
TOWARDS A SECURE ADDRESS SPACE SEPARATION FOR LOW
POWER SENSOR NODES

Oliver Stecklina, Peter Langendörfer
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany

Hannes Menzel
Distributed Systems/Operating Systems Group, Brandenburg University of Technology, Cottbus, Germany

Keywords: Wireless sensor node, Microcontroller, Virtualization, Memory protection, Security, Isolation, Operating sys-
tem.

Abstract: Wireless sensor networks are becoming more and more considered for application in real world systems such
as automation control, critical infrastructure protection and the like. By going wireless these systems are no
longer to be protected by fences and walls but need to take into account security of all their components. In
this paper we discuss two alternatives for implementing isolation on a Micro Controller Unit (MCU). The first
one is a pure software solution, i.e. a Hypervisor which comes with a reasonable performance penalty when
applied for 16-bit RISC processor cores such as the TI MSP430. Since it is a pure software solution it can
be applied to existing MCUs without any hardware modification. Our second approach is to use a Memory
Protection Unit (MPU) realized in hardware, which is placed between the processing core and the resources of
the sensor node. The MPU especially supports fine-grained isolation of the sensor node software and further
reduces the performance penalty compared to the pure software solution.

1 INTRODUCTION

Wireless Sensor Network (WSN)s are becoming
rapidly adapted for real life application scenarios e.g.
in the area of automation control or telemedicine.
This type of application scenarios require a high level
of dependability and safety. Both features cannot be
guaranteed if the security of the WSN cannot be en-
sured. While in the last years there was significant
research effort on network security for WSNs only
very few approaches have been focusing on improv-
ing the security of individual nodes. Worm attacks
like Stuxnet have impressivly demonstrated that au-
tomation control systems are a potential target of ma-
licious attacks. In addition the work published in
(Francillon and Castelluccia, 2008) has shown that
sensor nodes can be compromised by harmful code
such as worms.

In the single address space of a low power MCU, a
simple code modification can completely compromise
the system’s security. We argue that the enforcement
of high security levels is only possible by introduc-
ing a secure isolation of components. The code size

of a single component has to be as small as possible
to reduce the impact of a vulnerability. We present
two separation concepts for low power MCUs, which
allow the execution of software in isolated compart-
ments. Beyond this we present a performance assess-
ment that clearly indicates that both concepts are fea-
sible from a performance point of view. Our approach
inserts an additional layer between the software and
the resources of a sensor node. As a pure software so-
lution the isolation is enforced by a Hypervisor, which
checks any memory access generated by the software
during its operation. Similar memory checks are done
by a MPU in our hardware-base approach. Further-
more the MPU supports a fine-grained separation of
components to guarantee a high security level.

The rest of this paper is structured as follows.
Section 2 introduces vertical and horizontal isolation
techniques. These well known techniques stem form
resource rich computer systems, but in section 3 we
explain how these techniques can be used to improve
the security of sensor nodes. In Section 4 we review
some related work. The selected papers address a
secure and dependable isolation of software entities

512
Stecklina O., Langendörfer P. and Menzel H. (2011).
TOWARDS A SECURE ADDRESS SPACE SEPARATION FOR LOW POWER SENSOR NODES.
In Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems, pages 512-517
DOI: 10.5220/0003364505120517
Copyright c SciTePress



as well as state of the art virtualization concepts for
WSNs. Finally the paper concludes with a short sum-
mary.

2 ISOLATION CONCEPTS

Isolation in the context of operating systems denotes
the property that a certain software entity can access
only those resources, which are assigned to itself. By
the term software entity we mean a task, may be a
scheduled computation (Cha et al., 2007), or an event-
driven function (Levis et al., 2004), produced by a
hardware interrupt. To guarantee security isolation
has to ensure that the separation is still effective in
case that a software entity is running malicious code.
In this section we will introduce classic isolation con-
cepts. They are mainly realized and used on resource
rich systems, but known to be very effective.

2.1 Horizontal Isolation

To enforce a secure separation of processes distin-
guished capabilities are required. Commodity operat-
ing systems realize a horizontal separation by using a
supervisor and an user mode. While in the supervisor
mode all system resources are accessible, in the user
mode access is limited to resources assigned to a cer-
tain process. Resources assigned to a process running
in the user mode are managed by activities running in
the supervisor mode. User mode activities cannot ex-
tend or modify their own access and execution rights
for any of the system resources. This separation of
capabilities is known as a type of horizontal isolation.

A trend in modern systems is running multiple op-
erating systems on a single computer system by using
a Hypervisor. A Hypervisor is a layer between the
software and the resources of a modern computer. So,
it decouples the operating system from the hardware.
Hence, operating systems are running in a virtualized
environment. Hypervisor techniques can be differen-
tiated in full and para-virtualization. A full virtualiza-
tion does not require any modification to a guest sys-
tem (Bellard, 2005), but without specialized hardware
features its implementation is difficult and often inef-
ficient. I contrast to this para-virtualization uses few
code modifications to prepare a guest system for vir-
tualization. The XEN system uses this approach for
running guest systems in a secure and efficient man-
ner (Barham et al., 2003).

The virtualization concept supports a secure sepa-
ration of software components and is already used in
many application scenarios to setup high secure, de-
pendable and robust systems.

2.2 Vertical Isolation

Vertical isolation enforces that a process is capable to
operate unrestricted on its resources and in addition
that foreign resources are invisible to it or protected
form it. In a commodity operating systems this type
of isolation is realized by protection keys, paging or
segmentation.

The protection key scheme was introduced with
the IBM360 system (IBM, 1964). It partitions the
system memory in regions with a fixed size and as-
signs a single key to every region. If a process gener-
ates a memory access the key currently stored in the
CPU status register is compared with the key assigned
to the memory region. If the two keys are equal the
access is granted otherwise a protection exception is
triggered. It is a quite simple and effective scheme,
but it does not support shared regions and does not
check memory accesses generated by an instruction
fetch. A more elaborated approach for address sepa-
ration is the use of translation schemes as done when
paging or segmentation are employed. These schemes
translate a virtual address into a physical one by using
translation maps. The concepts support shared mem-
ory and checks all memory accesses. But they require
memory for storing the translation maps and a priv-
ileged mode for modifying these maps. Thus, these
approaches cannot be used for on resource constraint
sensor nodes.

The effectivity of a vertical isolation depends on
the size of the isolated software entity. There are a
number of approaches for supporting programmers
to separate their applications. An approach to par-
tition an application into an untrusted and a trusted
section is proposed in (Kilpatrick, 2003). The exe-
cution of privileged operations and private data are
isolated from the untrusted part of the application.
For achieving more acceptance (Brumley and Song,
2004) proposes an automatic incorporation of such a
vertical isolation into source code. We are convinced
that these approaches are also suitable for improving
the security of a sensor node.

3 ADDRESS SPACE SEPARATION
ON SENSOR NODES

The address space of low power MCUs is shared
among all software entities and does not support any
isolation concepts. For safety aspects a secure isola-
tion can be realizable by using a type-safe program-
ming language or by employing type-checks at run-
time. But in the context of security, where malicious
code will not follow such a protection scheme, the en-

TOWARDS A SECURE ADDRESS SPACE SEPARATION FOR LOW POWER SENSOR NODES

513



forcement has to be more strict and effective. In this
section we will introduce two alternative horizontal
isolation concepts i.e. aMSP430 Virtualization Envi-
ronment for the MSP430 MCUand aMemory Protec-
tion Unit (MPU) - to enforce security on low power
sensor nodes.

3.1 MSP430 Virtualization
Environment

Virtualization is a pure software solution and decou-
ples the software from the physical hardware. Thus, it
enables a secure isolation of software entities. Due to
the simple architecture of low power MCUs we have
to emulate all guest operations in a full virtualization
environment. This is done by the Hypervisor that has
an exclusive access to the node’s hardware. The virtu-
alized software gets only a logical view onto the phys-
ical system resources.

The memory footprint and the performance of the
Hypervisor is defined by the number and the complex-
ity of the emulated instruction set. We use a 16-bit
MSP430 from Texas Instruments (TI) as basic archi-
tecture. The MSP430 is widely used in various sen-
sor nodes and has a simple RISC architecture. Its in-
struction set consists of only 27 basic operations and
supports only two instruction formats. In contrast to
this Atmel’s ATmega has about 120 operations and
the SPARC V8, as a well-known RISC architecture,
supports 72 basic operations. Furthermore the sim-
ple von-Neumann architecture of the MSP430 sim-
plifies relocating of a guest system. The MSP430 has
a static memory, in which resources are mapped to
fixed places into the 16-bit address space. During
emulation the addressed resources can be efficiently
identified by substracting the relocation offset.

We use a MSP430X CPU (CPUX) for running the
Hypervisor. The CPUX is fully compatible to the 16-
bit version, but has an extended address space of 20-
bits. As shown in figure 1, we store the virtualized 16-
bit guest systems in the upper memory. The lower 16-
bit address space is used by the Hypervisor. The avail-
able memory is shared among the Hypervisor and the
guest systems. A guest system gets a dedicated mem-
ory section, where its stack and heap as well as its
virtualized CPU and peripheral registers are stored.
Any access to the memory and to peripheral registers
generated by the guest system is controlled by the Hy-
pervisor. IO resources are also emulated by the Hy-
pervisor. A guest access is passed via the peripheral
registers inside the guest memory.

The instruction emulation of our virtualization
environment has five execution stages: instructions
fetch (IF), instruction decode (ID), memory access

Figure 1: Address space of the MSP430 virtualization en-
vironment on a CPUX as host system. Guest systems are
stored in the upper memory and are mapped into lower 16-
bit address space by the Hypervisor at runtime.

(MEM), execution (EX) and write back (WB). The
memory is accessed in stages IF, MEM and WB. Be-
fore executing a stage the used addresses are checked
by the Hypervisor to ensure that they are located in the
guest’s memory region. In case of an access violation
the guest state has to be rolled back to the operation’s
start. Therefore all data will be stored in shadow reg-
isters and writing into CPU registers in the guest’s
memory is delayed until the address used in the WB
stage is validated by the Hypervisor. The ID and EX
stages can be executed by the Hypervisor without any
restriction. In case of an access violation a guest in-
terrupt is triggered. We use a non-maskable interrupt,
so that the guest system has to handle it or it will be
reseted.

Due to the emulation of all operations the perfor-
mance of the virtualized system is much slower than
the one of the native system. At the current develop-
ment state of our Hypervisor we can only provide a
performance estimation. We are convinced that our
emulation needs between two or six operations max-
imum per execution stage. The MSP430 needs up
to six clock cycles for executing a complex opera-
tion. That means that in a worst case a emulation
of a complete operation takes up to 180 clock cycles.
But we are sure that in the average case the overhead
will be much smaller, in particular when the number
of simple instruction is a significant part of the em-
ulated code. Furthermore the execution speed can be
increased by using a higher clock rate for the host sys-
tem. Nevertheless on a CPUX the energy consump-
tion will be slightly higher.

Beyond optimization and higher clock rates the
performance can be significantly improved by using
para-virtualization. Similar to QEMU small pieces of
guest code will be translated and stored in cache (Bel-
lard, 2005). While emulating the same code again the

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

514



cached block can be used. Due to the scarce memory
resources of a MCU the cache size is quite limited.
But this limitation can be neglected for sensor node
applications with good locality or by using external
memory as an additional code cache.

3.2 Hardware-based Fine-grained
Isolation of Software Entities

A virtualization environment makes primarily sense
for the execution of commodity operating systems.
But this coarse-grained separation is unpractically for
many sensor node applications and causes an inap-
propriate overhead. A fine-grained separation with an
equal security level becomes feasible by extending the
MCU with a hardware MPU. By taking the charac-
teristics of sensor node applications into account the
design of such a MPU can be simplified.

We propose an MPU that is tailor made for sensor
nodes. It will support up to 16 EIDs and partitions the
memory in up to 128 segments with a variable size
with a minimal size of 21 and a maximal size of and
213. An Entity IDentifier (EID) is similar to a pro-
cess identifier and is used to address the correspond-
ing software entity. In contrast to a fixed segment size
a variable one increases the complexity of the corre-
sponding MPU, but allows for fine-tuned isolation of
resources.

The maximal allowed number of EIDs and the
maximal allowed number of memory segments is a
trade-off between MPU complexity and system flex-
ibility. The memory segments are described by seg-
ment descriptors, which are stored inside the MPU. A
descriptor contains the base address, the size and the
permission rights for its corresponding memory seg-
ment. The permission rights are described by the 4-bit
EID and the 3-bit access type (read, write, execute).
Furthermore the descriptor has a shared memory in-
dication bit. If this bit is set the EID points into an ar-
ray of group descriptors. A group descriptor defines a
group of software entities sharing a piece of memory.

The MPU, see figure 2, is designed as an external
component and is placed between the processing core
and the node’s resources. Any memory access gener-
ated by a software entity is passed by the Memory Ad-
dress Bus (MAB) to the MPU. Whenever the mem-
ory is accessed the MPU determines the addressed
memory segment and compares the access type and
the EID with access rights stored for this segment. If
they are equal the data is transfered via the Memory
Data Bus (MDB) to the processing core. In case of a
mismatch the access is denied and an access violation
interrupt is signaled to the processing core.

Our approach does not require a privileged level

Figure 2: Integration of a hardware MPU as a component
between the sensor node resources and the processing core.
Any memory access is validated by monitoring the MAB.
Access violations are signaled via an interrupt to the pro-
cessing core.

like a supervisor mode. All software entities operate
on the same privilege level. The current EID is stored
in a MPU register and can be modified via a mem-
ory mapped interface. Writing a new EID into the
register causes a context switch. The software has to
ensure that in the next instruction a jump into a mem-
ory segment of the selected entity follows. Otherwise
the following instruction causes an access violation.
In addition to this we are supporting an unprivileged
two-step segment initialization process. In the first
step, at compile time, the resources are assigned to
the entities and in a second step, at boot time, the seg-
ment descriptors are passed to the MPU via a mem-
ory mapped configuration interface. To protect the
system against an unintended or malicious reconfigu-
ration this interface should be write protected for all
software entities after completing the boot process. A
looser configuration is possible, but will reduce the
system’s security.

We realized the MPU in our co-simulation frame-
work. The framework consists of the MSPsim (Eriks-
son et al., 2008) plus a SystemC environment. The
MPU is implemented in SystemC and the MSPsim
operates as a stimuli generator. Our co-simulation
simplifies the developing process, but operates on a
higher abstraction level. We can use it to get a be-
havioral description of the system to validate our ap-
proach. Furthermore we can estimate the required re-
sources and get a rough performance estimation. The
simulation results have shown that the most expensive
component of the MPU is the segment lookup logic.
Currently we analyze two different lookup strategies:
a time consuming sequential search and a power con-
suming parallel search. We have already prooved that
using a cache a segment lookup can be done in a sin-
gle clock cycle, so that the processing core has not to
be stalled.

Our MPU is designed to support small pieces of
memory to make a fine-grained separation of soft-
ware possible. But such a setup requires the integra-
tion of various context switches among the isolated
compartments. We support this by a C-to-C source

TOWARDS A SECURE ADDRESS SPACE SEPARATION FOR LOW POWER SENSOR NODES

515



code translation process. We propose to implement a
translation scheme similar to the approach presented
in (Brumley and Song, 2004). In that scheme a pro-
grammer has to annotate security contexts by using C-
macros and the switching code and the Inter Process
Communication (IPC) is automatically generated by
an afterburner. Furthermore we propose here a con-
cept of an afterburner that can separate a well-defined
software without any user annotation. The isolation
boundaries would be aligned at the object file inter-
face. A well-defined software object is offering only
a minimized public interface and wraps the private
data. As shown in figure 3, the afterburner isolates
every object as a software entity and replaces a func-
tion call by a context switch and an IPC. This makes a
secure and fine-grained separation of a complex soft-
ware system feasible.

Figure 3: Fine-grained separation of software entities by en-
capsulating objects in different address spaces and replacing
a cross-object function call by a context switch and an IPC.

4 RELATED WORK

In this section we will discuss related work. Most
sensor node attacks exploit the simple node architec-
ture with its single address space. Due to the un-
restricted access to resources any successful attack
compromises the whole system. The lack of restric-
tions can be used to construct malicious code by itself.
The authors of (Francillon and Castelluccia, 2008)
demonstrates how a return oriented programming at-
tack can be used to annul the isolation of the data and
the code section of the Harvard architecture. They use
existing code and tricky reordering to execute an un-
controlled update process.

The authors of (Francillon et al., 2009) present a
approach to block any kind of stack smashing attacks

by a small performance penalty. But the solution re-
quires a hardware extension and does not check any
memory accesses. In (Lopriore, 2008) a pure hard-
ware approach is presented that checks memory ac-
cesses generated by a software entity. The proposed
solution partitions the node’s memory in blocks with a
fixed size and is mainly aimed at confining the conse-
quences of programming errors. The authors of (Ku-
mar et al., 2007) present a hardware extension for an
AVR MCU that modifies the instruction set to check
memory accesses during store operations and to in-
tegrate return stack protection. The solution is also
focused on software dependability. Security aspects
are not addressed.

Virtualization for achieving a higher level of ro-
bustness, dependability and safety is used by various
approaches. In (Stilkerich et al., 2010) a JVM-based
solution is presented, in which the node’s software is
written in Java. KESO, an ahead-of-time compiler, is
used to generate the C code (Thomm et al., 2010). It
provides a software-based memory protection by sep-
arating software entities in isolated JVMs. A virtual
machine for TinyOS is presented in (Levis and Culler,
2002). It provides the execution of portable pieces of
code. The VM has a very small instruction set that
ensures a small memory footprint. But the solution
is focused on portability, security aspects are not ad-
dressed. A similar approach is presented in (Müller
et al., 2007). It uses an extensible byte-code language
that is Turing complete. Security aspects are also out
of the scope of that paper.

5 CONCLUSIONS

In this paper we have investigated the idea of using
horizontal isolation between software entities and re-
sources of resource restricted devices such as embed-
ded systems and sensor nodes. We have presented
two concepts for realizing such a separation. The
first concept we investigated is the realization of a
Hypervisor for a MCU, which is implemented as an
intermediate layer between the processing core and
the resources of the device. We have done a high
level performance assessment which clearly indicates
the feasibility of this approach. i.e. the performance
penalty is about factor four in the worst case i.e. for
the most complex instructions. This approach is espe-
cially interesting since it requires no modifications on
the existing hardware and is fully transparent to the
programmer. The second concept requires an exten-
sion of a MCU, by a Memory Protection Unit (MPU).
This MPU is intercepting all memory accesses and
checks whether or not the currently executed task may

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

516



read/write from/to the specified address. We have
partly implemented our MPU in a co-simulation en-
vironment. There we could prove that the memory
access verification can be done within a single clock
cycle, i.e. that this protection scheme can be applied
without performance penalty.

Beside the isolation of software entities their vir-
tualization can improve the robustness of the whole
system against denial of service attacks. The Hyper-
visor is fairly scheduling the virtualized systems so
that the affected instance can capture only a piece of
the available computing time. The attack is limited on
the affected virtualized system and in case of an dis-
tributed and well-defined system design critical ser-
vices can be still available.

Our approach is still work in progress so that we
are not able to completely validate our concept and
providing sophisticated measurement results. But our
performance assessments clearly indicate that hori-
zontal isolation is a valid concept to improve the se-
curity and by that reliability of MCUs.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the European Community’s Seventh
Framework Program (FP7/2007-2013) under grant
agreement No. 258754.

REFERENCES

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. InSOSP
’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 164–177, New
York, NY, USA. ACM.

Bellard, F. (2005). Qemu, a fast and portable dynamic trans-
lator. InATEC ’05: Proceedings of the annual confer-
ence on USENIX Annual Technical Conference, pages
41–41, Berkeley, CA, USA. USENIX Association.

Brumley, D. and Song, D. X. (2004). Privtrans: Automat-
ically partitioning programs for privilege separation.
In USENIX Security Symposium, pages 57–72.

Cha, H., Choi, S., Jung, I., Kim, H., Shin, H., Yoo, J.,
and Yoon, C. (2007). RETOS: resilient, expandable,
and threaded operating system for wireless sensor net-
works. In IPSN ’07: Proceedings of the 6th interna-
tional conference on Information processing in sen-
sor networks, pages 148–157, New York, NY, USA.
ACM.

Eriksson, J., Dunkels, A., Finne, N.,̈Osterlind, F., Voigt,
T., and Tsiftes, N. (2008). Demo abstract: MSPsim

- an extensible simulator for MSP430-equipped sen-
sor boards. InProceedings of the 5th European Con-
ference on Wireless Sensor Networks (EWSN 2008),
Bologna, Italy.

Francillon, A. and Castelluccia, C. (2008). Code injec-
tion attacks on harvard-architecture devices. InCCS
’08: Proceedings of the 15th ACM conference on
Computer and communications security, pages 15–26,
New York, NY, USA. ACM.

Francillon, A., Perito, D., and Castelluccia, C. (2009). De-
fending embedded systems against control flow at-
tacks. In SecuCode ’09: Proceedings of the first
ACM workshop on Secure execution of untrusted code,
pages 19–26, New York, NY, USA. ACM.

IBM (1964). IBM system/360 principles of operation. IBM
Press.

Kilpatrick, D. (2003). Privman: A Library for Partitioning
Applications. InUSENIX Annual Technical Confer-
ence, FREENIX Track, pages 273–284.

Kumar, R., Singhania, A., Castner, A., Kohler, E., and
Srivastava, M. (2007). A system for coarse grained
memory protection in tiny embedded processors. In
DAC ’07: Proceedings of the 44th annual Design Au-
tomation Conference, pages 218–223, New York, NY,
USA. ACM.

Levis, P. and Culler, D. (2002). Maté: a tiny virtual ma-
chine for sensor networks. InASPLOS-X: Proceed-
ings of the 10th international conference on Archi-
tectural support for programming languages and op-
erating systems, pages 85–95, New York, NY, USA.
ACM.

Levis, P., Madden, S., Polastre, J., Szewczyk, R., Woo, A.,
Gay, D., Hill, J., Welsh, M., Brewer, E., and Culler,
D. (2004). TinyOS: An operating system for sensor
networks. Inin Ambient Intelligence. Springer Verlag.

Lopriore, L. (2008). Hardware/Compiler Memory Protec-
tion in Sensor Nodes.International Journal of Com-
munications, Network and System Sciences, 1(3):235–
240.

Müller, R., Alonso, G., and Kossmann, D. (2007). A virtual
machine for sensor networks. InEuroSys ’07: Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, pages 145–
158, New York, NY, USA. ACM.

Stilkerich, M., Lohmann, D., and Schröder-Preikschat, W.
(2010). Memory protection at option. InCARS ’10:
Proceedings of the 1st Workshop on Critical Automo-
tive applications, pages 17–20, New York, NY, USA.
ACM.

Thomm, I., Stilkerich, M., Wawersich, C., and Schröder-
Preikschat, W. (2010). Keso: an open-source multi-
jvm for deeply embedded systems. InProceedings of
the 8th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES ’10,
pages 109–119, New York, NY, USA. ACM.

TOWARDS A SECURE ADDRESS SPACE SEPARATION FOR LOW POWER SENSOR NODES

517


