
Framework Managing the Automated Construction and
Runtime Adaptation of Service Mashups

Anna Hristoskova, Bruno Volckaert and Filip De Turck

Department of Information Technology, Ghent University - IBBT
Gaston Crommenlaan 8 bus 201, B-9050 Ghent, Belgium

Abstract. With an increased deployment of new software services, reusing ex-
isting ones as building blocks to create new service mashups offers flexibility to
the developer and accelerates the design process. In this way businesses are able
to create value at reduced development time and cost.
In order to allow for the automation of this emerging engineering methodology
the paper presents a framework for the construction of new applications without
the intervention of the ICT department. This framework offers the needed support
through the use of planning algorithms automatically combining semantically
enriched services into new mashups. The developed algorithms are optimized
with runtime adaptation to changing user-context taking fully into account the
provided quality of service parameters of the available building blocks.
The enrichment of the available business services with semantics, reasoning, and
at-runtime composition are evaluated by means of a framework providing a man-
agement interface for an e-shop application.

1 Introduction

Instead of building self-contained silos, businesses break down their applications in
independent components offering a scoped functionality using open coding and com-
munication standards. The creation of catalogues of reusable components means agile
construction of new applications and faster adaptation to the changing business environ-
ment. These service mashups combine functionality and content from existing sources,
creating greater value than the sum of the individual participating components. Cur-
rently, Web services are the most adopted technologies for constructing mashups. De-
signed to support interoperable machine-to-machine interaction over a network, they
are capable of being accessed via standard protocols such as SOAP over HTTP.

Service-Oriented Architectures [1] offer the advantage of building component-based
systems using Web services. In a dynamic environment where the desired functional-
ity cannot always be predicted, all kinds of custom made compositions can be built
from scratch meeting the users’ requests without the need for continuous interaction be-
tween users and developers. A computer-aided automatic approach is possible through
the adoption of ontologies and the Semantic Web [2] for the enrichment of services

Hristoskova A., Volckaert B. and De Turck F..
Framework Managing the Automated Construction and Runtime Adaptation of Service Mashups.
DOI: 10.5220/0003350300310043
In Proceedings of the International Workshop on Semantic Interoperability (IWSI-2011), pages 31-43
ISBN: 978-989-8425-43-0
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

with machine-processable semantics. Specifications such as OWL-S [3] provide a se-
mantic description for Web services defininginputs,outputs,preconditions andeffects
(IOPEs), and nonfunctional properties. Thanks to these descriptions a computer system
would be able to automatically combine services together executing a more sophisti-
cated task provided for the implementation of reasoning andmatching algorithms.

The proposed framework in this paper offers an environment for the automatic con-
struction and execution of service mashups departing from available functionality found
on the Web and within enterprises. It disposes of a user interface for the management
of semantically annotated services and the definition of users’ requests (e.g. application
manager, end-user). Planning algorithms are designed for the construction of service
mashups solving these requests using the available resources. Novelty is the framework
enhancement with at-runtime adaptability anticipating changes (e.g. availability of new
services, resource and service failures) and resolving decision points in the composition
through the use of control constructs and user-defined business logic rules.

The remainder of the paper presents in Section 2 the architecture of the mashup cre-
ation and execution framework whose components are detailed in Section 3. Following
is an evaluation of an e-shop management application in Section 4. Section 5 gives a
discussion of the current research in this field. Finally, the main conclusions are stressed
in Section 6 and new possibilities for enhancing the framework are explored.

2 Framework Architecture and Process Flow

Figure 1 presents the mashup creation and execution architecture detailed in [4]. The
Configuration Frontend provides the application manager with a user interface for the
definition of requests (goals and business logic rules) and the management of the avail-
able services and their quality attributes. All requests are handled by theCoordinator
which is based on a Microkernel pattern. It manages the service repository, the gener-
ation of goals from users’ requests, the necessary configurations before processing of
the requests, and the communication of the mashup creation and execution state back
to the Frontend.

��������	
��������

��

�	��
��

��
��
������������
�

����������
	���
�

�
��
�
����
���
�

��
��
���������

�
����
��	��
�

�
����
��	�	�
��
��
�
� ��
	�

�������	
��

Fig. 1.Main building blocks of the mashup creation and execution framework.

The mashup composition and execution process is presented in Figure 2. Starting
from a semantic definition of a user-defined goal, aservice mashupis constructed from
the available services by theWorkflow Reasoner. The inner planning algorithms and
semantic matching techniques of this module will be furtherdetailed in Section 3. Next
the Service Mapper converts the constructed mashup into an executable processby

32

���������

	
���

�

� ����������	
��

��������	�
���

�
��	���

����

������

�
�����	

�
����
�����
�

� �����	�
��

����
���	��
����	

���������

��
�����
�

�
��

�
�
�����	
��

��
����	���������

��
�����
�

�
����
�

�

� ������

��

������
����

����	
��

�����

���
�

	
��
���������

� ��	��
�
	�
��

�
��	��

�
��
��

Fig. 2. Mashup creation, execution and runtime adaptation processfor a user’s request.

selecting the specificservice instancesfor each building block of the mashup [5] sat-
isfying the predefined quality of service constraints and requirements (execution time,
cost) and defining the necessary bindings between them. The process is executed by
the Execution Engine handling the invocation workflow of the service instances by
forwarding the results to the right components. TheExecution Environment acts as a
storage for users’ requests, business logic rules (desiredservice instances), inputs, re-
sults, execution state of the service mashup. The Reasoner and Mapper utilize this data
(e.g. intermediary results) to optimize the reasoning and mapping process of the service
mashup at design and runtime. The reasoning process is divided into two steps. First
through backward chaining a generic composition of services is constructed specif-
ically resolving user-defined goals. A forward chaining procedure further tunes this
composition utilizing the stored data in the Environment.

Fig. 3. Configuration Frontend, showing a composite mashup graph.

A Request Portalprovides a management interface keeping track of the whole pro-
cess for a single user’s request. It visualizes the service mashup, the utilized resources
for execution, and returns intermediary results via the Frontend. The user interacts with

33

the system through the interface in Figure 3 where he can tunethe constructed mashup
and change the selected resources to his specific preferences.

3 Details of the Reasoning and Composition Process

This section focuses on the novel contributions of the framework starting with a discus-
sion on the semantic grouping of equivalent service instances. Following is an overview
of the matching possibilities between these building blocks during the composition
process. Furthermore, the actual composition process is detailed together with the at-
runtime reconfiguration and adaptation methods.

3.1 Semantic Description of Service Instances

A distinction is made between two types of building blocks used by the presented frame-
work: concrete service instancesandabstract semantic types.

Concrete services instancesare the actual services executed on specific resources.
Eachservice instanceis provided with several QoS (Quality of Service) parameters de-
scribing its properties. Examples include the average execution time, economic cost,
and availability. These QoS parameters are defined beforehand or their values are dy-
namically adjusted based on previous invocations. Thus, for example, the average ex-
ecution time is updated after the invocation of the service.The QoS of a specific ser-
vice instance consists of a QoS Type, QoS Value, and QoS Comparator. A QoS Type
can amongst others be the economic cost for executing a service, the execution time.
Each QoS Type has a QoS Value and a specific QoS Comparator for comparing the
actual QoS Values. This offers an application manager with the possibility to extend the
framework with new QoS parameters and define customary comparison techniques.

In the presented framework, theseservice instancesare enriched with semantic an-
notations using OWL-S. As several semantically equivalentservice instances(equiv-
alent IOPEs) exist, their semantic interfaces are grouped into a singlesemantic type,
thus reducing the search space of available instances. For example, multiple payment
services (bank transfer, Visa, PayPal) are grouped into onesemantic payment type.

The OWLS-MX Matchmaker [6] provides a partial solution to this problem by com-
paring service inputs and outputs and assigning a score based on the semantic distance
between these concepts. As a truly equivalent match betweenthese service interfaces
cannot be expected, the services are grouped in a hierarchical fashion. Although exhaus-
tive enough, the OWLS-MX solution lacks the ability to compare service preconditions
and effects. Therefore, we extended this approach in order that during the composition
of the service mashup the Workflow Reasoner is able to search for a specific group
of services producing required outputs and more importantly effects (detailed in Sec-
tion 3.3). Afterwards the Service Mapper will select a correspondingservice instance
offering required QoS.

3.2 Semantic Match between Semantic Types

Semantic typesare compared and linked by the Workflow Reasoner in case of matching
input-output and/or precondition-effect relations. Depending on the quality of the match

34

between their interfaces, control constructs are requiredfor the construction and more
importantly execution of more complex service mashups. This section gives special
attention to the use of ’IfThenElse’ and ’ForEach’ control constructs of OWL-S.

Parametric Match. As OWL-S is used for describing Web services, the service inputs
and outputs are expressed by OWL concepts. We define an input-output match between
services when an input and an output represent similar semantic concepts and as a result
the output of one of the services is used as input for the other. As demonstrated in Figure
4(a), the output ’Body Temperature’ is interpreted as a kindof ’Temperature’, matching
the measuring service to the service determining the patient’s fever.

�����

�����	
��	�

������

�
��������	
��	�

����	

��
��	�������	
��	��

(a) Input-Output match

��������	
��

��

������������
��

��
���������

����������������������
�

���
��

����������������������
���

(b) Precondition-Effect match

Fig. 4. Semantic match between two service interfaces.

We define different qualities of semantic matches between service inputs and out-
puts, some of which require additional control constructs:

– Exact.The service output exactly matches the semantic concept of the service in-
put.
S:WebShopCatalogue(O:Product) -> S:Delivery(I:Product)

– Subsume.The output concept inherits from the input. This is a valid but lower
quality match.
S:WebShopCatalogue(O:PhysicalProduct) -> S:Delivery(I:Product)

– Relaxed.The service input is more specific than the output concept in which case
this is not a valid match. It is nevertheless incorporated inthe composition process
as a generic output can turn out to be a more specific individual after service execu-
tion. For instance, a shopping basket may consist of digitaland/or physical products
in which case some products need to be downloaded and others delivered. This is
resolved through the use of a repository describing productindividuals and their
inheritance graph. In this case, the Workflow Reasoner adds an ’IfThenElse’ con-
struct between the matching services with an ’If’-condition on the specific product
type output.
S:WebShopCatalogue(O:Product) -> S:Delivery(I:PhysicalProduct)

– List. The service output is a list of concepts matching the single input concept. For
example, a shopping basket used as input for a service checking the stock status
of each individual product. Here, a ’ForEach’ construct is added iterating over the
list of products. The specific match for each concept from thelist can be all of the
above (exact, subsume, relaxed).
S:WebShopCatalogue(O:ProductList) -> S:Delivery(I:PhysicalProduct)

35

Condition Match. For the definition of the service preconditions and effects we use
SWRL (Semantic Web Rule Language) [7] expressions and built-ins (SWRLB) such
as comparisons. An SWRL expression consists of a property and one or more ar-
guments (semantic OWL concepts). Examples include anOWLClass with one argu-
ment1, anObjectProperty with two arguments2, a DataProperty with one argu-
ment and an RDF type3, a SWRLB primitive with one or more arguments4. We define a
precondition-effect match when the result of the executionof a service corresponds to a
condition required for the execution of another service. The effect in Figure 4(b) of the
product payment service realizes the payment condition forthe delivery of the product
to the customer.

Similar to the input-output match, different qualities of semantic matches between
service preconditions and effects are defined together withthe necessary control con-
structs:

– Exact. The service effect exactly matches the SWRL expression representing the
service precondition. A matching SWRL expression consistsof anequivalentprop-
erty andexactlymatching semantic concepts (arguments of the property).
S:CheckStock(E:Product InStock) -> S:Delivery(P:Product InStock)

– Subsume.The effect property still matches the precondition property and between
the semantic concepts asubsumematch is defined. For an ObjectProperty only the
first argument can be a subtype, however if the property is defined as an inverse
property, the second is also a subtype as OWL concepts inherit the properties of the
super class.
S:CheckStock(E:PhysicalProduct InStock) -> S:Delivery(P:Product InStock)

– Relaxed.This is similar to thesubsumematch, however one still needs to check if
the concepts can be subclassed after execution as is the casein the relaxedinput-
output match.
S:CheckStock(E:Product InStock) -> S:Delivery(P:PhysicalProduct InStock)

– Conditional. It should be noted that a service effect can be conditional; meaning
that depending on the service output a different effect is possible. For example a
service checking the stock of a product can have as effect that the product is in stock
if the stock status is true or not in stockif false in which case an ordering service
is added to the composition before the actual delivery of theproduct. In this case
an ’IfThenElse’ construct is added with the conditional output on the effect as ’If’
statement. The following is an example of the conditional effect of the CheckStock
service where the product is considered in stock if the stockstatus is true:
<process:hasResult>

<process:inCondition>
<expr:SWRL-Condition rdf:ID="ProductInStockCondition">

swrlb:equal(eshop:stockStatus,rdf:boolean(true))

</expr:SWRL-Condition>
</process:inCondition>
<process:hasEffect>

<expr:SWRL-Expression rdf:ID="ProductInStockEffect">

1 InStock(Product)
2 paidFor(Customer, Product)
3 hasName(Customer, String)
4 equal(StockStatus,true)

36

eshop:ProductInStock(eshop:PhysicalProduct)

</expr:SWRL-Expression>
</process:hasEffect>

</process:hasResult>

The matching strategies are used by the planning algorithmsof the Workflow Rea-
soner during the construction of the service mashup where services are selected provid-
ing outputs and/or effects matching the required (service)inputs and/or preconditions.

3.3 Workflow Reasoner based on HTN Planning

A Hierarchical Task Network (HTN) plan [8], [9] is a partially ordered graph of service
nodes. Each service defines a certain state (i.e. the outputsand effects of the service
execution) and the description of the overall state is distributed in the graph. Services
of unordered nodes (in parallel paths) are executed simultaneously, through the use of
the ’Split+Join’ construct of OWL-S.

The Workflow Reasoner in this paper adopts the HTN planning methods by incor-
porating the semantic grouping and matching strategies (including the use of control
constructs) mentioned above. It is enhanced with runtime mashup adaptation using col-
lected data in the Execution Environment (Section 3.4).

Planning proceeds as follows: the user’s request goes through anexpansionphase
followed by the actualconstructionthrough semantic matching of services. The user-
defined requests, consisting of initial and goal state (RQ=IS+GS), are transformed into
provided inputs and valid preconditions (IS=I+P) and required outputs and effects
(GS=O+E) resulting in an abstract semantic service description (i.e. IOPEs). During
the expansion phase, this abstract serviceis split up in the outputs and effects (O+E)
that need to be resolved and the inputs and preconditions (I+P) that can be utilized for
this purpose. On one hand, an availablesemantic service (mashup)can be matched to
the required interface immediately ending the compositionstage. On the other hand,
if no complete solution already exists, theconstruction phasegenerates a plan of ser-
vices using backward chaining strategy transforming the goal state into the initial state
(GS->IS). The selected matching services are queued and resolved ina breadth-first
fashion. The inputs and preconditions of the service on top of the queue are linked to
matching service outputs and effects (O+E->I+P) as described in Section 3.2. If neces-
sary control constructs are added depending on the quality of the match. It is important
to note that in case no matching services are found, an exhaustive composition is pre-
sented and the incomplete inputs/preconditions are marked. These are provided by the
application manager and/or new services are deployed filling in the missing gaps.

3.4 Runtime Adaptation

An important aspect of the presented framework is the runtime behavior anticipating
changes (e.g. availability of new services, resource and service failures) and adapting
each request to user-specific business logic rules. Figure 5presents a feedback principle
where services are executed using inputs and conditions from the Execution Environ-
ment and new service effects and outputs are produced and added to this Environment.
This results in a dynamic system where new knowledge is inferred at runtime.

37

��������	
�	����	
�	�

����	���
�����

�����

�����
�����

����
�����

��	�����	�

��	�����	�

�	����

�������

�������

�������

Fig. 5. Inference through matching of service preconditions and inputs and returning service ef-
fects and outputs.

Business Logic Rules.These rules, added offline or at runtime to the Execution Envi-
ronment, are used by the Workflow Reasoner and Service Mapperto adapt the generic
mashup from Section 3.3 to the users’ needs at design and runtime. For example, there
are several possibilities for product delivery services which we define as a decision
point in the execution: a simple ’Delivery’ service, ’DeliveryWithPaymentOnDelivery’
service, ’DeliveryToProxy’ service. At this point, the user has to select one of the pos-
sibilities. A business logic rule could be stating that the default service is the ’Delivery-
WithPaymentOnDelivery’.

Iterative Pruning. Several mashup creation and execution iterations can be performed
before the final execution, in case the constructed mashup graph is too complex (e.g.
having too many branches, conditional paths, decision points). Our framework executes
parts of the mashup, while trying to preserve the current state, by evaluating only the
stateless services. The Execution Engine stores any intermediary results in the Execu-
tion Environment which are used to prune the mashup graph by resolving the decision
points or conditional paths. The Workflow Reasoner collectsthe needed data in order to
reconfigure the service mashup and remove parts of the branching. For example, if the
stock of the selected product is checked beforehand, one candecide whether a product
ordering service is needed or it can be removed from the constructed mashup.

Failure Recovery. The current state is stored in a similar fashion in the Execution En-
vironment during the mashup execution. If a service fails, it is used by the Workflow
Reasoner and Service Mapper to track the failed services andthe current state of the
system. During recovery the Service Mapper will select an alternative service instance
equivalent to the failed one (same semantic group) and proceed with execution. If no
alternative instance exists, the Workflow Reasoner will construct an alternative service
composition replacing the failed point keeping in mind the current state of the exe-
cuted mashup. In case that also fails the user will be notifiedof the specific component
problem.

4 E-Shop Workflow Design

The presented framework is evaluated by means of a management interface for the
automatic construction and runtime adaptation of e-shop applications. An e-shop ontol-
ogy is created defining the concepts used for the annotation of the e-shop services in
OWL-S.

38

4.1 Design of an E-Shop Application

A sale consists of a customer buying one or more products. This means that:

Trigger. A potential customer browses to the product catalogue of thee-shop.
Initial State. The e-shop and customer info is known. This includes accountinforma-

tion necessary to make payments to the e-shop.
Goal Description. The composition is successfully executed, when the following ef-

fects are reached:
1. The customer ordered the product(s).
2. The customer paid for the product(s).
3. The product(s) was(were) delivered to the customer.

– Digital products, such as music and software, are downloaded.
– Physical products are transported to the customer’s delivery address or to

a proxy point of the customer’s choice.

4.2 Construction of the E-Shop Workflow

For each required input and condition of an e-shop service, the Workflow Reasoner
matches a corresponding service output and effect constructing an e-shop workflow. It
keeps track of the conditional paths so that during the construction of the executable
process the Service Mapper will add, if required, control constructs. Figure 6 presents
the workflow of the different e-shop services from selectionto payment and delivery of
the products. The effect of the selection is implied by the output of the ’WebShopCat-
alogue’, which represents a list of selected products. If the customer fails to select one
or more products, the execution of the composition is prematurely ended, otherwise a
’ForEach’ construct iterates over each product. A decision(’IfThenElse’ construct) is
made whether the product is in stock or should be ordered followed by ’Payment’ and
’Delivery’. A Delivery methodis added having as result one or more payment and de-
livery options (’Choice’ construct) through which, according to the configurable rules,
the purchase is made. This result is not known at compositiontime but can be defined
through business logic rules by the user, being a customer oran e-shop manager. If the
result is a specific delivery method defined by the e-shop manager, the purchase is made
in that way. If it is more than one, the customer chooses amongst all the possibilities
and the execution path depends on his decision. The result ofthis interactive choice is
not always known at composition time: the customer makes a choice after being pre-
sented with the different execution paths. Consequently, the e-shop workflow exposes
a decision point where the correct branch is chosen at runtime and followed during
execution.

Service Grouping and Composition Performance.For testing purposes, the e-shop
mashup in Figure 6 was designed, consisting of 6 levels, breadth of maximum 3 ser-
vices, and 10 different available service nodes multipliedby 5 semantically equivalent
services per node. The composition time of the Workflow Reasoner was evaluated for
growing number of equivalent services with or without service grouping. The results
are presented in Table 1 including the time needed to load (and group) the services in

39

���������	��

����
��

�
���������

��������

���������
�����

������������

����

����
�

���
����

��������

������
�������

�������

�����

����
�

���	�

���������

������

 !�"

�����
��

���������

 !�"

!����
��������

������

�����

���
��

�������#

�
�

���

�
�

���

�� ��������

�
�#����

�
�

�����������

�������

���

��$%�"�

�#�������#�#

�������#���

Fig. 6.Constructed e-shop workflow with the use of control constructs.

the repository. During the loading of the first service description, several other ontolo-
gies need to be loaded like the OWL-S Profile, Process, and Grounding ontologies, the
specific use case E-Shop ontology, the SWRL rules ontologies. Once this is done, the
only lost time is during the semantic matching of the serviceinterfaces in order to group
the equivalent services. Therefore while the difference between service loading with or
without grouping grows up to a second, the composition time without grouping grows
exponentially as all available services are considered forthe workflow construction.
With grouping only the groups of equivalent services are considered.

Table 1.Comparison of the e-shop composition time with or without service grouping.

Service loading (ms) Composition time (ms)
Without Grouping With Grouping Without Grouping With Grouping

Services x σ x σ x σ x σ

1 739 15 818 36 9064 49 8921 283
2 1122 89 1470 80 25238 514 9152 185
3 1452 49 2253 61 49563 624 9341 128
4 1875 118 3077 74 94362 1432 9656 249
5 2127 57 3928 31 151691 3271 10269 105

4.3 Runtime Adaptation of the E-Shop Workflow.

This section details the runtime behaviour of the frameworkas described in Section 3.4
for the e-shop workflow.

Business Logic Rules.In order to execute the e-shop workflow, the e-shop manager
needs to define business logic rules expressing which ’Payment’ and ’Delivery’ method
should be chosen or the customer should choose from the offered possibilities. On one
hand the design time configuration by the e-shop manager defines the workflow perma-
nently. On the other hand the choice made by the customer during invocation requires
at-runtime adaptation. Once this choice is made, the reasoning process automatically
configures the workflow through the removal of the decision point and the selection
of only one ’Payment’ and ’Delivery’ path. For example if onedefines ’Payment fol-
lowed by Delivery’ all the other options such as ’Payment on Delivery’ and ’Delivery
to Proxy’ are discarded from the workflow.

40

Iterative Pruning. The e-shop workflow is further pruned through the execution of
the effectless services. Depending on their output, further decisions are made, reducing
the execution paths. For example, by executing the ’WebShopCatalogue’ service, the
Workflow Reasoner decides whether there are any selected products and if they are dig-
ital or physical. Then, the ’CheckStock’ service verifies whether the physical products
if any are in stock. This way the ’Download’ or ’Delivery’ and/or ’Order’ services are
automatically removed.

Failure Recovery. During the e-shop execution state information is recorded in case of
a resource or service failure. For instance simultaneouslyto the execution of the prod-
uct ’Payment’, the ’Order’ service fails. The Service Mapper will select anequivalent
orderingservice instancereplacing the failed one. Afterwards the Execution Engine
will avoid a repeated ’Payment’ execution. On the other hand, if no equivalent ordering
service instance is found, the Workflow Reasoner will reconfigure the original mashup
constructing an alternative solution for the product ordering, treating the ’Payment’ re-
quirements as already met and thus as part of the initial state.

5 Related Work

Today a number of popular workflow standards and implementations [10], such as
BPMN, BPEL4WS, XLANG, WSFL, still exhibit several shortcomings: no automatic
or dynamic deployment support, limited reliability guarantees.

In [11] a predefined OWL-S workflow is first translated in SHOP2syntax and then
HTN planning is executed. SHOP2 does not support an output concept and OWL-S’s
’Split’ and ’Split+Join’ control constructs so the system does not handle concurrency.
OWLS-Xplan [12] constructs a service sequence, as opposed to a mashup graph, us-
ing an ontological definition of the initial and the requested goal state. However, be-
fore planning, the OWL-S 1.1 service descriptions are first converted to corresponding
PDDL 2.1 (Planning Domain Definition Language) descriptions which could raise per-
formance issues. The PDDL planner is in turn a linear STRIPS planner extended with
HTN planning.

Several research projects some of which within the EuropeanUnion Sixth and Sev-
enth Framework Programme aim at creating platforms supporting the creation, man-
agement and execution of service mashups. Reservoir [13] combines virtualization and
grid computing creating distributed service-oriented infrastructures. Platforms like IN-
FRAWEBS [14] and Amigo [15] propose approaches, in which theprocess of find-
ing appropriate services is guided by algorithms for decomposition of user goals into
sub-goals and discovering the existing services able to satisfy these sub-goals without
further planning. MashWeb [16] and SOA4All [17] focus on thecreation of data flows
controlling the output-input flows and workflows controlling the execution sequence of
the services.

The presented framework in this article constructs servicemashups starting from
initial and goal state through matching of service effects to required preconditions. Plan-
ning is immediately performed in OWL-S, adopting the richness of the OWL-S control
constructs such as ’Split+Join’, ’IfThenElse’, ’ForEach’, ’Choice’. The framework is

41

designed in a way that different Workflow Reasoners, QoS-aware Service Mappers and
Execution Engines are easily plugged in just by extending the respective interfaces. Late
binding is used to select the services offering the desired QoS for execution. Several
(partial) iterations of mashup configuration and executionare possible as intermediary
results are used as feedback to further tune the service mashup at design and runtime.
The use of business logic rules defined by the user enables further tuning and personal-
ization of his requests.

6 Conclusions and Future Work

This paper focuses on the design of a framework for the automated management of
new applications through dynamic composition and execution of the building blocks
of service mashups. Based on semantic descriptions of Web services, reasoning algo-
rithms are developed for automatically composing new service mashups realizing de-
fined goals. These algorithms define a planning system using control constructs based
on the quality of the match between the semantic services. QoS constraints and re-
quirements are satisfied through late binding to specific service instances. The system
responds dynamically at runtime to changing context such asnew business logic, new
services, failure or overload of network elements or services. An e-shop case is im-
plemented evaluating the proposed framework and illustrating the workflow execution
optimizations.

In the future the planning and execution framework will be extended with a dis-
tributed deployment component which will execute the different service instances mak-
ing optimal use of the available resources. Furthermore, techniques will be studied to
take into account trends in user and resource behavior, in order to optimally design
context-aware service mashups.

Acknowledgements

This work is partly funded by WTEPlus, an IBBT GBO project on the definition of an
open architecture that allows the creation, sharing and composition of service mashups,
seamlessly combining functionality found on the Web, the enterprise or within the
’walled garden’ of the telecom operator.

References

1. Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing:
State of the Art and Research Challenges, IEEE Computer Society, vol. 40(11), pp. 38–45,
(2007).

2. Berners-Lee, L. , Hendler, J. , Lassila, O. : The Semantic Web: A New Form Of Web Content
That Is Meaningful To Computers Will Unleash A Revolution OfNew Possibilities, Journal
of the Scientific American, vol. 284(5), pp. 34–43, (2001).

3. OWL-S, http://www.w3.org/Submission/OWL-S/ [Online].

42

4. Hristoskova, A., Volckaert, B., De Turck, F., Dhoedt, B.:Design of a Framework for Au-
tomated Service Mashup Creation and Execution Based on Semantic Reasoning, 2010 The
Fifth International Conference on Internet and Web Applications and Services (ICIW 2010),
pp. 149–154.

5. Avellino, G., Boniface, M., Cantalupo, B., Ferris, J., Matskanis, N., Mitchell, B., Surridge,
M.: A Dynamic Orchestration Model for Future Internet Applications, ServiceWave 2008,
LNCS, vol. 5377, pp. 266–274, Springer, Heidelberg (2008).

6. Klusch, M., Fries, B., Sycara, K.: Automated Semantic WebService Discovery with OWLS-
MX, In Proceedings of 5th International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS 2006.

7. SWRL, http://www.w3.org/Submission/SWRL/ [Online].
8. Nau, D., Au, T., Ilghami, O., Kuter, U.,. Murdock, J, Wu, D., Yaman, F.: SHOP2: An HTN

planning system, Journal of artificial intelligence research, vol. 20(1), pp. 379–404, (2003).
9. Hristoskova, A., Volckaert, B., De Turck, F.: Dynamic Composition of Semantically An-

notated Web Services through QoS-Aware HTN Planning Algorithms, Proceedings of the
Fourth International Conference on Internet and Web Applications and Services (ICIW
2009), pp. 377–382.

10. Van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. M.: Web service composition lan-
guages: Old wine in new bottles, Proceeding of the 29th EUROMICRO Conference: New
Waves in System Architecture, pp. 298–305, (2003).

11. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition
using SHOP2, Journal of Web Semantics, vol. 1(4), pp. 377–396, (2004).

12. Klusch, M., Gerber, A., Schmidt, M.: Semantic Web Service Composition Planning with
OWLS-Xplan, Proceedings of the First International AAAI Fall Symposium on Agents and
the Semantic Web, (2005).

13. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I., Montero, R.,
Wolfsthal, Y., Elmroth, E., Caceres, J., others: The RESERVOIR Model And Architecture
for Open Federated Cloud Computing, IBM Systems Journal, vol. 53(4), (2009).

14. Agre, G., Marinova, Z.: An INFRAWEBS Approach to DynamicComposition of Semantic
Web Services, Cybernetics and Information Technologies, vol. 7(1), pp. 45–61, (2007).

15. Valle, M., Ramparany, F., Vercouter, L.: Dynamic service composition in ambient intelli-
gence environments: a multi-agent approach, Proceeding ofthe First European Young Re-
searcher Workshop on Service-Oriented Computing, (2005).

16. Pfeffer, H.: A Underlay System for Enhancing Dynamicitywithin Web Mashups, Interna-
tional Journal On Advances in Software, vol. 2(1), pp. 63-75, (2009).

17. Lecue, F., Delteil, A., Leger, A.: Towards a Semantic State Transition System for Automated
Generation of Data Flow in Web Service Composition, In International Journal of Semantic
Computing (IJSC), vol. 3(4), pp. 499–526, (2009).

43

