Framework Managing the Automated Construction and
Runtime Adaptation of Service Mashups

Anna Hristoskova, Bruno Volckaert and Filip De Turck

Department of Information Technology, Ghent University - IBBT
Gaston Crommenlaan 8 bus 201, B-9050 Ghent, Belgium

Abstract. With an increased deployment of new software services, reusing ex-
isting ones as building blocks to create new service mashups offers flexibility to
the developer and accelerates the design process. In this way businesses are able
to create value at reduced development time and cost.

In order to allow for the automation of this emerging engineering methodology
the paper presents a framework for the construction of new applications without
the intervention of the ICT department. This framework offers the needed support
through the use of planning algorithms automatically combining semantically
enriched services into new mashups. The developed algorithms are optimized
with runtime adaptation to changing user-context taking fully into account the
provided quality of service parameters of the available building blocks.

The enrichment of the available business services with semantics, reasoning, and
at-runtime composition are evaluated by means of a framework providing a man-
agement interface for an e-shop application.

1 Introduction

Instead of building self-contained silos, businesses break down their applications in
independent components offering a scoped functionality using open coding and com-
munication standards. The creation of catalogues of reusable components means agile
construction of new applications and faster adaptation to the changing business environ-
ment. These service mashups combine functionality and content from existing sources,
creating greater value than the sum of the individual participating components. Cur-
rently, Web services are the most adopted technologies for constructing mashups. De-
signed to support interoperable machine-to-machine interaction over a network, they
are capable of being accessed via standard protocols such as SOAP over HTTP.
Service-Oriented Architectures [1] offer the advantage of building component-based
systems using Web services. In a dynamic environment where the desired functional-
ity cannot always be predicted, all kinds of custom made compositions can be built
from scratch meeting the users’ requests without the need for continuous interaction be-
tween users and developers. A computer-aided automatic approach is possible through
the adoption of ontologies and the Semantic Web [2] for the enrichment of services

Hristoskova A., Volckaert B. and De Turck F.

Framework Managing the Automated Construction and Runtime Adaptation of Service Mashups.
DOI: 10.5220/0003350300310043

In Proceedings of the International Workshop on Semantic Interoperability (IWSI-2011), pages 31-43
ISBN: 978-989-8425-43-0

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

32

with machine-processable semantics. Specifications ssIQWAL-S [3] provide a se-
mantic description for Web services definimguts,outputs,preconditions anéffects
(IOPEs), and nonfunctional properties. Thanks to theserigi®ns a computer system
would be able to automatically combine services togetheceting a more sophisti-
cated task provided for the implementation of reasoningraatthing algorithms.

The proposed framework in this paper offers an environmaarttie automatic con-
struction and execution of service mashups departing fr@itedle functionality found
on the Web and within enterprises. It disposes of a userfagerfor the management
of semantically annotated services and the definition afdisequests (e.g. application
manager, end-user). Planning algorithms are designedhéocanstruction of service
mashups solving these requests using the available resoiNovelty is the framework
enhancement with at-runtime adaptability anticipatingraies (e.g. availability of new
services, resource and service failures) and resolvinigidegoints in the composition
through the use of control constructs and user-defined éssilogic rules.

The remainder of the paper presents in Section 2 the artligsaf the mashup cre-
ation and execution framework whose components are defailgection 3. Following
is an evaluation of an e-shop management application inddedt Section 5 gives a
discussion of the current research in this field. Finallg,rtrain conclusions are stressed
in Section 6 and new possibilities for enhancing the franrevaoe explored.

2 Framework Architecture and Process Flow

Figure 1 presents the mashup creation and execution artthitedetailed in [4]. The
Configuration Frontend provides the application manager with a user interfacefer t
definition of requests (goals and business logic rules) aadianagement of the avail-
able services and their quality attributes. All requeststandled by th€oordinator
which is based on a Microkernel pattern. It manages the aerepository, the gener-
ation of goals from users’ requests, the necessary confignsabefore processing of
the requests, and the communication of the mashup creatiexecution state back
to the Frontend.

——

| Configuration Frontend |
T

Backend |
| Request Portal $] |(— - ~| Request Scheduler @ == @ - —)| Service Manager $]
W=y " 1 Coordinator
1 Workflow Reasoner &) N S
: 3
I Service Mapper @ -3 Execution Environment
|
Execution Engine][~ 7

Fig. 1. Main building blocks of the mashup creation and executiamfgwork.

The mashup composition and execution process is presentéidure 2. Starting
from a semantic definition of a user-defined goadeavice mashujs constructed from
the available services by thorkflow Reasoner. The inner planning algorithms and
semantic matching techniques of this module will be furthetailed in Section 3. Next
the Service Mapper converts the constructed mashup into an executable prbgess

33

Semantic
goal
Business ¥
llifnlgég Workflow
Reasoner
N - composition of
Request Portal Ex.ecutlon semantic types
- management of |« Environment ¥
a single request SSEIEER 6l]
gle req mashup state Service Mapper
- mapping to
concrete service
instances
¥
Execution
Engine
- execution of
service instances

Mashup
execution

Fig. 2. Mashup creation, execution and runtime adaptation prdoessuser’s request.

selecting the specifiservice instance®r each building block of the mashup [5] sat-
isfying the predefined quality of service constraints arglineements (execution time,
cost) and defining the necessary bindings between them. ioegs is executed by
the Execution Engine handling the invocation workflow of the service instances by
forwarding the results to the right components. Bxecution Environment acts as a
storage for users’ requests, business logic rules (desérdce instances), inputs, re-
sults, execution state of the service mashup. The Reasndéfapper utilize this data
(e.g. intermediary results) to optimize the reasoning aadpmg process of the service
mashup at design and runtime. The reasoning process iedivido two steps. First
through backward chaining a generic composition of sesviseconstructed specif-
ically resolving user-defined goals. A forward chaining qedure further tunes this
composition utilizing the stored data in the Environment.

5] hepiflocainest8084rontenlfrontendapplet sp

Submit changes
(Current instance: hitp
Input(s)

Ihtip:7localhostieshopEShopOnto

eshop/Delivery.owisDelvenService =

Start execution
owiProdudtList hitpiocalhoste

hopOniology:paidBy 2user): (?physical EShopOntology:pal Repestsorvice mmoping
26umdurt st tine EShonOntaiooy PraducinStock) (2onusical ftine B 7
‘ 3 Stage: Service Mapping Graph

Fig. 3. Configuration Frontend, showing a composite mashup graph.

A Request Portalprovides a management interface keeping track of the whole p
cess for a single user’s request. It visualizes the servashom, the utilized resources
for execution, and returns intermediary results via thenkend. The user interacts with

34

the system through the interface in Figure 3 where he cantheneonstructed mashup
and change the selected resources to his specific preference

3 Details of the Reasoning and Composition Process

This section focuses on the novel contributions of the fraork starting with a discus-
sion on the semantic grouping of equivalent service ingartfeollowing is an overview
of the matching possibilities between these building béodkiring the composition
process. Furthermore, the actual composition processédletttogether with the at-
runtime reconfiguration and adaptation methods.

3.1 Semantic Description of Service Instances

A distinction is made between two types of building blockediby the presented frame-
work: concrete service instancasdabstract semantic types

Concrete services instancae the actual services executed on specific resources.
Eachservice instance provided with several QoS (Quality of Service) paranmsetis-
scribing its properties. Examples include the averagewiattime, economic cost,
and availability. These QoS parameters are defined befodetwatheir values are dy-
namically adjusted based on previous invocations. ThusXample, the average ex-
ecution time is updated after the invocation of the servidee QoS of a specific ser-
vice instance consists of a QoS Type, QoS Value, and QoS CaapaA QoS Type
can amongst others be the economic cost for executing aceethie execution time.
Each QoS Type has a QoS Value and a specific QoS Comparatoorfggacing the
actual QoS Values. This offers an application manager Wwipbssibility to extend the
framework with new QoS parameters and define customary casopaechniques.

In the presented framework, theservice instanceare enriched with semantic an-
notations using OWL-S. As several semantically equivakanvice instancegequiv-
alent IOPES) exist, their semantic interfaces are groupexda singlesemantic type
thus reducing the search space of available instances xBor@e, multiple payment
services (bank transfer, Visa, PayPal) are grouped intesemantic payment type.

The OWLS-MX Matchmaker [6] provides a partial solution tasthroblem by com-
paring service inputs and outputs and assigning a score loaisthe semantic distance
between these concepts. As a truly equivalent match betitese service interfaces
cannot be expected, the services are grouped in a hieraltdsbion. Although exhaus-
tive enough, the OWLS-MX solution lacks the ability to compaervice preconditions
and effects. Therefore, we extended this approach in ohaéduring the composition
of the service mashup the Workflow Reasoner is able to search $pecific group
of services producing required outputs and more importaftects (detailed in Sec-
tion 3.3). Afterwards the Service Mapper will select a cep@endingservice instance
offering required QoS.

3.2 Semantic Match between Semantic Types

Semantic typeare compared and linked by the Workflow Reasoner in case afimat
input-output and/or precondition-effect relations. Degieg on the quality of the match

35

between their interfaces, control constructs are reqdaethe construction and more
importantly execution of more complex service mashupss Beiction gives special
attention to the use of 'IfThenElse’ and 'ForEach’ controhstructs of OWL-S.

Parametric Match. As OWL-S is used for describing Web services, the servicatsp
and outputs are expressed by OWL concepts. We define ananppit match between
services when an input and an output represent similar setamcepts and as a result
the output of one of the services is used as input for the offsatemonstrated in Figure
4(a), the output 'Body Temperature’ is interpreted as a kifidemperature’, matching
the measuring service to the service determining the patiever.

ﬁ\/leasure Temperature =§: (Product Payment ;-g
Output - Effect
Body Temperature Product paid by Customer
Input Precondition
vl emperature wProduct paid by Customer
[Fever ;-ﬁﬁ (Product Delivery Q
(@) Input-Output match (b) Precondition-Effect match

Fig. 4. Semantic match between two service interfaces.

We define different qualities of semantic matches betweericgeinputs and out-
puts, some of which require additional control constructs:

— Exact. The service output exactly matches the semantic concepedfdrvice in-
put.

S: WebShopCat al ogue(O Product) -> S:Delivery(l:Product)

— Subsume.The output concept inherits from the input. This is a valid lower
quality match.

S: WebShopCat al ogue(G Physi cal Product) -> S:Delivery(l:Product)

— Relaxed.The service input is more specific than the output conceptiicivcase
this is not a valid match. It is nevertheless incorporatethéncomposition process
as a generic output can turn out to be a more specific indiVafter service execu-
tion. For instance, a shopping basket may consist of digitdlor physical products
in which case some products need to be downloaded and othl@érsrdd. This is
resolved through the use of a repository describing prothaividuals and their
inheritance graph. In this case, the Workflow Reasoner add$TdenElse’ con-
struct between the matching services with an 'If’-conditam the specific product
type output.

S: WebShopCat al ogue(O Product) -> S:Delivery(l: Physical Product)

— List. The service output is a list of concepts matching the singlet concept. For
example, a shopping basket used as input for a service cietiié stock status
of each individual product. Here, a 'ForEach’ constructdded iterating over the
list of products. The specific match for each concept fronlittean be all of the
above éxact subsume relaxed).

S: WebShopCat al ogue(O ProductLi st) -> S:Delivery(l:Physical Product)

36

Condition Match. For the definition of the service preconditions and effeatsuse
SWRL (Semantic Web Rule Language) [7] expressions and-insil{SWRLB) such
as comparisons. An SWRL expression consists of a propedyoae or more ar-
guments (semantic OWL concepts). Examples includ®&rd ass with one argu-
ment, an bj ect Prooperty with two argument§ aDat aPr oper t y with one argu-
ment and an RDF tygea SWRLB primitive with one or more argumehtsVe define a
precondition-effect match when the result of the executicanservice corresponds to a
condition required for the execution of another services ffect in Figure 4(b) of the
product payment service realizes the payment conditiothiodelivery of the product
to the customer.

Similar to the input-output match, different qualities ehsantic matches between
service preconditions and effects are defined togethertiittnecessary control con-
structs:

— Exact. The service effect exactly matches the SWRL expressioresepting the
service precondition. A matching SWRL expression consisés equivalenfprop-
erty andexactlymatching semantic concepts (arguments of the property).

S: CheckSt ock(E:'Product InStock) -> S:Delivery(P:Product |nStock)

— SubsumeThe effect property still matches the precondition propartd between
the semantic conceptssabsumeanatch is defined. For an ObjectProperty only the
first argument can be a subtype, however if the property imedéfas an inverse
property, the second is also a subtype as OWL conceptsinheproperties of the
super class.

S: CheckSt ock(E: Physi cal Product I nStock) -> S:Delivery(P:Product |nStock)

— Relaxed.This is similar to thesubsumenatch, however one still needs to check if
the concepts can be subclassed after execution as is thendhsaelaxedinput-
output match.

S: CheckSt ock(E: Product InStock) -> S:Delivery(P: Physical Product |nStock)

— Conditional. It should be noted that a service effect can be conditionafming
that depending on the service output a different effect ssiide. For example a
service checking the stock of a product can have as effettb@roduct is in stock
if the stock status is true or not in stoifkfalse in which case an ordering service
is added to the composition before the actual delivery ofpttegluct. In this case
an 'lIfThenElse’ construct is added with the conditionalpuiton the effect as 'If’
statement. The following is an example of the conditionfdetfof the CheckStock
service where the product is considered in stock if the sstatus is true:

<process: hasResul t >

<process:inCondition>

<expr: SWRL- Condi ti on rdf: | D="Product|nStockCondition">
swr | b: equal (eshop: st ockSt at us, rdf : bool ean(true))

</ expr: SWRL- Condi ti on>

</ process:inCondition>

<process: hasEf f ect >
<expr: SWRL- Expressi on rdf: | D="Product | nSt ockEf fect">

1 InStock(Product)

2 paidFor(Customer, Product)
3 hasName(Customer, String)
4 equal(StockStatus, true)

37

eshop: Product | nSt ock(eshop: Physi cal Product)

</ expr: SWRL- Expr essi on>
</ process: hasEf f ect >
</ process: hasResul t >

The matching strategies are used by the planning algoritiriiee Workflow Rea-
soner during the construction of the service mashup whevess are selected provid-
ing outputs and/or effects matching the required (senviqa)ts and/or preconditions.

3.3 Workflow Reasoner based on HTN Planning

A Hierarchical Task Network (HTN) plan [8], [9] is a partiglbrdered graph of service
nodes. Each service defines a certain state (i.e. the owtpdteffects of the service
execution) and the description of the overall state is ithisted in the graph. Services
of unordered nodes (in parallel paths) are executed simeditasly, through the use of
the 'Split+Join’ construct of OWL-S.

The Workflow Reasoner in this paper adopts the HTN planninthats by incor-
porating the semantic grouping and matching strategietu@ding the use of control
constructs) mentioned above. Itis enhanced with runtimghngaadaptation using col-
lected data in the Execution Environment (Section 3.4).

Planning proceeds as follows: the user’s request goesghranexpansiorphase
followed by the actuatonstructiorthrough semantic matching of services. The user-
defined requests, consisting of initial and goal st&@=(S+GS), are transformed into
provided inputs and valid preconditionsSel +P) and required outputs and effects
(GS=0+E) resulting in an abstract semantic service descriptian (DPESs). During
the expansion phaséhis abstract servicés split up in the outputs and effectSHE)
that need to be resolved and the inputs and preconditioi® ¢hat can be utilized for
this purpose. On one hand, an availabdgnantic service (mashupan be matched to
the required interface immediately ending the composisimge. On the other hand,
if no complete solution already exists, thenstruction phasgenerates a plan of ser-
vices using backward chaining strategy transforming tha giate into the initial state
(Gs->I S). The selected matching services are queued and resohedbieadth-first
fashion. The inputs and preconditions of the service on fapequeue are linked to
matching service outputs and effedts - > +P) as described in Section 3.2. If neces-
sary control constructs are added depending on the quélibheanatch. It is important
to note that in case no matching services are found, an etthegemposition is pre-
sented and the incomplete inputs/preconditions are maifkeske are provided by the
application manager and/or new services are deployedfiltirthe missing gaps.

3.4 Runtime Adaptation

An important aspect of the presented framework is the rumtimhavior anticipating
changes (e.g. availability of new services, resource andcgefailures) and adapting
each request to user-specific business logic rules. Figoresgnts a feedback principle
where services are executed using inputs and conditionstihe Execution Environ-
ment and new service effects and outputs are produced aed aaithis Environment.
This results in a dynamic system where new knowledge isriedeat runtime.

38

Execution Environment =]

Business logic Conditions et =

rules e_
] Ste Bl Conditions &

Data facts Inputs

A
&

Output:

LLLLLL

Fig. 5. Inference through matching of service preconditions apdtsand returning service ef-
fects and outputs.

Business Logic Rules.These rules, added offline or at runtime to the Execution-Envi
ronment, are used by the Workflow Reasoner and Service Mappetapt the generic
mashup from Section 3.3 to the users’ needs at design anicheurftor example, there
are several possibilities for product delivery servicesclwhwe define as a decision
point in the execution: a simple 'Delivery’ service, 'DediyWithPaymentOnDelivery’
service, 'DeliveryToProxy’ service. At this point, the u$es to select one of the pos-
sibilities. A business logic rule could be stating that tleéadilt service is the 'Delivery-
WithPaymentOnDelivery’.

Iterative Pruning. Several mashup creation and execution iterations can lferperd
before the final execution, in case the constructed mashaghgs too complex (e.g.
having too many branches, conditional paths, decisiontppi®ur framework executes
parts of the mashup, while trying to preserve the curreng sty evaluating only the
stateless services. The Execution Engine stores any iatBany results in the Execu-
tion Environment which are used to prune the mashup graplkdnlving the decision
points or conditional paths. The Workflow Reasoner colldwsneeded data in order to
reconfigure the service mashup and remove parts of the brandfor example, if the
stock of the selected product is checked beforehand, ondeaxdde whether a product
ordering service is needed or it can be removed from the nartetd mashup.

Failure Recovery. The current state is stored in a similar fashion in the ExealEn-
vironment during the mashup execution. If a service failss used by the Workflow
Reasoner and Service Mapper to track the failed serviceshandurrent state of the
system. During recovery the Service Mapper will select dgraative service instance
equivalent to the failed one (same semantic group) and ptbaéth execution. If no
alternative instance exists, the Workflow Reasoner willstarct an alternative service
composition replacing the failed point keeping in mind therent state of the exe-
cuted mashup. In case that also fails the user will be notiffede specific component
problem.

4 E-Shop Workflow Design

The presented framework is evaluated by means of a managémertface for the

automatic construction and runtime adaptation of e-shpfiGgions. An e-shop ontol-
ogy is created defining the concepts used for the annotafitrece-shop services in
OWL-S.

39

4.1 Design of an E-Shop Application

A sale consists of a customer buying one or more products.kans that:

Trigger. A potential customer browses to the product catalogue oétsleop.
Initial State. The e-shop and customer info is known. This includes accofmtma-
tion necessary to make payments to the e-shop.
Goal Description. The composition is successfully executed, when the fohovef-
fects are reached:
1. The customer ordered the product(s).
2. The customer paid for the product(s).
3. The product(s) was(were) delivered to the customer.
— Digital products, such as music and software, are downkbade
— Physical products are transported to the customer’s dglagdress or to
a proxy point of the customer’s choice.

4.2 Construction of the E-Shop Workflow

For each required input and condition of an e-shop serviee Workflow Reasoner
matches a corresponding service output and effect comistguemn e-shop workflow. It
keeps track of the conditional paths so that during the coaison of the executable
process the Service Mapper will add, if required, contreistoucts. Figure 6 presents
the workflow of the different e-shop services from selectmpayment and delivery of
the products. The effect of the selection is implied by thgpotiof the "WebShopCat-
alogue’, which represents a list of selected products dfdirstomer fails to select one
or more products, the execution of the composition is praneat ended, otherwise a
'ForEach’ construct iterates over each product. A decigibihenElse’ construct) is
made whether the product is in stock or should be ordereovfelll by 'Payment’ and
'Delivery’. A Delivery methods added having as result one or more payment and de-
livery options ('Choice’ construct) through which, accimglto the configurable rules,
the purchase is made. This result is not known at compoditios but can be defined
through business logic rules by the user, being a customam ershop manager. If the
result is a specific delivery method defined by the e-shop gemthe purchase is made
in that way. If it is more than one, the customer chooses astalbthe possibilities
and the execution path depends on his decision. The resthlisahteractive choice is
not always known at composition time: the customer makeso&cetafter being pre-
sented with the different execution paths. Consequethityetshop workflow exposes
a decision point where the correct branch is chosen at rensind followed during
execution.

Service Grouping and Composition Performance.For testing purposes, the e-shop
mashup in Figure 6 was designed, consisting of 6 levels ditheaf maximum 3 ser-
vices, and 10 different available service nodes multiptigd semantically equivalent
services per node. The composition time of the Workflow Reaswas evaluated for
growing number of equivalent services with or without seevgrouping. The results
are presented in Table 1 including the time needed to load gemup) the services in

40

START:
User browses
to web shop

Web Shop
Catalogue

Delivery To Proxy .
Proxy H Payment H Ftes U]_

END:
Paid and
Delivered

Delivery)—

END:
Nothing bought

Download

Fig. 6. Constructed e-shop workflow with the use of control conssruc

the repository. During the loading of the first service digditm, several other ontolo-
gies need to be loaded like the OWL-S Profile, Process, andr@ing ontologies, the
specific use case E-Shop ontology, the SWRL rules ontolo@ese this is done, the
only lost time is during the semantic matching of the serinterfaces in order to group
the equivalent services. Therefore while the differendesben service loading with or
without grouping grows up to a second, the composition tinteout grouping grows
exponentially as all available services are consideredhferworkflow construction.
With grouping only the groups of equivalent services aresatered.

Table 1. Comparison of the e-shop composition time with or withouviee grouping.

Service loading (ms) Composition time (ms)

Without Grouping|| With Grouping|| Without Grouping|| With Grouping

Service] 7| o 7| o 7| o 7| o
1| 739 15/| 818 36 9064 49| 8921 283

2|| 1122 89|| 1470 80|| 25234 514| 9152 185

3|| 1452 49|| 2253 61| 49563 624 9341 128

4| 1875 118| 3077 74| 94362 1432| 9656 249

5|| 2127 57|| 3928 31| 151691 3271| 10269 105

4.3 Runtime Adaptation of the E-Shop Workflow.

This section details the runtime behaviour of the framevesrklescribed in Section 3.4
for the e-shop workflow.

Business Logic Rules.In order to execute the e-shop workflow, the e-shop manager
needs to define business logic rules expressing which 'Patyared 'Delivery’ method
should be chosen or the customer should choose from thedfferssibilities. On one
hand the design time configuration by the e-shop managemesdfie workflow perma-
nently. On the other hand the choice made by the customenglimiocation requires
at-runtime adaptation. Once this choice is made, the ré@gqnocess automatically
configures the workflow through the removal of the decisioinpand the selection

of only one 'Payment’ and 'Delivery’ path. For example if odefines 'Payment fol-
lowed by Delivery’ all the other options such as 'Payment aiii@ry’ and 'Delivery

to Proxy’ are discarded from the workflow.

41

Iterative Pruning. The e-shop workflow is further pruned through the executibn o
the effectless services. Depending on their output, fudkeisions are made, reducing
the execution paths. For example, by executing the "WebShtglogue’ service, the
Workflow Reasoner decides whether there are any selectddqgsoand if they are dig-
ital or physical. Then, the 'CheckStock’ service verifiesatiter the physical products
if any are in stock. This way the 'Download’ or 'Delivery’ afud 'Order’ services are
automatically removed.

Failure Recovery. During the e-shop execution state information is recordese of

a resource or service failure. For instance simultanedosiye execution of the prod-
uct 'Payment’, the 'Order’ service fails. The Service Mappdl select anequivalent
orderingservice instanceeplacing the failed one. Afterwards the Execution Engine
will avoid a repeated 'Payment’ execution. On the other h#nmb equivalent ordering
service instance is found, the Workflow Reasoner will recpn the original mashup
constructing an alternative solution for the product oirgrtreating the 'Payment’ re-
guirements as already met and thus as part of the initiad.stat

5 Related Work

Today a number of popular workflow standards and implemiems{10], such as
BPMN, BPEL4AWS, XLANG, WSFL, still exhibit several shortc@amys: no automatic
or dynamic deployment support, limited reliability guatess.

In [11] a predefined OWL-S workflow is first translated in SHOQ®BAtax and then
HTN planning is executed. SHOP2 does not support an outpwuteqd and OWL-S'’s
'Split’ and 'Split+Join’ control constructs so the systemed not handle concurrency.
OWLS-Xplan [12] constructs a service sequence, as oppasadrtashup graph, us-
ing an ontological definition of the initial and the requestmal state. However, be-
fore planning, the OWL-S 1.1 service descriptions are fiostverted to corresponding
PDDL 2.1 (Planning Domain Definition Language) descripsiarhich could raise per-
formance issues. The PDDL planner is in turn a linear STRIBBn@r extended with
HTN planning.

Several research projects some of which within the Europgaon Sixth and Sev-
enth Framework Programme aim at creating platforms suimgptiie creation, man-
agement and execution of service mashups. Reservoir [B3pices virtualization and
grid computing creating distributed service-orientedanfructures. Platforms like IN-
FRAWEBS [14] and Amigo [15] propose approaches, in which ghecess of find-
ing appropriate services is guided by algorithms for deawsitipn of user goals into
sub-goals and discovering the existing services able tsfgdhese sub-goals without
further planning. MashWeb [16] and SOA4AIll [17] focus on treation of data flows
controlling the output-input flows and workflows controflithe execution sequence of
the services.

The presented framework in this article constructs sermeshups starting from
initial and goal state through matching of service effezteqjuired preconditions. Plan-
ning is immediately performed in OWL-S, adopting the rickmef the OWL-S control
constructs such as 'Split+Join’, 'IfThenElse’, 'ForEaciChoice’. The framework is

42

designed in a way that different Workflow Reasoners, QoS-@®arvice Mappers and
Execution Engines are easily plugged in just by extendiagélpective interfaces. Late
binding is used to select the services offering the desire8 €@r execution. Several
(partial) iterations of mashup configuration and execusimmpossible as intermediary
results are used as feedback to further tune the serviceupashlesign and runtime.
The use of business logic rules defined by the user enablbefduning and personal-
ization of his requests.

6 Conclusions and Future Work

This paper focuses on the design of a framework for the autdmaanagement of
new applications through dynamic composition and exenudiothe building blocks
of service mashups. Based on semantic descriptions of Weltag, reasoning algo-
rithms are developed for automatically composing new sermiashups realizing de-
fined goals. These algorithms define a planning system usingjat constructs based
on the quality of the match between the semantic serviceS €mstraints and re-
guirements are satisfied through late binding to specificiseinstances. The system
responds dynamically at runtime to changing context suaeasbusiness logic, new
services, failure or overload of network elements or sewidn e-shop case is im-
plemented evaluating the proposed framework and illiegahe workflow execution
optimizations.

In the future the planning and execution framework will béeexied with a dis-
tributed deployment component which will execute the défe service instances mak-
ing optimal use of the available resources. Furthermooinigues will be studied to
take into account trends in user and resource behavior,dardo optimally design
context-aware service mashups.

Acknowledgements

This work is partly funded by WTEPIus, an IBBT GBO project tie definition of an
open architecture that allows the creation, sharing angesition of service mashups,
seamlessly combining functionality found on the Web, theegarise or within the
'walled garden’ of the telecom operator.

References

1. Papazoglou, M. P., Traverso, P., Dustdar, S., LeymanrGdtvice-Oriented Computing:
State of the Art and Research Challenges, IEEE Computee§pudl. 40(11), pp. 38-45,
(2007).

2. Berners-Lee, L., Hendler, J., Lassila, O. : The Semanéb\W New Form Of Web Content
That Is Meaningful To Computers Will Unleash A Revolution IQéw Possibilities, Journal
of the Scientific American, vol. 284(5), pp. 3443, (2001).

3. OWL-S, http://www.w3.0org/Submission/OWL-S/ [Online]

P

10.

11.

12.

13.

14.

15.

16.

17.

43

Hristoskova, A., Volckaert, B., De Turck, F., Dhoedt, Besign of a Framework for Au-
tomated Service Mashup Creation and Execution Based onrierreasoning, 2010 The
Fifth International Conference on Internet and Web Appiass and Services (ICIW 2010),
pp. 149-154.

. Avellino, G., Boniface, M., Cantalupo, B., Ferris, J., t8lanis, N., Mitchell, B., Surridge,

M.: A Dynamic Orchestration Model for Future Internet Amgaltions, ServiceWave 2008,
LNCS, vol. 5377, pp. 266-274, Springer, Heidelberg (2008).

. Klusch, M., Fries, B., Sycara, K.: Automated Semantic \®Webvice Discovery with OWLS-

MX, In Proceedings of 5th International Conference on Aotoous Agents and Multi-
Agent Systems, AAMAS 2006.

. SWRL, http://www.w3.org/Submission/SWRL/ [Online].
. Nau, D., Au, T,, lighami, O., Kuter, U.,. Murdock, J, Wu,,Yaman, F.:. SHOP2: An HTN

planning system, Journal of artificial intelligence resbawrol. 20(1), pp. 379-404, (2003).

. Hristoskova, A., Volckaert, B., De Turck, F.: Dynamic Qoosition of Semantically An-

notated Web Services through QoS-Aware HTN Planning Atgors, Proceedings of the
Fourth International Conference on Internet and Web Applns and Services (ICIW
2009), pp. 377-382.

Van der Aalst, W. M. P., Dumas, M., ter Hofstede, A. H. MeWé&ervice composition lan-
guages: Old wine in new bottles, Proceeding of the 29th EURTRD Conference: New
Waves in System Architecture, pp. 298-305, (2003).

Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTBrpling for web service composition
using SHOP2, Journal of Web Semantics, vol. 1(4), pp. 3762D04).

Klusch, M., Gerber, A., Schmidt, M.: Semantic Web Sexv@omposition Planning with
OWLS-Xplan, Proceedings of the First International AAAIIFRymposium on Agents and
the Semantic Web, (2005).

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., NadK., Llorente, I., Montero, R.,
Wolfsthal, Y., EImroth, E., Caceres, J., others: The RESBMR/Model And Architecture
for Open Federated Cloud Computing, IBM Systems Journal 538¢4), (2009).

Agre, G., Marinova, Z.: An INFRAWEBS Approach to Dynan@omposition of Semantic
Web Services, Cybernetics and Information Technologiels,A{1), pp. 45-61, (2007).
Valle, M., Ramparany, F., Vercouter, L.: Dynamic seevgomposition in ambient intelli-
gence environments: a multi-agent approach, Proceeditigedfirst European Young Re-
searcher Workshop on Service-Oriented Computing, (2005).

Pfeffer, H.: A Underlay System for Enhancing Dynamicitithin Web Mashups, Interna-
tional Journal On Advances in Software, vol. 2(1), pp. 63{2B09).

Lecue, F., Delteil, A., Leger, A.: Towards a Semantide&STaansition System for Automated
Generation of Data Flow in Web Service Composition, In In&tional Journal of Semantic
Computing (IJSC), vol. 3(4), pp. 499-526, (2009).

