
A DISTRIBUTED SELF-HEALING ARCHITECTURE
SUPPORTING WS-BASED APPLICATIONS

Francisco Moo-Mena, Fernando Curi-Quintal, Juan Garcilazo-Ortiz
Luis Basto-Dı́az and Roberto Koh-Dzul

Universidad Autónoma de Yucatán - Facultad de Matemáticas, Periférico Norte km 33.3, Merida, Mexico

Keywords: Self-healing, Web service, Digital library.

Abstract: A Self-healing infrastructure allows to observe the behavior of a system, determining its health status, and
applying measures to restore the correct state of the application. In recent years our work has focused on the
design and implementation of Self-healing architectures, which support applications based on Web Services
(WS). This paper presents an improved Self-healing architecture, which proposes a distributed control in
its components. The results obtained by applying this new Self-healing architecture to a distributed Digital
Library application show a trend towards a better availability of resources.

1 INTRODUCTION

The Web Service (WS) technology has made possible
to develop complex distributed systems.

Distributed systems require mechanisms to pre-
vent loss of component functionality and QoS degra-
dation. Fault-tolerance techniques provide a mecha-
nism to recover from specific failure situations, where
a fault can make the system unavailable suddenly for
indeterminate periods, minimizing the outages. How-
ever, systems in a high demand environment also need
to predict problems and take actions to prevent the
failure and its impact on the application or, to recover
without any apparent overall disruption.

In 2001, IBM presented an initiative called “Auto-
nomic Computing”, adopting principles of biological
systems (Kephart and M.Chess, 2003). The initiative
presents four perspectives: Self-configuring, Self-
healing, Self-optimizing and Self-protecting (Halima
et al., 2006).

This work is focused on improving a distributed
WS-based Self-healing architecture to support a Dig-
ital Library application, with contents organized and
distributed by knowledge area, by applying Self-
healing techniques and a better distribution of com-
ponents.

Interceptors are used for Monitoring, QoS analy-
sis for Diagnosis, and redundancy of components for
Recovery (Ghosh et al., 2007). This work is based
on previous work which defined the Self-healing ar-
chitecture, the statistical model and the ontological

model applied for the diagnosis (Moo-Mena et al.,
2008) (Moo-Mena et al., 2009).

The rest of the paper is organized as follows: sec-
tion 2 describes our distributed Self-healing architec-
ture; section 3 shows experimental results; and sec-
tion 4 discusses conclusions and future work.

2 SELF-HEALING
ARCHITECTURE

In a previous work, a first Self-healing architecture
was developed. One limitation of this architecture is
its centralized approach that only considers a simple
interaction scenario. It considers one WS component
making requests to other WS component, the param-
eters collected during the interaction are analyzed by
a “Self-healing Core”, which is a critical central point
because their failure could compromise the operation
of the system.

Restrictions in the previous architecture are ana-
lyzed and a better schema is proposed to get a dis-
tributed Self-healing architecture based on coopera-
tive WS.

2.1 Self-healing Components
Distribution

The WS distributed operation is structured as nodes
that create interaction channels to transfer requests

157Moo-Mena F., Curi-Quintal F., Garcilazo-Ortiz J., Basto-Díaz L. and Koh-Dzul R..
A DISTRIBUTED SELF-HEALING ARCHITECTURE SUPPORTING WS-BASED APPLICATIONS.
DOI: 10.5220/0003349801570160
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WEBIST-2011), pages 157-160
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Distributed Self-healing Architecture.

and replies. Two roles are defined for WS, the
consumer (WS requester) and the provider (WS
provider).

The most important goal is to have an efficient
communication between elements. The Self-healing
principles implemented in this architecture ensure
successful operations.

Self-healing components has been defined in the
architecture, where the Self-healing functionality was
implemented. These components are bonded to each
WS and start its operation when the WS consumer
invokes a function of WS provider.

The WS consumer is responsible for monitoring
and evaluating the performance of their providers,
and if it detects degradations it must choose another
provider.

The architecture components are (See Figure 1):

� Repository Module, this component registers all
WS in the WSTA (Web Service Table Access),
which represents the composition of the architec-
ture at any given time.

� WS component, this is a WS with defined func-
tionality. Within the Digital Library application,
each WS component is responsible for managing
content of a knowledge area.

In the improved architecture, each WS component has
a Self-healing Core composed by: Monitoring Mod-
ule, Diagnosis Module and Recovery Module.

These modules are described below in the order
they appear during a transaction between a consumer
and its provider.

2.2 Repository Module

This component is responsible for maintaining the in-
formation of all active WS in the architecture in a ta-
ble called WSTA (Web Service Table Access).

When a WS joins to the architecture, the first ac-
tion that it performs is to register his information in

Figure 2: Web Services Interaction Scenario.

the WSTA and calculate a time delay between it and
the Repository Module. To calculate the difference of
time, we apply an algorithm based on Cristian’s work
(Cristian, 1989)

When a WS needs to work with another, it starts
a transaction, asks to the repository for a provider
which has a particular keyword; the Repository search
in the WSTA and returns the address of an active WS
provider to interact.

If there are only inactive providers, the Reposi-
tory selects and actives one. Now the WS consumer
can contact the provider to make the requests that are
required.

2.3 Monitoring Process

The monitoring stage involves interception of mes-
sages between the consumer and the provider. The
messages are intercepted from the WS consumer us-
ing Handlers, which is a tool provided by Apache
Axis2 WS engine.

Each time that a message is sent or received in a
WS, the Monitoring Module records timestamps and
calculates the QoS time parameters, which are used
for the diagnosis phase. The set of timestamps are
four:

� T1: When a WS consumer sends a Request Mes-
sage.

� T2: When the WS provider receives the Request
Message.

� T3: When the WS provider sends a Response
Message.

� T4: When the WS consumer receives the Re-
sponse Message.

When the transaction commits, the timestamps are
used to calculate the QoS time parameters:

� QoS1: T3 - T2: Computation time

� QoS2: T2 - T1: Requesting time.

� QoS3: T4 - T3: Responding time.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

158



Figure 3: Diagnosis Process.

� QoS4: (T4 - T1) - QoS1: Communication time.

The value of the parameters are stored in the PaRe
(Parameter Repository) database for further analysis.
An interaction scenario is showed in Figure 2.

If the provider does not receive a response mes-
sage after sending a request, the Monitoring Mod-
ule determines an unsuccessful transaction and indi-
cates that its provider is not available, therefore a re-
placement for the provider is required and the former
provider is set offline as recovery strategy.

After a certain number of transactions, the Diag-
nosis Module is executed.

2.4 Diagnosis Process

The diagnosis is based on the analysis of QoS param-
eters using a statistical (Moo-Mena et al., 2009) and
ontological model. The statistical model is based on
the box-plot method, which is a technique used to an-
alyze a data set (Mendenhall et al., 1998). The results
of the statistical module are the inputs for the onto-
logical method. The ontological model establishes a
knowledge base that represents the current QoS level
of communication with a WS provider.

For the QoS parameters analysis, the most recent
set of values for each QoS parameter is taken from
PaRe. The statistical model calculates how many
recorded values are outliers, according to the Right
Outer Fence (ROF) measures established by each WS
provider in the Service Level Parameter (SLP) table.

When the diagnosis process is executing for the
first time, the SLP table contains reference measures
(ROF) for all providers.

The results of the statistical model are passed to
the ontological model at runtime to determine if any
recovery action is required (See Figure 3).

The ontological model defines an ontology where
relations are established between the main QoS prop-

erties (W3C, 2009) and the health of a component.
In this work, Integrity and Availability characteristics
are defined and related to the State of performance
entity to determine the Degradation level.

The reference measures were defined, applying
the box-plot method, with a sample set of parame-
ters obtained during the execution of the architecture
at an early stage. After testing, Normal Performance
(OK) was less than 5% of outliers, with a Moderated
Degradation the results are between 5% and 10%, and
a higher percentage indicates a Severe Degradation.

The application of rules over the knowledge base
allows to infer the performance level of a provider,
comparing the current QoS measures against refer-
ence measures.

For example, the rule that diagnoses a Severe
Degradation checks that the percentage of outliers
values for QoS parameters are greater than the limit
values defined to activate a substitution action. In
this case, the ontological model determines a Severe
Degradation.

If the percent of outlier values is between 3% and
5%, means that the time intervals of interaction are
increasing. Then, the ROF will be redefined using a
recent data set for a each QoS parameter. The new
values are stored in the SLP table for further use. Af-
ter the adaptation, the diagnosis process is executed
again to improve the diagosis result.

If the result is Moderate degradation, the Diagno-
sis Module requests to the Recovery Module a dupli-
cation of its WS provider to improve the performance
level.

If the result is Severe degradation, the Diagnosis
Process requests to the Recovery Module a substitu-
tion of its WS provider to interact with another WS
provider.

2.5 Recovery Strategies

The diagnosis techniques applied in the Self-healing
architecture are based on redundancy. Each WS
provider should have a duplicate which offers the
same functions. The WS are stateless.

Recovery actions are applied at the diagnosis
module’s request and include duplicating or replacing
the current WS provider.

Duplicating a WS provider has the consequence
that the consumer requests are divided between more
than one provider, randomly selecting a provider for
each transaction.

The replacement, however, is oriented to the re-
quests that are sent to a new provider, which has not
been diagnosed as corrupted.

The changes applied by the recovery module are

A DISTRIBUTED SELF-HEALING ARCHITECTURE SUPPORTING WS-BASED APPLICATIONS

159



in the WSTA, changing the information correspond-
ing to the current WS provider. Then, the changes
made in WSTA table are visible to all WS in the ar-
chitecture.

3 RESULTS

The implementation of a testing application that ap-
plies the principles of Self-healing perspective fo-
cuses on creating a distributed Digital Library.

In the Digital Library application each component
has WS Self-healing components to evaluate the in-
teraction with other WS components. The Repository
records the components of the Digital Library under
the name of the area to which they belong as “key-
word” to the WSTA table.

The result of integrating the architecture for this
type of application was helpful. The fact of having
a mechanism to ensure suppliers always they are re-
quired for each knowledge areas, guarantees that the
requests have a greater probability to be attended. For
demonstration purposes a test was performed with a
high number of requests.

Figure 4 shows a graph of QoS values, in which
the number of outliers values is reduced, as a result of
both, the diagnosis process and the recovery action of
duplicating a WS provider.

Figure 4: Graph of QoS values.

4 CONCLUSIONS

This distributed architecture opens the possibility to
create new structures of interaction between WS com-
ponents, where the main goal is to ensure the avail-
ability of the services.

The components distribution reduces the critical
points of failure and takes advantage of the dynamic
operation of each component.

Diagnosis module’s adaptation strategies allow the
architecture to work under variable conditions, deter-
mining a good performance.

The ontological model along with the rules en-
gine added to the diagnosis module have the ability
to make inferences of current performance and de-
termine the recovery actions considering the current
state representation in a knowledge base.

ACKNOWLEDGEMENTS

This project was developed under financial support
from PROMEP and UADY.

REFERENCES

Cristian, F. (1989). A probabilistic approach to distributed
clock synchronization. In 9th International Confer-
ence on Distributed Computing Systems, pages 146–
158.

Ghosh, D., Sharman, R., Rao, H., and Upadhyaya, S.
(2007). Self-healing systems - survey and synthesis.
Decision Support Systems, pages 2164–2185.

Halima, R., K.Drira, and M.Jmaiel (2006). A comparative
study of self-healing architectures in distributed sys-
tems. Technical Report 06568, LAAS.

Kephart, J. O. and M.Chess, D. (2003). The vision of auto-
nomic computing. Computer Magazine, IEEE, pages
41–50.

Mendenhall, W., Beaver, R. J., and Beaver, R. M.
(1998). Introduction to probability and statistics.
Brooks/Cole, USA.

Moo-Mena, F., Garcilazo-Ortiz, J., Basto-Diaz, L., Curi-
Quintal, F., and Alonzo-Canul, F. (2008). Defining
a selfhealing qos based infrastructure for web ser-
vices applications. In IEEE 11th International Con-
ference on Computational Science and Engineering
(CSE 2008), Sao Paulo, Brazil.

Moo-Mena, F., Garcilazo-Ortiz, J., Basto-Diaz, L., Curi-
Quintal, F., and Alonzo-Canul, F. (2009). A diagno-
sis module based on statistic and qos techniques for
self-healing architectures supporting ws based appli-
cations. In IEEE International Conference on Cyber-
Enabled Distributed Computing and Knowledge Dis-
covery (CyberC 2009), Zhangjiajie, China.

W3C (2009). Qos for web services: Requirements
and possible approaches. http://www.w3c.or.kr/kr-
office/TR/2003/ws-qos/.

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

160


