
CONTEXT-AWARE SERVICES FOR GROUPS OF PEOPLE

Ichiro Satoh
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku Tokyo, 101-8430, Japan

Keywords: Context-awareness, Ubiquitous computing, Agents.

Abstract: This paper presents a framework for providing context-aware services in public spaces, e.g., museums. The
framework is unique among other existing context-aware systems in implementing services as mobile agents
and supporting groups of users in addition to single users. It maintains a location model as containment re-
lationships between digital representations, called virtual counterparts, corresponding to people, terminals,
or spaces, according to their locations in the real world. When a visitor moves between exhibits in a mu-
seum, it dynamically deploys his/her service provider agents at the computers close to the exhibits via virtual
counterparts. When two visitors stand in front of an exhibit, service-provider agents are mutually executed
or configured according to the member of the visitors. To demonstrate the utility and effectiveness of the
system, we constructed location/user-aware visitor-guide services and experimented with them for two weeks
in a public museum.

1 INTRODUCTION

Many of the early applications of ubiquitous comput-
ing have focused on interaction between individual
users and their environments. They have paid little
attention to environments that might effectively sense
and respond to groups of co-located people. For ex-
ample, a smart space is one of the most popular topics
in ubiquitous computing research. It is an environ-
ment with sensing devices as well as embedded com-
puters so that it enables individual users to perform
tasks efficiently by offering unprecedented levels of
access to information and assistance from computers
according to the situation of individual users. How-
ever, much of our time is spent in shared physical
spaces, so it is important to consider how an environ-
ment might effectively sense and respond to groups of
co-located people as well as individual people.

When there is only one user in a space, context-
aware services should be customized and provided to
him/her. However, when there are multiple users in
a space, context-aware services should not be cus-
tomized to particular users so that the services can
be shared by them. Furthermore, setting services for
groups of people and devices should be selected and
customized according to the combination of people in
current places in addition to the people themselves.
For example, when a married couple stands in front
of digital signage, advertising content displayed on
the signage should be specific to neither mens’ nor

women’ items. When a visitor stands in front of an
exhibit in a museum, where another visitor is already
standing, annotation services provided from a termi-
nal close to the exhibit may be provided to the exist-
ing visitor, and then the new visitor sequentially, or
customized to the two visitors.

This paper presents a framework for providing
context-aware services to not only individual peo-
ple but also groups of co-located people in specified
spaces. Since such services tend to depend on the co-
location of people, the framework maintains a loca-
tion model for the real world. It introduces the no-
tion of virtual counterparts for people, physical enti-
ties, and terminals, where each counterpart is an pro-
grammable entity. The model is maintained as a struc-
tural organization of virtual counterparts according
to containment relationships between the locations of
their targets, e.g., people, computers, and spaces. This
framework supports location-aware communications
between people and between people and computers,
in the sense virtual counterparts can only communi-
cate with other counterparts when the targets, e.g.,
people and computers, are in the same spaces, e.g.,
rooms or floors. When multiple users are close to
a terminal, their counterparts interact with the termi-
nal’s counterpart to provide services to them. Virtual
counterparts corresponding to terminals are used as a
mechanism for deploying services at the terminals.

54
Satoh I. (2011).
CONTEXT-AWARE SERVICES FOR GROUPS OF PEOPLE.
In Proceedings of the 1st International Conference on Pervasive and Embedded Computing and Communication Systems, pages 54-63
DOI: 10.5220/0003367600540063
Copyright c SciTePress



2 RELATED WORK

There have been several agent-based or non-agent-
based attempts to develop context-aware services for
museums with the aim of enabling visitors to view
or listen to information about exhibits at the right
time and in the right place and to help them navigate
between exhibits along recommended routes (Chev-
erst et al., 2000; Fleck et al., 2002; Oppermann and
Specht, 2000). However, most of these existing at-
tempts have been developed to the prototype stage
and tested in laboratory-based or short-time exper-
iments with professional administrators. They also
have been designed in an ad-hoc manner to provide
specific single services in particular spaces, i.e., re-
search laboratories and buildings. For example, real
systems are required to be robust and provide users
with the services that they are designed to provide,
whereas prototype systems for demonstrations are of-
ten allowed to be unreliable and provide insufficient
services. There is a serious gap between laboratory-
level or prototype-level systems and practical sys-
tems. Therefore, this section only discusses several
related studies that have provided real applications to
real users in public spaces, particularly museums.

One of the most typical approaches in public mu-
seums has been to provide visitors with audio anno-
tations from portable audio players. These have re-
quired end-users to carry players and explicitly in-
put numbers attached to the exhibits in front of them
if they wanted to listen to audio annotations about
the exhibits. Many academic projects have pro-
vided portable multimedia terminals or PDAs to vis-
itors. These have enabled visitors to interactively
view and operate annotated information displayed on
the screens of their terminals, e.g., the Electronic
Guidebook, (Fleck et al., 2002), the Museum Project
(Ciavarella and Paterno, 2004), the Hippie system
(Oppermann and Specht, 2000), ImogI (Luyten and
Coninx, 2004), and Rememberer (Fleck et al., 2002).
They have assumed that visitors are carrying portable
terminals, e.g., PDAs and smart phones, and they have
explicitly input the identifiers of their positions or
nearby exhibits by using user interface devices, e.g.,
buttons, mice, or the touch panels of terminals. How-
ever, such operations are difficult for visitors, partic-
ularly children, the elderly, and handicapped people,
and tend to prevent them from viewing the exhibits
to their maximum extent. These approaches suffered
from several serious problems in real museums. One
of the most serious of these associated with portable
smart terminals and multimedia systems is that they
prevent visitors from focusing on the exhibits them-
selves because visitors tend to become interested in
the device rather than the exhibitions themselves.

A few researchers have attempted approaches to
support users by using stationary sensors, actuators,
and computers. However, most of these systems
have stayed at the prototype- or laboratory-level and
have not been operated or evaluated in real muse-
ums. Therefore, the results obtained may not be
able to be applied in practical applications. Of these,
the PEACH project (Rocchi et al., ) has developed
a visitor-guide system for use in museums and its
members have evaluated it in a museum. The sys-
tem supported PDAs in addition to ambient displays
and estimated the locations of visitors by using in-
frared and computer-vision approaches. Although the
project proposed a system for enabling agents to mi-
grate between computers (Kruppa and Kruger, 2005)
by displaying an image of an avatar or character cor-
responding to the agent on remote computers, it could
not migrate agents themselves to computers. Like the
PEACH project, several existing systems have intro-
duced the notion of agent migration, but they sup-
ported only the images of avatars or codes with pieces
of specified information, instead of the agents them-
selves. Therefore, their services could not be defined
within their agents independent of their infrastruc-
tures, so that they could not be used to customize mul-
tiple services while the infrastructures were running,
unlike our system. The PEACH project used an RFID
tag system to identify users (Kuflik et al., 2006), but it
assumed to use portable terminals were used. All the
work discussed previously aimed at providing single
users with services.

We discuss differences between the framework
presented in this paper and our previous frameworks.
We earlier constructed a location model for ubiqui-
tous computing environments (Satoh, 2005; Satoh,
2007). Like the framework presented in this paper, the
model represented spatial relationships between phys-
ical entities (and places) as containment relationships
between their programmable counterpart objects and
deployed counterpart objects at computers according
to the positions of their target objects or places. We
previously presented a context-aware museum guide
system (Satoh, 2008b) and a mobile agent-based sys-
tem for providing services in public museums (Satoh,
2008a). Our previous model and systems provided
no support to location-aware communications and
group-aware communications, unlike the framework
presented in this paper.

3 BASIC APPROACH

This section describes basic ideas behind the frame-
work presented in this paper.

CONTEXT-AWARE SERVICES FOR GROUPS OF PEOPLE

55



3.1 Example Scenario

Suppose a context-aware visitor-guide system is in a
museum. Most visitors to museums lack sufficient
knowledge about exhibits in the museum and they
need supplementalary annotations on these. How-
ever, as their knowledge and experiences are varied,
they may become puzzled (or bored) if the annota-
tions provided to them are beyond (or beneath) their
knowledge or interest. User-aware annotation ser-
vices about exhibits are required. For example, when
a user stands in front of an exhibit, an annotation
service about the exhibit is provided in his/her per-
sonal form on a stationary terminal close to the ex-
hibit. However, there are multiple users in a public
space. Suppose a visitor arrives in front of an exhibit,
where another visitor is standing and receiving an an-
notation service from on a terminal there. We have
several approaches to solving this. 1) After the an-
notation service for the existing visitor has finished,
an annotation service for the new visitor is provided.
2) The annotation service for the existing visitor is
shared by and customized to the existing and new vis-
itors. In fact, we constructed and provided such a
context-aware visitor-guide system to several muse-
ums (Satoh, 2008a; Satoh, 2008b). This problem was
serious during rush hours at the museums.

3.2 Design Principles

To provide services according to groups of co-located
people, we need to model the locations of the
people and the terminals that provide the services.
This framework maintains a symbolic location model
about their locations to select and customize services.
The model is unique to other location models, because
it is maintained as a structural relationship between
programmable entities, called virtual counterpart ob-
jects, corresponding to people, physical entities, and
places in the real world.

Containment Relationship Model. Virtual coun-
terparts are structurally organized based on geograph-
ical containment relationships between their targets,
e.g., people, physical objects and places. Each coun-
terpart is contained by at most one counterpart, called
a parent counterpart, and can contain more than zero
counterparts, calledchildren. For example, each floor
is contained within at most one building and each
room is contained within at most one floor. Each of
the counterparts corresponding to these rooms is con-
tained in the counterpart corresponding to the floor.
The model spatially binds the positions of objects and
places with the locations of their virtual counterparts.

When a physical entity moves to another location in
the physical world, the model deploys its counterpart
at the counterpart of the destinations.

Location-aware Communication. Our framework
uses the spatial co-location of physical entities as a
primary attribute for selecting communication part-
ners. This is because communication between peo-
ple also tends to be done in the same space, i.e., the
same room and nearby fields, rather than those in dif-
ferent rooms or on different floors. Communication
partners, including terminals, should also be selected
according to their co-locations. Co-locations between
people and terminals are modeled as a spatial relation-
ship between the virtual counterparts corresponding
to the people and the terminals. The virtual counter-
parts for terminals can explicitly define the condition
that activate and configure services provided to the
groups of people in addition to their locations. The
framework treats location-aware communications as
interactions between virtual counterparts. The virtual
counterparts corresponding to terminals communicate
with the virtual counterparts corresponding to people.

Support to Groups of People. Each virtual coun-
terpart has two types of communications with other
counterparts, calledvertical andhorizontal commu-
nications. The first enables each counterpart to com-
municate with its child virtual counterparts and vice
versa and the second enables each counterpart to com-
municate with its sibling containers that are contained
in the same parent counterpart. It also supports mul-
ticast communications. To support communications
between multiple users, each virtual counterpart can
communicate with multiple virtual counterparts via
the former’s parent where the latter virtual counter-
parts are contained in the parent through a multicast-
ing communication manner. For example, when two
persons is in front of digital signage, the counter-
part objects corresponding to them are contained in
the counterpart corresponding to the service-available
scope of the digital signage. The former and latter
counterparts communicate with each other and then
the latter configures and plays the content displayed
on its target digital signage.

Context-aware Services. Computers, including
public terminals, have their own counterparts. The
framework classifies smart objects into two types.
The first can download software for defining ser-
vices from external systems and execute the software.
The second only provide its own initial service and
has built-in communication interfaces to control itself

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

56



from the external systems through networks. A vir-
tual counterpart for a device in the first type is to pro-
vide forward deployable software that the device can
execute. This framework uses mobile agent technol-
ogy to deploy software at terminals. To assist visitors
from stationary terminals in museums, software to de-
fine services needs to continue to provide the services
for them, even when they move from one location to
the next. Services are implemented as mobile agents,
where mobile agents are autonomous programs that
can travel from computer to computer under their own
control. Virtual counterparts corresponding to termi-
nals forward service-providermobile agents to the ter-
minals.

Service-available Spaces. Public terminals have
their own spatial scope where people can see or lis-
ten to content. User-specific services should only be
played when its users are in its scope. Several re-
searchers on virtual-reality (VR) have provided the
notion of virtual scope, often calledaura, where in-
teractions between two objects in VR only become
possible when the objects’ scopes collide or overlap
(Carlsson and Hagmnd, 1993; Greenhalgh and Ben-
ford, 1995). Public terminals can be seen by peo-
ple when the former and latter are within a specified
scope. For example, a public terminal has a half-
meter sphere so that a user can directly manipulate
the terminal. User-aware content should only be dis-
played at a terminal when the target user is in front of
the the terminal. The framework introduces the scope
of each terminal as a virtual counterpart. When a user
is within the scope, his/her virtual counterpart is lo-
cated in the virtual counterpart corresponding to the
scope.

3.3 Bridging between Real World and
Virtual World

This section outlines the ideas behind our frame-
work. Each physical entity, e.g., a person, legacy ap-
pliance, or physical place, e.g., a building or room,
has more than one virtual counterpart object. Each
counterpart object is constructed as a programmable
entity. Each virtual counterpart object can be con-
tained within at most one virtual counterpart object
according to the containment relationships in the real
world. It can also be dynamically deployed between
virtual counterpart objects as a whole with all its in-
ner counterpart objects when its target physical entity
moves. The framework maintains a location model
as an acyclic-tree structure of virtual counterpart ob-
jects, like Unix’s file directory. When a virtual coun-
terpart contains other virtual counterparts, we call

the former aparent and the latterchildren. When
physical entities, places, and computing devices move
from location to location in the physical world, the
framework detects their movements through location-
sensing systems and changes the containment rela-
tionships of the counterparts corresponding to the
moving entities, their sources, and destinations.

Unlike other existing tree-based location mod-
els, virtual counterparts are not only digital repre-
sentations of physical entities or places but also pro-
grammable entities that can communicate with other
counterparts. The framework uses location as its
primary attribute for discovering and selecting ser-
vices. Inter-counterpart communications select po-
tential communication partners according to where
these are located. An entity, including a person, phys-
ical object, or a computing device can specify the
kind of surroundings in which it is willing to interact
with its communication partners, e.g., visual, audio,
or manual manipulation, which will enable it to inter-
act with other devices.

When multiple virtual counterparts corresponding
to members of a group of people are contained in the
virtual counterpart corresponding to the scope of a
service provider device, the latter counterpart com-
municates with the former counterparts. Since the
framework can be maintained on different comput-
ers, it provides programs to virtual counterparts with
syntactic and (partial) semantic transparency for re-
mote interactions by using proxy elements that have
the same interfaces as the remote virtual counterparts
themselves. The underlying location-sensing systems
can dynamically relocate virtual counterparts based
on changes in the locations of their target entities in
the physical world.

4 DESIGN AND
IMPLEMENTATION

Our framework consists of four subsystems: 1)
context-aware directory servers, called CDSs, 2) vir-
tual counterpart management systems, 3) agent run-
time systems, and 4) service provider agents. The
first is responsible for reflecting changes in the real
world and the location of users when services are
deployed at appropriate computers. Our system can
consist of multiple CDSs, which are individually con-
nected to other servers in a peer-to-peer manner. Each
CDS only maintains up-to-date information on par-
tial contextual information instead of on tags in the
whole space. The second manages a structure of vir-
tual counterparts according to up-to-date information
on the state of the real world, such as the locations of

CONTEXT-AWARE SERVICES FOR GROUPS OF PEOPLE

57



people, places, and things.
The third is running on stationary computers,

which are located at specified spots close to exhibits
in a museum and are equipped with user-interface
devices, e.g., display screens and loudspeakers. It
is responsible for executing and migrating service-
provider agents, like existing runtime systems for
mobile agents (Smith, 2010). The fourth is an au-
tonomous entity that defines application-specific ser-
vices for visitors. It is implemented as one or more
mobile agents. Virtual counterparts are used as for-
warders in the sense that they migrate mobile agents
from one terminal to the next. The framework deploys
and executes mobile agents at computers near the po-
sitions of the users instead of at remote servers. As a
result, mobile agent-based content can directly inter-
act with users, where RPC-based approaches, which
other existing approaches are often based on, must
have network latency between computers and remote
servers. Mobile agents can help to conserve these
limited resources, since each agent only needs to be
present at the computer while the computer needs the
content provided by that agent.

4.1 Location-sensing Systems

The framework itself is independent of any location-
sensing system. The management system has inter-
faces for monitoring its underlying location-sensing
systems. Tracking systems can be classified into two
types: proximity and lateration. The first approach
detects the presence of objects within known areas
or close to known points, and the second estimates
the positions of objects from multiple measurements
of the distance between known points. The CDSs
support the two types, but they map geometric in-
formation measured by the latter sensing systems to
specified areas, calledspots, where the exhibits and
the computers that play the annotations are located.
This is because most context-aware services in pub-
lic spaces should be provided within specified spaces
rather than at specified geometric points. Each CDS
has its own local database to maintain the locations of
visitors and their agents.

Although our system itself is independent of the
underlying sensing systems, the experiment presented
in this paper supported active RFID tag systems,
where museums have provided individual one or
group visitors with RFID tags. These tags are small
RF transmitters that periodically broadcast beacons,
including the identifiers of the tags, to receivers lo-
cated in exhibition spaces. The receivers locate the
presence or position of the tags. As CDSs gener-
ate sensing-system-independent identifiers from the

identifiers of tags, agent runtime systems and agents
should be independent of the underlying location
sensing systems.

When the underlying sensing system detects the
presence (or absence) of a visitor (or the RFID tag
tied to the visitor) in a spot, i.e., the visitor in the spot,
the CDS attempts to instruct the agent attached to the
visitor to the agent runtime system close to his/her
current location.

• The CDS multicasts a query message that contains
the identity of the visitor (or the identity of the
tag) to the CDS that manages the system attempts
to query the locations of the agent tied to the visi-
tor from its local database.

• If the database does not contain any information
about the identifier of the visitor (or the tag tied to
him/his), it multicasts a query message that con-
tains the identity of the new visitor (or the tag) to
other CDSs through UDP multicasting.

• It then waits for reply messages from other CDSs.
Next, if the CDS knows the location of the agent
tied to the visitor (or the tag), it sends a control
message to the agent runtime system that runs the
agent to instruct the agent to migrate to computers
close to the visitor (or the tag).

For example, when a tag bound to a user who has
his/her agents is close to a computer, the system iden-
tifies the user and deploys his/her agents at computers
close to him/her. The system relies on UDP multicas-
ting, but CDSs can communicate with other CDSs,
which are not in their same domain, through TCP/IP
communication. When CDSs sends control messages
to agent runtime systems, they map the identifier
of each tag into the corresponding sensing-system-
independent identifier. When each agent runtime sys-
tem migrates or receives agents, it sends a message
about the identifier of the agents that it leaves from or
arrives at, to nearby CDSs through UDP multicasting.

4.2 Virtual Counterpart Management

The framework itself is independent of programming
languages, but the current implementation uses Java
(J2SE version 1.5 or later versions) as an implemen-
tation language to define the framework itself and vir-
tual counterparts. Figure 1 outlines the basic structure
of a management system for the framework.

Hierarchical Structure

The framework manages a location model as an
acyclic-tree structure of virtual counterparts, where

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

58



OS/Hardware

Transport Protocol

Component

Deployment

Service

Component

Event

Management

Location
Model

Management

Java Virtual Machine

Component G

Component H Component I

Component J

Component K

Component D

Component E Component F

Horizontal communication Vertical 

communication

Figure 1: Virtual counterpart tree.

each virtual counterpart can be defined as a self-
contained computing entity without any description
of a counterpart hierarchy. The management system
provides a container for the counterpart correspond-
ing to a virtual counterpart. The container technol-
ogy developed by Enterprise Java Beans provides in-
terfaces for components and enables them to trans-
parently adapt to runtime services, e.g., it manages
transactions. That is, this framework provides each
agent corresponding to a counterpart with a wrapper,
called atree container. Each container includes its
target agent, its attributes, and containment relation-
ships between itself and its parent container and be-
tween itself and its child containers. As a result, a
hierarchy of containers is maintained in the form of a
tree structure, which has the component tree nodes of
containers.

Virtual Counterpart

Each virtual counterpart is defined as a mobile agent
and a whole or part hierarchy of counterparts is main-
tained as a acyclic-tree structure of virtual counter-
parts. The framework provides agent runtime sys-
tem(s) on computer(s). The system is responsible
for managing and exchanging virtual counterparts and
controls messages or counterparts with runtime sys-
tems running on different computers (if the frame-
work is maintained in one or more computers). The
runtime system was designed for this framework, but
is similar to other existing Java-based mobile agent
systems.

Each agent can have one or more activities im-
plemented using the Java thread library. The system
can control all the components in its container hierar-
chy, under the protection of Java’s security manager.

Furthermore, the system maintains the life cycle of
the agents: initialization, execution, suspension, and
termination. When the life cycle state of an agent
changes, the system issues certain events to the agent
and its descendent agents.

Counterpart migration within a container hierar-
chy occurs merely as a transformation of the tree
structure of the container hierarchy. When one coun-
terpart is moved to another in the same computer,
a sub-tree, whose root corresponds to its container
and branches, including counterparts, is migrated to
the container that maintains the destination. When a
counterpart can be deployed in another sub-tree main-
tained on another computer, the system marshals the
state of the counterpart, e.g., instance variables and
the counterpart embedded within its container sub-
tree, into a bit-stream and transmits their serialized
state program code through TCP sessions by using the
underlying mobile agent runtime system.

Inter-counterpart Communication

This framework offers several mechanisms to provide
services dependent on the groups of people in addi-
tion to their locations.

• Vertical Communication. All counterparts can
send events to invoke callback methods provided
their children can subscribe to the events that they
are interested in so that they can receive these
events. Each counterpart can be viewed as a ser-
vice provider for its ancestor and child counter-
parts. If ancestor or parent counterparts (or child
counterparts) have service methods that match the
attributes, the system returns a list of suitable ser-
vice methods to the counterparts.

• Horizontal Communication. Each counterpart
can invoke service methods provided by its neigh-
boring counterparts, which are contained in its
parent. When a container sends its parent the at-
tribute that specifies its requirements, the runtime
system searches for suitable services in its neigh-
boring containers. The container can invoke the
services.

Our framework supports three types of inter-
counterpart communication primitives for vertical and
horizontal communications, which can be located at
the same or different computers, 1)remote method in-
vocation, 2) publish/subscribe-based event passing,
and 3) stream communication. This first supports
vertical and horizontal communications and offers
APIs for invoking the methods of other counterparts
on local or different computers with copies of argu-
ments. Our programming interface for method invo-
cation is similar to CORBA’s dynamic invocation in-

CONTEXT-AWARE SERVICES FOR GROUPS OF PEOPLE

59



terface and does not have to statically define any stub
or skeleton interfaces through a precompiler approach
because ubiquitous computing environments are dy-
namic. The second supports vertical and horizontal
communications. It is useful and efficient for captur-
ing changes in the physical world because they pro-
vide subscribers with the ability to express their inter-
est in an event so that they can be notified afterward of
any event mentioned by a publisher. This framework
provides a generic remote publish/subscribe approach
using Java’s dynamic proxy mechanism, which is a
new feature of the Java 2 Platform.1 The third sup-
ports horizontal communications. The notion of a
stream is highly abstracted representing a connec-
tion to a communication channel. When partners are
different computers, the model enables two counter-
parts on different hosts to establish a reliable channel
through a TCP connection managed by the hosts.2

Support to Groups of People

Services should be selected and configured according
to a combination of users within the available scope
of the services in addition to the requirements of the
services themselves. The selection is defined in the
counterpart corresponding to the space and the config-
uration is defined in its selected service itself. When a
user enters a place, his/her counterpart is deployed at
the counterpart corresponding to the place. The for-
mer counterpart sends a query message to the latter
counterpart to ask about available services with the
attributes that specify its service requirements. There
are several patterns to execute services when multiple
people are in the place. The current implementation
supports the four navigation patterns as follows:

• The FIFO pattern executes a service for newly
visiting users after executing services for existing
users.

• The Interruption pattern interrupts running ser-
vices for existing users and executes a service for
newly visiting users. After the latter finishes, it
resumes the former.

• The Parallelism pattern executes a service for
newly visiting users, even while running services
for existing users.

• TheSynchronization pattern blocks executing ser-
vices when specified conditions are satisfied even
when some users have arrived.

1Since the dynamic creation mechanism is beyond our
present scope, we have left it for a future paper

2Since our channel relies on TCP, it can guarantee
exactly-once communication semantics across the migra-
tion of counterparts.

These were implemented as built-in modules for
virtual counterparts corresponding to spaces. The first
was implemented as a queuing mechanism for ex-
clusively executing agents for multiple simultaneous
users. The second and third were to enables the coun-
terpart that the pattern was built on to control its ser-
vices. The fourth was a barrier synchronization in the
sense that it instructed services to be executed after
its specified conditions were satisfied. For example,
services are executed, when two visitors are present
at the same space in the same time. That is, when two
users enter the same spot, the CDS sends two noti-
fication messages to the agent runtime system in the
space in the order in which they entered.

4.3 Agent Runtime System

Each agent runtime system is responsible for execut-
ing and migrating agents to other agent runtime sys-
tems running on different computers through a TCP
channel using mobile-agent technology. It is built
on the Java virtual machine (Java VM) version 1.5
or later versions, which conceals differences between
the platform architectures of the source and destina-
tion computers. It provides each agent with one or
more active threads but it governs all the agents in-
side it and maintains the life-cycle state of each agent.
When the life-cycle state of an agent changes, e.g.,
when it is created, terminates, or migrates to another
runtime system, its current runtime system issues spe-
cific events to the agent to execute specified callback
methods defined in the agent.

Agent runtime systems can exchange agents with
other runtime systems through TCP/IP. When an
agent runtime system migrates an agent to another
runtime system over the network, not only the code
of the agent but also its state is transformed into a
bitstream by using Java’s object serialization package
and then the bit stream is transferred to the destina-
tion.

Since the package does not support the capturing
of stack frames of threads, when an agent migrates
to another computer, the agent needs to stop its ac-
tive threads. Its runtime system propagates certain
events to invoke specified callback methods defined
in the agents so that they can stop their active threads
and release their previously acquired resources. The
agent runtime system on the receiving side receives
and unmarshals the bit stream. Since arriving agents
may explicitly have to acquire various resources, e.g.,
video and sound, or release previously acquired re-
sources, the runtime systems propagate certain events
to agents in order to invoke callback methods defined
in the agents. As agent runtime systems can explicitly

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

60



store agents on secondary storage, so that the agents
can continue to assist their users when the users want
the services provided by the agents.

4.4 Service-provider Agent

Virtual counterparts corresponding to terminals de-
ploy service-provider agents at the terminals. Each
agent is automatically deployed at and maintains per-
user preferences on a user and record his/her behavior,
e.g., exhibits that they have looked at. The agent can
also define user-personalized services adapted to the
user and access location-dependent services provided
at its current computer. Each agent is spatially bound
to, at most, one user. When a user gets closer to an
exhibit, our system detects his/her migration by using
location-sensing systems and then instructs the user’s
agents to migrate to a computer close to the exhibit.
Mobile agents help to conserve limited resources, be-
cause each agent only needs to be present at the com-
puter for the duration the computer needs the services
provided by that agent.

5 EXPERIENCE

We constructed and carried out an experiment at the
Museum of Nature and Human Activities in Hyogo,
Japan, using the proposed system. Figure 2 is a sketch
that maps the spots located in the museum.

Spot 1

Spot 2 Spot 3

Spot 4
Spot 2

Spot 1

Figure 2: Experiment in Museum.

The experimental environment provided four
spots in front of exhibits, which were specimens
of stuffed animals, i.e., a bear, deer, racoon dog,
and wild boar in an exhibition room of the mu-
seum.3 Each spot could provide five different pieces
of animation-based annotative content about the an-
imals, e.g., their ethology, footprints, feeding, habi-
tats, and features, and had a display and Spider’s ac-
tive RFID reader with a coverage range that almost
corresponded to the space, as shown in Fig. 3.

3The number of spots and their locations depend on the
target environments, e.g., museums.

Pendant

(with RFID tag)
Ambient

Display

RFID

reader

Figure 3: Spot at Museum of Nature and Human Activities
in Hyogo.

The experimental system provides each visitor
or group of visitors with colored pendants including
RFID tags. Fig. 4 is an animation of an agent, which
is a virtual owl. The agent is spatially attached to a
pendant assigned to each visitor.

These pendants are colored, e.g., green, orange,
or blue. A newly created agent is provided with its
own color corresponding to the color of the pendant
attached to the agent. For example, suppose that a
visitor enters a spot with the specimen of a racoon
dog and a terminal is located in the spot. His/her vir-
tual counterpart is migrated to the counterpart corre-
sponding to the spot. It communicates with the virtual
counterpart corresponding to the terminal so that an
annotation service about the specimen is played from
the terminal. When another visitor enters the spot,
his virtual counterpart is migrated to the counterpart
corresponding to the spot. It requests the counter-
part corresponding to the terminal to execute annota-
tion services about the specimen in the personal form
of the newly arrived visitors. The experiment sup-
ported the FIFO pattern and an application-specific
pattern. When a newly visiting counterpart requested
the counterpart corresponding to the terminal to play
an annotation to its target user, the latter shorted the
opening and closing parts of the current animation.

The experimental system consisted of one CDS
and runtime systems running on four computers. It
provided GUI-based monitoring and configuration for
agents. When the CDS detected the presence of a tag
bound to a visitor at a spot, it instructed the agent
bound to the user to migrate to a computer contained
in the spot. After arriving at the computer, the run-
time system invoked a specified callback method de-
fined in the annotative part of the agent. The method
first played the opening animation for the color of
the agent and then called a content-selection func-
tion with his/her route, the name of the current spot,
and the number of times that he/she had visited the
spot. The latency of migrating an agent and starting

CONTEXT-AWARE SERVICES FOR GROUPS OF PEOPLE

61



time

time

time

Opening animation

Closing animation

Annotation about racoon dog

Figure 4: Opening animation, annotation animation, and
closing animation for orange pendant

its opening animation at the destination after visitors
had arrived at a spot was within 2 seconds, so that vis-
itors could view the opening animation soon after they
began standing in front of the exhibits. By using the
FIFO pattern, annotation services could be mutually
executed in each of the spots.

We did the experiment over two weeks. Each day,
more than 60 individuals or groups took part. Most
of the participants were groups of families or friends
aged from 7 to 16. Most visitors answered question-
naires about their answers to the quizzes and their
feedback on the system in addition to their gender and
age. Although the aim of this paper was not at user
evaluation, we administrated some basic user evalua-
tions. Almost all the participants (more than 95 per-
cent) provided positive feedback on the system. We
could adjust the play time of animations so that the
rate of positive feedback was almost the same inde-
pendently of the crowds of visitors.

The framework only maintained per-user profile
information within those agents that were bound to
the user. It promoted the movement of such agents
to appropriate hosts near the user in response to the
his/her movements. Thus, the agents did not leak pro-
file information on their users to other parties and they
could interact with their mobile users in personalized
form that had been adapted to respective, individual
users. The runtime system could encrypt agents to
be encrypted before migrating them over a network
and then decrypt them after they had arrived at their
destination. Moreover, since each mobile agent was
just a programmable entity, it could explicitly encrypt
its particular fields and migrate itself with these fields
and its own cryptographic procedure. The Java vir-
tual machine could explicitly restrict agents to only

access specified resources to protect hosts from mali-
cious agents. Although the current implementation
could not protect agents from malicious hosts, the
runtime system supported some authentication mech-
anisms for agent migration so that each agent host
could only send agents to and only receive them from
trusted hosts.

6 CONCLUSIONS

We designed and implemented a framework for pro-
viding context-aware services in public spaces, e.g.,
museums. It supported groups of users in addition
to single users and implemented application-specific
services as mobile agents to deploy the services at ter-
minals. It maintained a location model as contain-
ment relationships between digital representations,
called virtual counterparts, corresponding to people,
terminals, or spaces, according to their locations in
the real world. When a visitor moved between ex-
hibits in a museum, it dynamically deployed his/her
service provider agents at computers close to the ex-
hibits via virtual counterparts. When two visitors
stood in front of an exhibit, service-provider agents
were mutually executed or configured according to
the member of visitors. To demonstrate the util-
ity and effectiveness of the system, we constructed
location/user-aware visitor-guide services and experi-
mented with them for two weeks in a public museum.

REFERENCES

Carlsson, C. and Hagmnd, O. (1993). Dive: A platform
for multi-user virtual environments.Computer and
Graphics, 17(6):663–669.

Cheverst, K., Davis, N., Mitchell, K., and Friday, A. (2000).
Experiences of developing and deploying a context-
aware tourist guide: The guide project. InProceedings
of Conference on Mobile Computing and Networking
(MOBICOM’2000). ACM Press.

Ciavarella, C. and Paterno, F. (2004). The design of a hand-
held, location-aware guide for indoor environments.
Personal and Ubiquitous Computing, 8(2):82–91.

Fleck, M., Frid, M., Kindberg, T., Rajani, R.,
O’BrienStrain, E., and Spasojevic, M. (2002).
From informing to remembering: Deploying a
ubiquitous system in an interactive science museum.
IEEE Pervasive Computing, 1(2):13–21.

Greenhalgh, C. and Benford, S. (1995). Massive: A col-
laborative virtual environment for teleconferencing.
ACM Transactions on Computer-Human Interaction,
3(3).

PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems

62



Kruppa, M. and Kruger, A. (2005). Performing physical
object references with migrating virtual characters. In
Proceedings of Intelligent Technologies for Interactive
Entertainment, pages 64–73. Springer.

Kuflik, T., Albertini, A., Busetta, P., Rocchi, C., O.Stock,
and Zancanaro, M. (2006). An agent-based architec-
ture for museum visitors’ guide systems. InProceed-
ings of Information and Communication Technologies
in Tourism 2006, pages 57–60.

Luyten, K. and Coninx, K. (2004). Imogi: Take control over
a context-aware electronic mobile guide for museums.
In Workshop on HCI in Mobile Guides.

Oppermann, R. and Specht, M. (2000). A context-
sensitive nomadic exhibition guide. InProceedings
Symposium on Handheld and Ubiquitous Computing
(HUC’2000), volume LNCS vol.1927, pages 127–
142. Springer.

Rocchi, C., Stock, O., Zancanaro, M., Kruppa, M., and
Kruger, A. The museum visit: Generating seamless
personalized presentations on multiple devices. In
Proceedings of 9th international conference on Intel-
ligent User Interface, pages 316–318.

Satoh, I. (2005). A location model for pervasive comput-
ing environments. InProceedings of IEEE 3rd In-
ternational Conference on Pervasive Computing and
Communications (PerCom’05), pages 215–224. IEEE
Computer Society.

Satoh, I. (2007). A location model for smart environment.
Pervasive and Mobile Computing, 3(2):158–179.

Satoh, I. (2008a). Context-aware agents to guide visitors in
museums. InProceedings of 8th International Con-
ference on Intelligent Virtual Agents (IVA’08), volume
LNCS vol.5028, pages 441–455. Springer.

Satoh, I. (2008b). Experience of context-aware services in
museums. InProceedings of International Confer-
ence on Pervasive Services (ICPS’2008), pages 81–
90. ACM Press.

Smith, I. (2010). Mobile agents. InHandbook of Ambient
Intelligence and Smart Environments, pages 771–791.
Springer.

CONTEXT-AWARE SERVICES FOR GROUPS OF PEOPLE

63


