
COMPREHENSION SUPPORT OF SQL STATEMENT USING
DOUBLE-TREE STRUCTURE

Takehiko Murakawa and Masaru Nakagawa
Faculty of Systems Engineering, Wakayama University, Wakayama, Japan

Keywords: Program understanding, Code review, SQL, Graphical expression, Syntactic analysis.

Abstract: SQL is a practical programming language used mainly in the query to relational database. However there
have been rarely met support tools for database programmers’ understanding with relation to SQL statements.
We have proposed a framework where a clamshell diagram which looks like a symmetrical, double tree is
drawn given an SQL statement. In this paper, we report an automatic conversion system of SQL statements
into clamshell diagrams. The system parses the given statement and arranges the configuration which differs
slightly from the well-known syntax tree. Moreover we actually generated some dozens of diagrams for SQL
statements using the system to make sure that it can readily draw diagrams.

1 INTRODUCTION

SQL is a practical programming language used
mainly in the query to relational database. Most de-
partments on information science or computer en-
gineering let the students learn basic concepts of
database and acquaint themselves with the queries us-
ing SQL statements. In the authors’ affiliation, the
students train in SQL after mastering C and Java.
Some of them have a resistance to SQL since, say,
the syntax is unprecedented.

Bending our eyes on the software development
business, we have rarely met support tools for
database programmers’ understanding with relation
to SQL statements, although we can find such tools
for source codes written in general-purpose procedu-
ral languages. The approaches to the comprehension
support of procedural languages are (Desmond et al.,
2006; Chen, 2010; Zest,) and others. Davis (Davis,
2008) attempted to assist the understanding of source
files by allocating them on a window.

There exist support tools in fact which analyze
any SQL statement to visualize it. For example,
SQLProb (Liu et al., 2009) parses given SQL state-
ments and forms the trees to detect the change of con-
figuration which indicates an SQL injection attack.
Another case is Visual Explain (VisualExplain, 2006)
which generates the access plan as a tree. Both appli-
cations, however, would be poor at the code inspec-
tion support by a single person or multiple persons.
Apart from the tools, a case study is found in (Chan

et al., 2005) which made quantitative evaluations of
accuracy of the codes that novice SQL programmers
wrote.

We have proposed a framework for program un-
derstanding using a graphic record that we call a
clamshell diagram (Murakawa and Nakagawa, 2010).
Roughly summarized, a clamshell diagram is a sym-
metrical, double tree for representing two hierarchical
structure and a problem-solution relationship. After
formalizing it and drawing figures (Murakawa et al.,
2008), we have focused on SQL. Those diagrams
were, however, made by hands. Such way of draw-
ing is inefficient and has a disadvantage for the code
reviewer to examine analogous codes.

In this paper we report an automatic conversion
system of SQL statements into clamshell diagrams.
It parses the given statement and configures the left-
hand tree which differs slightly from the well-known
syntax tree. And then, it creates the structure of the
right-hand tree where the labels of SQL fragments
may be changed into words which are more natural
with regards to English expression. The system is the
improved version of the one (Murakawa et al., 2010).

2 PRELIMINARIES

2.1 SQL

SQL is a programming language for the query to

318 Murakawa T. and Nakagawa M..
COMPREHENSION SUPPORT OF SQL STATEMENT USING DOUBLE-TREE STRUCTURE.
DOI: 10.5220/0003346103180323
In Proceedings of the 3rd International Conference on Computer Supported Education (CSEDU-2011), pages 318-323
ISBN: 978-989-8425-49-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Example of clamshell diagram for an SQL statement (old way of drawing).

database. Although a typical executable unit of SQL
is smaller than that of C or popular ones, an SQL
statement could be unboundedly lengthened by using
a nested query or a subquery. Moreover, as far as the
processing performance is concerned, a single, com-
plicated SQL statement is prefer to divided, simplified
ones.

Students of the authors’ department study SQL
after mastering C and learning Java. When we put
a question of writing down a SQL statement for a
bit long query in a natural language to the students,
the accuracy rate is terribly low. One of the goals in
the database classes is that the students learn to write
down the right queries by themselves. For this pur-
pose, the objective of our study is throwing a bridge
over queries or intentions and SQL statements.

2.2 Clamshell Diagram

A standard clamshell diagram has two tree structures
whose roots are located in the both ends of the dia-
gram and the leaves of the trees are connected one-
to-one in the center. While a tree presents a mere ex-
pansion, a clamshell diagram with double tree visual-
izes both the divergence and convergence. Moreover
we can have a careful look at the completed diagram
by several methods, such as changing the viewpoint
into one of the adjacent nodes or into the opposite
node, or skimming through a path from the left edge
to the right. The combination of these ways of view-
ing helps us understand the object.

If you are interested in the formal definition of
clamshell diagrams, see (Murakawa and Nakagawa,
2010). Note that we have only to keep a single tree for
a clamshell diagram in a computer, where each node
holds the information of the corresponding nodes of
both-hand trees.

The basic idea of drawing is to supply the hierar-
chical code fragments of a given SQL statement in
the left side of the diagram and to put the meaning
written in a natural language in the right. Figure 1
is an example of clamshell diagram for an SQL
statement including a subquery. There exist two
nodes which readSELECT on the extreme left of
this figure, but we can easily see that the lower one

is the child node of “salary=(x)”. The symbolx
is a parameter which substitutes for the sequence
for the subtree. When we traverse the left-hand
tree in preorder, it reads “SELECT title FROM
joblist WHERE salary=(SELECT MAX(salary)
FROM joblist)”. From the right-hand tree, we can
similarly obtain the sequence, “get title from joblist
where salary is equal to ‘maximum of salary from
joblist’ ”, where the word “get” which occurs except
at the root of the right-hand tree is omitted. The
query is to retrieve the titles of the maximum salary,
under the assumption that there exists a table named
joblist which consists of two columns by the name
of title andsalary.

There exist problems in drawing clamshell dia-
grams by hand. Firstly, it is tedious and error-prone.
Then, it is not easy to understand expressions which
may be too long and complicated. Lastly, it is not
straightforward to identify the column names, espe-
cially in the statement where a table name appears
twice or more. To overcome these difficulties, we de-
veloped the software for converting SQL statements
into clamshell diagrams.

3 AUTOMATIC CONVERSION OF
SQL STATEMENT INTO
CLAMSHELL DIAGRAM

3.1 Overview

The overview of generating the clamshell diagram for
a given SQL statement is shown in Fig. 2.

We would like to enumerate the features of the
program we have developed. Firstly, it takes an SQL
statement as input to make the clamshell diagram.
It thereby automates the time-consuming job. Then,
each token of the given SQL statement is associated
with a node of the left-hand tree of the clamshell di-
agram, apart from what is introduced for readability.
This property hopes that we can understand the roles
of the tokens in the connection of others more eas-
ily. Lastly, if a single column name is specified in
the given SQL statement, then it is augmented with

COMPREHENSION SUPPORT OF SQL STATEMENT USING DOUBLE-TREE STRUCTURE

319

Figure 2: Overview of generating clamshell diagram using
the system.

the appropriate table name and the dot symbol before
the column name. Such an enhancement helps one to
understand the origin of the column name.

The system was implemented using Ruby.
Whereas employing free, well-established library and
software, we wrote several Ruby script files for the
various processes.

3.2 Parsing

Lexical and syntactic analyses are done
with the aid of the Ruby’s library Racc
(http://i.loveruby.net/en/projects/racc/). Figure 3
is a part of the Ruby script file for the syntax
analyzer. The word without any lower case letters
means a special token of SQL, and the one beginning
with “K ” indicates a reserved word by removing the
prefix. The lines betweenprechigh and preclow
define the operator precedence together with the
associativity. After the line of “rule”, the word
without any upper case letters denotes a non-terminal
symbol whose syntax is defined in the file. The
vertical bar is used for the disjunction. Inside a
pair of braces, the action is described in Ruby. The
last line except “...” in Fig. 3 suggests thatexpr
is defined in a recursive way. We introduced 53
non-terminal symbols while defining 186 syntactic
rules (counting the disjunctive rules separately), by
referring to the specification of SQL (ISO9075,) and
subsidiarily the graphical syntactic rule about SQLite
(http://www.sqlite.org/syntaxdiagrams.html).

Racc converts the syntax definition file into a
Ruby script which takes a grammatical SQL state-
ment as input to produce an Array object in Ruby
which corresponds to the syntax tree.

class Sqlp
prechigh

right UMINUS
right UMINUS
left PERIOD2
left PERIOD3
left ASTERISK SLASH PERCENT
left PLUS MINUS DOUBLE_VERTICAL_BAR

...
preclow

options no_result_var

rule
sql_stmt: sql_stmt1 sql_stmt2 {...}
sql_stmt1: {[]}
| K_EXPLAIN {...}
| K_EXPLAIN K_QUERY K_PLAN {...}

sql_stmt2: select_stmt {...}
expr: literal_value {...}
| column_name {...}
| expr ASTERISK expr {...}

...

Figure 3: A part of syntax definition for Racc.

3.3 Name Resolution of Columns

When reading a complicated SQL statement, we of-
ten have difficulty with identifying the table for a sin-
gle identifier which should be a column name. Tak-
ing the SQL statement in Section 2.2 for example,
joblist andsalary respectively appear twice, and
we learn that each columnsalary is wired in the ta-
blejoblist in chronological order.

We attempted to add words to the given SQL state-
ment. Just after parsing, if the table name withoutAS
modifier occurs more than twice, thenAS modifier is
attached. In addition, for the (sub)expression which
is merely the column name, the table name and a dot
are inserted just before it. For this purpose the pro-
gram takesCREATE TABLE statements involved with
the given SQL statement as an auxiliary input.

The SQL statement in Section 2.2 can be con-
verted into “SELECT j1.title FROM joblist AS
j1 WHERE j1.salary=(SELECT MAX(j2.salary)
FROM joblist AS j2)”. Our system is designed so
that the rules can be applicable in the SQL statements
with inline views as well.

3.4 Making the Left-hand Tree

When the statement “SELECT 3+4” passes through
the parser, we can obtain the syntax tree (a bit op-
timized) shown in Fig. 4, whereselect core and
expr denote non-terminal symbols. If this tree were
adopted as the left-hand tree of the clamshell dia-
gram, then the inner nodes associated with the non-
terminal symbols would give no information in the
right-hand tree. In general, we would also like to give
care to locating the opening and closing parentheses
on the chart. These difficulties made us remove the in-

CSEDU 2011 - 3rd International Conference on Computer Supported Education

320

ner nodes associated with non-terminal symbols thor-
oughly, with the property preserved that the diagram
should produce the original SQL statement by travers-
ing the left-half tree in preorder.

select_core
SELECT

expr

3

+

4

Figure 4: Syntax tree ofSELECT 3+4.

First, we need to pay attention to the binary oper-
ator which frequently occurs in the expression, since
it is not compatible with preorder configuration. For
this problem, we attempt to reconfigure the involved
nodes so as to make them fit in with preorder. The
principle leads to the tree shown in Fig. 5 for the ex-
pressionx+ 1∗ 1− 1 wherex is an expression. You
can hide the operator together with its right operand
both from the expression and from the tree. Note that
if the expression isy+1 andy is a single value, then
it corresponds to the chain which ties in “y”, “ + ” and
“1” in sequence. This way of reconfiguration can be
applied as well in listing two items or more with the
comma injected.

x

+

-

1 * 1

1

Figure 5: Configuration of the expressionx+1∗1−1.

We would like to propose the marriage of a pair of
parentheses, by appending the conversion rules; if the
parentheses are attached to the function call, then the
label of the root in the subtree about the call consists
of the function name and the parentheses; otherwise,
the pair of parentheses change themselves into a sin-
gle node with “()” on it, and this node is the root
of the subtree. When the node of a pair of parenthe-
ses has more than one child nodes as the result of re-
duction, only the first child node should be put in the
parentheses whereas the rest follows the subexpres-
sion.

Finally we are presenting the way of eliminating
inner nodes in the case other than described above.
When we have a subtree whose root is associated with
a non-terminal symbol, the first-born node among the
child nodes of the subtree should promote to the root.
This manipulation keeps the word order through the
preorder scanning.

3.5 Making the Right-hand Tree
and Whole Diagram

After constructing the left-half tree, we will obtain the
right-half tree in a straightforward way. The config-
uration is just the same as that of left-half tree, and
some labels are altered. Table 1 shows the mapping
rule for simple tokens. Moreover, all the keywords
of SQL are decapitalized, and the function name fol-
lowed by the parentheses is converted into the func-
tion name plus “of”. On the other hand, we leave
the parentheses other than seen in function calls un-
touched for readability.

Table 1: Mapping rule of labels for the right-hand tree.

SQL’s Token Substitute word
SELECT get

* records
, and
. ’s

Note: The token* which appears as the binary operator is not sub-

ject to the rule.

We employ Graphviz (http://www.graphviz.org/)
for drawing clamshell diagrams. Graphviz basically
takes a text file of the graph configuration as input,
and produces an image file. You can choose the file
format of the output image among vector formats such
as SVG (Scalable Vector Graphics) and EPS (En-
capsulated PostScript) or pixel formats such as PNG
(Portable Network Graphics) and JPEG (Joint Pho-
tographic Experts Group). When our program writ-
ten in Ruby invokesdot command that Graphviz fur-
nishes, we finally have an image file of the clamshell
diagram.

4 RESULTS

A clamshell diagram which is drawn through the
above processes is shown in Fig. 6. The origi-
nal SQL statement is “SELECT j2.title FROM
(SELECT MAX(j1.salary) AS max salary FROM
joblist AS j1) AS j, joblist AS j2 WHERE
j2.salary=j.max salary”, and intended to cal-
culate the job’s titles of the maximum salary in the
joblist table using the inline view. The figure presents
the inner clamshell diagram whose both edges are
the nodes which read “SELECT” and “get” in the
left-hand and right-hand trees respectively. If a mere
tree were displayed, we would be bewildered when
reaching a leaf node. Clamshell diagram supplies the
right-hand path to convergence, which enables us to

COMPREHENSION SUPPORT OF SQL STATEMENT USING DOUBLE-TREE STRUCTURE

321

S
E

LE
C

T

j2
.t

itl
e

F
R

O
M

W
H

E
R

E

j2
’s

 t
it

le

(
)

S
E

LE
C

T

A
S ,

M
A

X
 (

)

F
R

O
M

j1
.s

al
ar

y

A
S

j1
’s

 s
a

la
ry

m
a

x_
sa

la
ry

m
a

x
_

s
a

la
ry

jo
b

lis
t

A
S

j1
j1

j
j

jo
b

lis
t

A
S

j2
j2

j2
.s

al
ar

y
=

j.m
ax

_s
al

ar
y

j’
s

 m
a

x
_

s
a

la
ry

g
e

t
fr

o
m

(
)

g
e

t

m
a

x
 o

f

a
s

fr
o

m

jo
b

li
s

t
a

s

a
s

a
n

d
jo

b
li

s
t

a
s

w
h

e
re

j2
’s

 s
a

la
ry

=

Figure 6: Example of clamshell diagram for an SQL state-
ment.

understand the pieces of the original query through
left-to-right stream.

When traversing the right-hand tree of this
diagram in consideration for the parentheses’ in-
terpretation and the elimination of “get” inside, we
obtain “get j2’s title from (max of j1’s salary as
max salary from joblist as j1) as j and joblist as j2
where j2’s salary = j’s maxsalary.”

Dozens of simple queries brought the valid
clamshell diagrams. Moreover we applied to the
SQL statement for calculating the median (Celko,
2005, p.515) that consists of 132 tokens, to obtain the
clamshell diagram with 228 nodes where the length
of the path between the both ends is up to 36.

5 DISCUSSION

We have presented the prospect for the solution
through automatic converter while enumerating the
problems in drawing clamshell diagrams for SQL
statements by hand. We are looking back on them,
since we currently have the practical examples of
produced clamshell diagram as well as the conver-
sion system. The developed software, taking an SQL
statement as input, has several Ruby scripts work to-
gether to make the clamshell diagram immediately.
Although there are some exceptions for readability,
the resulting diagram holds more nodes than the one
by hand, which makes each tokens in the statement
much clearer. Furthermore, by assigning each column
name in the statement to a node where the appropriate
table name is qualified, the targets of information ref-
erence confidently identified on the diagram. There-
fore we consider that the framework of conversion of
SQL statements into clamshell diagrams contributes
to the SQL comprehension support.

With the utilization of the visualization tool de-
scribed until now in mind, we would like to explain
an idea for making use of the system in the classes of
database. There is a teacher or a student who writes
an SQL statement using a computer, for retrieving
some records from the tables where the schema was
defined and the records were stored previously. He
or she punches in the query to send the characters or
words to the server discretely. When a statement is
correct in grammar, the server generates the clamshell
diagram and returns it to the client. Referring to the
clamshell diagram together with the query, the teacher
gives commentary on noteworthy tokens. Moreover,
they can find the tables in the diagram which are omit-
ted from a simple SQL statement. If the system can
judge whether the statement is correct or not in a mo-
ment, and if the time for drawing, transmitting and

CSEDU 2011 - 3rd International Conference on Computer Supported Education

322

rendering the clamshell diagram is negligibly small,
then the learners can enjoy the results dynamically
changed on the screen. It is not so hard to build up
the application which works with a single PC.

Taking the actual use of clamshell diagrams into
consideration, we have to recognize that there exists a
room to improve the way of visualization. For exam-
ple, we could change the shapes of nodes, apply col-
ors according as the meanings of labels, and fold and
expand the subtrees. In addition, the system becomes
more attractive if a user, looking at the generated di-
agram, can touch a node and change it on site. We
expect SVG to be the best image format, since SVG
is an XML (Extensible Markup Language) image for-
mat which Graphviz supports and the components of
the image are controllable through DOM (Document
Object Model), using JavaScript.

6 CONCLUSIONS

In this paper we have reported the automatic conver-
sion system of SQL statements into clamshell dia-
grams. Resulting diagrams enable us to understand
the pieces of the original queries thanks to the double
tree structure and the left-to-right stream.

Future works include conducting evaluation ex-
periments for readability of clamshell diagrams in
comparison with other ways of showing SQL state-
ments. Supporting other languages than English in
the right-hand tree is also under consideration.

REFERENCES

Celko, J. (2005).Joe Celko’s SQL for Smarties: Advanced
SQL Programming, Third Edition. Morgan Kauf-
mann.

Chan, H., Teo, H., and Zeng, X. (2005). An evaluation of
novice end-user computing performance: Data model-
ing, query writing, and comprehension.Journal of the
American Society for Information Science and Tech-
nology, 56(8):843–853.

Chen, X. (2010). Extraction and visualization of traceabil-
ity relationships between documents and source code.
In IEEE/ACM international conference on Automated
software engineering, pages 505–509.

Davis, S. (2008). Automatic juxtaposition of source files.
Master’s thesis, University of British Columbia.

Desmond, M., Storey, M.-A., and Exton, C. (2006). Fluid
source code views for just in-time comprehension. In
Workshop on Software Engineering Properties of Lan-
guages and Aspect Technologies.

ISO9075. Information technology—database languages—
SQL—part 1: Framework (SQL/framework).
ISO/IEC 9075-1:1999.

Liu, A., Yuan, Y., Wijesekera, D., and Stavrou, A. (2009).
SQLProb: a proxy-based architecture towards pre-
venting SQL injection attacks. InProceedings of the
2009 ACM symposium on Applied Computing, pages
2054–2061.

Murakawa, T., Kawasaki, T., Mizuochi, H., and Nakagawa,
M. (2008). Formulation of clamshell diagram and its
application to source code reading. InProceedings of
the 8th Joint Conference on Knowledge-Based Soft-
ware Engineering (JCKBSE 2008), pages 474–483.

Murakawa, T. and Nakagawa, M. (2010). Graphical ex-
pression of SQL statements using clamshell diagram.
IEICE TRANSACTIONS on Information and Systems,
E93-D(4):713–720.

Murakawa, T., Tsujimoto, A., Matsuo, K., and Nakagawa,
M. (2010). Automatic conversion of SQL statement
into clamshell diagram. InProceedings of the 9th
Joint Conference on Knowledge-Based Software En-
gineering (JCKBSE’10), pages 100–101.

VisualExplain (2006). DB2 9.1 Visual Explain tutorial.
IBM.

Zest. Zest: The eclipse visualization toolkit. http://
www.eclipse.org/gef/zest/.

COMPREHENSION SUPPORT OF SQL STATEMENT USING DOUBLE-TREE STRUCTURE

323

