An Advanced Learning Environment for Teaching Internet
Routing Algorithms

John McCaffery, Alan Miller and Colin Allison
School of Computer Science, University of St Andrews, North Haugh, St Andrews, Scotland, U.K.

Keywords: Virtual world, OpenSim, MRM, Education, Interactive, Graph theory, Multi user virtual environment, MUVE.

Abstract: Virtual worlds provide a rich platform for supporting exploratory education. Their ability to bring together
multimedia, programmability, interactivity and enhanced presence in a distributed 3D virtual environment
makes them an excellent basis for interactive learning. This paper outlines work done in the virtual world
OpenSim to create a learning environment for teaching the core algorithms which underpin Internet routing.
This work demonstrates the power of virtual worlds to serve as a platform for developing 3D learning scenar-
ios. To achieve this it was necessary to move beyond the limitations of the traditional virtual world scripting
paradigm. This meant developing a system that allowed the power of high level software development to be
added to the framework of a virtual world. Using OpenSim’s Mini Region Modules, an API has been devel-
oped which allows for code written externally and compiled to software libraries to be imported into OpenSim
via a scripting mechanism while the server is live. This mechanism has been used to develop a graph theory
based visualisation tool that is fully situated within a virtual world. This visualiser is then used to demonstrate
interactive simulations of Link State and Distance Vector routing algorithms. The mechanisms developed
serve to highlight just how powerful virtual worlds can be as a development platform and how this power can
be harnessed for education.

1 INTRODUCTION

Virtual worlds provide an intuitive 3D environment
where users are represented by avatars (OpenSim,
2010; LindenLabs, 2010b; Worlds, nd; Smith et al.,
2003). This presence is engaging. Users are able to,
and like, interacting with each other. This in turn pro-
vides natural support for group work and collabora-
tion. The environment is programmable. It is able to
support a rich set of interactions, which allows it to
be used in a variety of different ways. It is a multime-
dia platform; video, sound, pictures animations can
all be supported (Weber et al., 2007). Thus a rich set
of educational resources can be brought together and
accessed through a 3D virtual world browser. The re-
sources can be navigated by avatars moving around a
3D space, much as a group of students might explore
an art gallery or a museum that they had exclusive ac-
cess to. Content within 3D worlds like Second Life
(SL) is created by residents. This extends beyond the
ability to design and build things (Weber et al., 2007),

for example to shape terrain, construct buildings and
design clothes. Through the Linden Scripting Lan-
guage (LSL) (LindenLabs, 2010a; Heaton, 2007) and
other mechanisms users are able to program their
world making it a truly interactive experience. This
programmability has been used to ask students to cre-
ate machines which demonstrate Dijkstra’s Shunting
Algorithms (Perera et al., 2009) or control the move-
ment of a virtual turtle using simple commands en-
tered into the chat box (Clavering and Nicols, 2007).

The novelty of this project is the scope of the sys-
tem it builds. Using the multimedia and programming
features of virtual worlds for education has produced
interesting and valuable work before (Chodos et al.,
2010; Bellotti et al., 2008; Ritzema and Harris, 2008;
Gollub, 2007; Livingstone, 2007). These projects are
often interactive however the scripted content of the
learning environment is generally fairly simple. One
of the reasons for this is the scripting environment in
which programmers must work. The scripting mech-
anism developed for Second Life, LSL, was devel-

279
McCaffery J., Miller A. and Allison C..
EXTENDING THE USE OF VIRTUAL WORLDS AS AN EDUCATIONAL PLATFORM - Network Island: An Advanced Learning Environment for Teaching
Internet Routing Algorithms.
DOI: 10.5220/0003342402790284
In Proceedings of the 3rd International Conference on Computer Supported Education (CSEDU-2011), pages 279-284
ISBN: 978-989-8425-49-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



oped for a specific environment. This environment is
one where all servers are to be run by one commer-
cal company. This means limiting user power to write
scripts which could potentially damage other user’s
experience is a necessity. The result is a strong script-
ing language with very defined limits. LSL must be
compiled in world from a text editor provided by the
system client. Scripts are attached to specific objects
in world and only have the power to affect the ob-
ject they are attached to, not the larger scene graph.
Any cross object communication must be done via
the chat mechanism. Scripts are also given arbitrary
constraints such as placing time restrictions on how
often scripts can change an object’s position or spawn
new objects. These restrictions artificially limit what
can be achieved in developing applications for virtual
worlds.

The contribution of this work is to demonstrate
how, within an open source context, the limitations of
virtual world scripting can be overcome. It does this
by building an educational system of greater scope
than has previously been attempted. The new design
pattern allows systems to be built in an efficient and
maintainable manner. This project shows a method-
ology whereby code can be developed in an effi-
cient manner, making full use of standard IDE tools
and good abstraction techniques. This code can then
plug into a virtual world and become part of a learn-
ing environment. The fact that this code was devel-
oped externally, using an IDE means that the scope of
projects developed using this technique can be greatly
increased compared to what can feasibly be attempted
working only with in world scripting mechanisms.
This project essentially creates a ’best of both worlds’
situation. That is to say the developer gets all the ben-
efits of in world scripting in a virtual world combined
with all the benefits of working in a full IDE. The de-
veloper can write their code in an IDE, compile it and
then restart it in world without having to restart the
server itself.

The system which was developed is a graph the-
ory visualisation tool which has been used to create
an interactive sandbox for use in teaching internet
routing. The two algorithms which the system visu-
alises are the version of Dijkstra’s Shortest Path algo-
rithm (Nvrat, 2004) used in Open Shortest Path First
(OSPF) (Peyer et al., 2009; Kurose and Ross, 2009;
Cormen et al., 2001) routing and a generic Distance
Vector routing algorithm (Kurose and Ross, 2009).
These two algorithms are appropriate because they
are two of the most widely used routing algorithms on
the Internet today. They are also appropriate because
they both function very differently. That it is possible
to develop a system which is general enough to visu-

alise both algorithms shows that a well abstracted and
fully de-coupled system can be developed and then
plugged in to a virtual world.

This paper starts by outlining the system that was
developed. It then goes into more detail on how the
algorithms are visualised. There is then an analysis
of problems faced when developing within a virtual
world and the options available. Lastly the architec-
ture used to develope the system is discussed.

2 CONTROLLING SIMULATIONS

Network Island is based around a tool which allows
students to explore the behaviour of a routing algo-
rithm. This tool is designed to add a new perspective
to learning about routing, supplementing diagrams in
textbooks or printed lecture notes. In the real world
it is not possible to physically place down routers and
link them up and then watch packets flow between
them and algorithms run across them. In a virtual
world it is possible and that is what this project brings
to life. Users can create a topology, start sending a
stream of packets across the network then alter the
topology and see, in realtime, how the flow of packets
alters in response to the changes. By making the sys-
tem interactive and responsive and utilising the cen-
tral metaphor of virtual worlds, that of the avatar,
users are given a hands on experience of what is, in
the real world, a completely abstract concept.

When the user logs in to the system what they see
is a control panel and any network topology that is al-
ready in place. The topology consists of nodes linked
together by links. The user is then able to use the con-
trol panel to highlight how the algorithms work from
the point of view of any node they wish. This allows
them to observe the steps the algorithm takes as it cal-
culates routing paths across the network. The user
is also able to send packets across the network and
observe how changes made by the routing algorithm
affect the route the packets take.

As well as running the algorithms on the topol-
ogy that already exists the user is also able to alter
the topology. They are free to add nodes, create or
remove links and change the weights of the links that
exist. The design of the interface is intended to be as
simple as possible so the user can get instant feedback
on how changes they have made to the network topol-
ogy affect the routing. The goal is that users are free
to watch how the algorithms work, develop hypothe-
sis about how changing the topology will change the
algorithms then make those changes and see if their
hypothesis is correct.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

280



Figure 1: Dijkstra’s Algorithm midway through calculating
shortest paths from the black node.

3 THE ALGORITHMS

The two algorithms that the system visualises are Di-
jkstra’s Shortest Path First algorithm (Moy, 1998) as
it is used in Open Shortest Path First routing and
the Distance Vector routing algorithm (Malkin, 1998).
The system highlights how the algorithms are work-
ing with respect to a user specified node. Because
both algorithms are very different what constitutes
highlighting how the algorithm is working is also
markedly different.

3.1 Dijkstra’s Shortest Path First
Algorithm as used in OSPF

Dijkstra’s Shortest Path First Algorithm forms one
half of the OSPF protocol. In OSPF each node
maintains an internal graph representing the topol-
ogy of the network. This internal graph is built up
from information contained in packets which every
node floods through the system. These packets detail
their sender’s links and their weights. These internal
graphs are used to run Dijkstra’s Shortest Path Algo-
rithm which calculates the fastest paths from the node
which is running the algorithm to every other node in
the system that it knows about. These paths are then
used to get the link along which the node should route
packets for any given target node.

When Dijkstra’s Algorithm is running in a node
(known as the root node) at any given time the algo-
rithm has a node which it has selected as the ’current’
node. It then probes the links out from the current
node. The path chosen between a current node and the
previous current node is guaranteed to be the shortest
back towards the root node. Probing a link involves

checking the weight of the link and the state of the
node at the other end of the link. If the node at the
other end has not yet been probed it is added to a list
known as the ’tentative list’.

The algorithm is visualised by highlighting the
current node, highlighting the link to the neighbour
of the current node which is currently being probed,
highlighting the nodes in the tentative list and high-
lighting the shortest paths so far calculated. High-
lighting is done either by setting the colour of a link
or by making a node glow. Figure 1 shows Dijkstra’s
Algorithm running. When the algorithm is triggered
to run it cycles through the steps with the root node
being the node the user selected to highlight the algo-
rithm from.

The flooding mechanism which forms the other
half of the OSPF protocol is also visualised, albeit in
a simplified manner. Whenever a change is made to
the network topology (i.e. a link is added or removed)
the two affected nodes (the nodes at either end of the
link) send out flood packets along all of their links.
These packets are visualised for the user and continue
to be flooded until all nodes have received at least one
flood packet. They serve to visually highlight the fact
that the flooding mechanism is a crucial part of the
OSPF algorithm.

3.2 Distance Vector Routing

The distance vector algorithm differs from the fully
OSPF Shortest Path algorithm as it is a distributed al-
gorithm. Each packet that is received forms part of
the algorithm itself, rather than simply providing the
information on which the algorithm will run. How the
algorithm works is that whenever the network topol-
ogy changes the nodes involved in the change send
out packets to all their neighbors. These packets con-
tain distance vectors which map the distances to all
the nodes the sender knows how to route to. When
these packets are received the sender’s distance vec-
tor is analysed against the recipient’s distance vector
and if necessary the recipient changes their distance
vector. If the recipient makes a change it then sends
out its modified distance vector to all its neighbours
and the process continues until all nodes have assimi-
lated the new information.

To visualise the algorithm the packets containing
the distance vectors are animated. Users can make
changes to the topology and watch as the changes pro-
pogate out through the network. A highlight mech-
anism is used to facilitate understanding of how the
receipt of distance vector packets alter the way that
routing occurs. When the user chooses to highlight
the algorithm what happens is the shortest path from

EXTENDING THE USE OF VIRTUAL WORLDS AS AN EDUCATIONAL PLATFORM - Network Island: An
Advanced Learning Environment for Teaching Internet Routing Algorithms

281



Figure 2: Distance Vector update packets moving across a
topology after the removal of a central node.

the selected node to every other node is highlighted.
This means that the user can then go and change
the topology, watch the packets signalling the change
in topology radiate out and see how the arrival of
these packets goes on to affect the highlighted shortest
paths. Figure 2 shows update packets that are starting
to propagate through the system after the removal of
a central node in the topology.

4 PROGRAMMING VIRTUAL
WORLDS

One of the reasons virtual worlds are so interesting
from an education point of view is their programma-
bility. Not only can users change the shape of the
world around them and add new geometry and struc-
tures into the world they can also attach code to the
objects in-world. The fact that scripting behaviour
of objects in-world is an integral concept to virtual
worlds is what this project harnesses to create an en-
hanced learning environment. By approaching learn-
ing about Internet routing algorithms from a virtual
world perspective rather than an animation or pure
simulation perspective the fundamental concept of
users having direct control over their environment is
harnessed to give users control over the simulation.

The major challenge was the level of programma-
bility that specific virtual worlds provide for users
and administrators. Enabling untrusted users to write
and execute code in a distributed environment may be
problematic. As soon as all users are given the power

to execute their own code within the larger framework
of the distributed application they are given the ability
to break the application.

When deciding how to face this challenge devel-
opers of virtual worlds are left with a choice. On
the one hand they can give the user the power to
create complex and involved systems within the en-
vironment they have created. This makes for great
possibilities but also leaves the system vulnerable to
exploitation. Alternatively the developers can limit
users to develop within very controlled parameters
which limit what the user can do but also limit their
power to harm other user’s experience.

SL, as it is available to the public, is an exam-
ple of the latter design decision. If you connect to
SL you are connecting to a server hosted by Linden
Labs. This server is configured to put hard limits on
the amount of damage you can do to the system as a
whole. If you wish to develop within SL you must
use LSL and accept its boundaries. These boundaries
then constrain the complexity of the systems you can
design.

OpenSim has a different service model for pro-
viding virtual worlds. It is a highly configurable open
source virtual worlds platform which allows multiple
instances to be connected together to create a virtual
world that scales. Administrators are free to create
their own server, configure it how ever they wish and
have users connect to it. As such, where with SL all
servers are run by Linden Labs and have the same se-
curity settings, in OpenSim it is up to individual ad-
mins to configure their server. This means any Open-
Sim server can be placed at any point on the contin-
uum between tightly controlled to limit malicious be-
haviour or very free to give users, or a single group
of users, great power over the environment. Because
OpenSim puts the running of the server in the hands of
the administrator it becomes the admin’s choice how
the server is configured for security. If the adminis-
trator wants to create a server where all users have ac-
cess to highly powerful scripting tools such as MRM
they can. Alternatively they can nominate a few users
as developers and give them access to the more pow-
erful tools while limiting general user’s ability to al-
ter the system. OpenSim supports LSL which is built
into SL but it also supports other programming mech-
anisms. Being open source the code can be modified
any way the administrator wishes. This could be di-
rectly, changing the source code that exists already,
or it could be by adding in features in a modular man-
ner. OpenSim provides four modes for programming
content.

1. Sandbox Scripting. LSL is an example of this,
users write LSL scripts with very defined con-

CSEDU 2011 - 3rd International Conference on Computer Supported Education

282



straints in-world. On one level this is powerful, in
that it allows in-world objects to be programmed
to react to events in a rich and varied way. How-
ever the creation of complex systems is difficult
and time consuming. Access to system resources
is controlled making the creation of moderately
time sensitive applications impractical. Linden
Scripting language was originally developed by
Linden Labs to be the scripting language used in
SL. It has since been implemented in OpenSim.

2. Internal API Scripting. An example of this are
MRMS and the alternative scripting mechanism
they provide. Where LSL is a custom designed
scripting language developed to be written in-
world and to manipulate the object the script is
placed in MRMs are a C# API. Code is written in
C# using an API which gives access to the world’s
scenegraph. This code can be written in-world in
the same way as LSL, using a text editor built into
the client. This means at one level it can be used as
a straight substitute for LSL. The only difference
being that MRMs allow code to manipulate any
object in the scene, not just the object the script is
running in. As well as allowing code to be writ-
ten in-world in the same way as LSL MRMs also
allows external libraries to be loaded in and refer-
enced by its in-world scripts.

3. External API Development. This is a system
whereby a small piece of code, plugged directly
into OpenSim then links to an external library
which runs as an MRM. This project uses a cus-
tom designed system for this functionality1. The
programmer writes minimal code in-world, all
they do is specify a configuration file. This in turn
triggers an external library which goes on to load
up a series of libraries defined in the configura-
tion file. This system allowing code to be written
in an IDE, compiled in an IDE then run in-world
without a restart of the server.

4. Region Modules. a more heavy weight approach
to system development. The programmer has
open access to OpenSim internals and writes a
module which is plugged directly into OpenSim.
The problem here is that the absence of a struc-

1There is a freely available, open source, plugin for
OpenSim which does this called MRM loader available.
However at the time of writing it is in the early stages of
development and has two major drawbacks. 1. It does not
allow any arguments to be passed in to the loaded module,
2. A flaw in the design of the system means that the current
version does not allow listeners to be added to the world.
This means that no user interaction can happen in a system
developed using MRM loader. This is why a proprietary
solution was developed.

tured API means that changes in OpenSim are
likely to cause Region Module to break. Also
writing region modules means that in order for
the module to be recompiled the server must
be restarted. Region modules are more suited
to changing the way OpenSim itself works and
adding major features than for scripting the be-
haviour of in-world objects.

The relationship between the above programming
modes is shown in Figure 3 which is based on a dia-
gram from (Deem, 2009).

LSL
Based

System
Develop-

ment

Internals

Internal
API

Scripting

External
API

Scripting

Scripting
in World

"Real" 
Programming

Structured 
API

Sandbox
Scripting

Figure 3: Different methods of programming content in
OpenSim.

5 ARCHITECTURE

The architecture of the system is designed to fully ex-
ploit the ability to reference externally compiled li-
braries from in-world scripts. There is a library, the
scripts library, which can be dropped into the main
OpenSim directory and referenced by any script. Ini-
tialising an instance of an object with the location
of a config file hands over control from the in-world
script to the externally compiled library. The instan-
tiated class can then dynamically instantiate a boot-
strap class from a library whose location is speci-
fied from the configuration file. By changing what
configuration file the class is initialised with differ-
ent systems or configurations can be loaded. The
bootstrap class must adhere to an interface defined in
the scripts library but the files can be compiled and
placed anywhere in the file system. These files can
be re-compiled while the system is running in-world
and the in-world system can then be restarted and the
newly compiled code loaded. This mechanism means
that a developer can use an external IDE to develop
a system. The developer is able to make changes to
the system, re-compile and then type a command in-
world to restart the system and see the changes appear.

EXTENDING THE USE OF VIRTUAL WORLDS AS AN EDUCATIONAL PLATFORM - Network Island: An
Advanced Learning Environment for Teaching Internet Routing Algorithms

283



This is a powerful system as the developer is able to
utilise all the power of multiple libraries, high level
programming and IDE development tools and at the
same time behave in-world as if they were just writ-
ing and re-loading a script, never having to restart the
server.

6 CONCLUSIONS

Network island is an example of the scope of project
that can now be developed within a virtual world plat-
form. It is a full, dynamic, adaptive, interactive, dis-
tributed system that gives users a tool to help them
understand an abstract concept. It demonstrates that
not only can something like this be developed but it
can be developed at a level of abstraction which al-
lows educators to go in and write plug ins for the sys-
tem to alter it depending on what they need to teach.
This project shows the scope which is available when
developing in a virtual world and leverages relatively
young technology to look at a new direction which
can be taken with these environments. By develop-
ing the system as essentially a plugin which can then
support further plug ins it shows how a system can be
put together which works within virtual world’s tra-
dition of easy development and simple scripting but
has considerably more power behind it than has pre-
viously been available.

REFERENCES

Bellotti, F., Berta, R., De Gloria, A., and Zappi, V. (2008).
Exploring gaming mechanisms to enhance knowledge
acquisition in virtual worlds. InDIMEA ’08: Pro-
ceedings of the 3rd international conference on Digi-
tal Interactive Media in Entertainment and Arts, pages
77–84, New York, NY, USA. ACM.

Chodos, D., Stroulia, E., Boechler, P., King, S., Kuras, P.,
Carbonaro, M., and de Jong, E. (2010). Healthcare ed-
ucation with virtual-world simulations. InSEHC ’10:
Proceedings of the 2010 ICSE Workshop on Software
Engineering in Health Care.

Clavering, R. S. and Nicols, A. R. (2007). Lessons learned
implementing an educational system in second life. In
BCS-HCI ’07: Proceedings of the 21st British HCI
Group Annual Conference on People and Computers,
pages 19–22, Swinton, UK, UK. British Computer So-
ciety.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2001). Introduction to Algorithms. The MIT Press,
2nd revised edition edition.

Deem, M. (2009). Maimed leech. http://maimedleech.com/.

Gollub, R. (2007). Second life and education.Crossroads,
14(1):1–8.

Heaton, J. (2007).Introduction to Linden Scripting Lan-
guage for Second Life. Heaton Research, Inc.

Kurose, J. F. and Ross, K. W. (2009).Computer Network-
ing: A Top-Down Approach. Addison-Wesley Pub-
lishing Company, USA, 5th edition.

LindenLabs (2010a). The lsl portal. http://wiki.secondlife.
com/wiki/LSL Portal.

LindenLabs (2010b). Second life. http://www.secondlife.
com.

Livingstone, D. (2007). Second life education workshop at
the second life community convention, san francisco,
august 20, 2006.eLearn, 2007(3):4.

Malkin, G. (1998). RIP Version 2. RFC 2453 (Standard).
Updated by RFC 4822.

Moy, J. (1998). OSPF Version 2. RFC 2328 (Standard).
Updated by RFC 5709.

Nvrat, P. (2004). Review of ”algorithm design: founda-
tions, analysis and internet examples” by michael t.
goodrich and roberto tamassia. john wiley & sons, inc.
2001.SIGACT News, 35(2):14–16.

OpenSim (2010). Opensimulator. http://opensimulator.org.

Perera, I., Allison, C., Nicoll, J. R., and Sturgeon, T. (2009).
Towards successful 3d virtual learning - a case study
on teaching human computer interaction. InInternet
Technology and Secured Transactions, 2009. ICITST
2009. International Conference for Internet Technol-
ogy and Secured Transactions, pages 1–6.

Peyer, S., Rautenbach, D., and Vygen, J. (2009). A gen-
eralization of dijkstra’s shortest path algorithm with
applications to vlsi routing.J. Discrete Algorithms,
7(4):377–390.

Ritzema, T. and Harris, B. (2008). The use of second
life for distance education.J. Comput. Small Coll.,
23(6):110–116.

Smith, D. A., Kay, A., Raab, A., and Reed, D. P. (2003).
Croquet - a collaboration system architecture.c5,
00:2.

Weber, A., Rufer-Bach, K., and Platel, R. (2007).Creating
Your World: The Official Guide to Advanced Content
Creation for Second Life. Wiley, Indianapolis, IN.

Worlds, A. (n.d.). Active worlds. http://www.activeworlds.
com/.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

284


