
THE EXTENDED BOYER-MOORE-HORSPOOL ALGORITHM
FOR LOCALITY-SENSITIVE PSEUDO-CODE

Kengo Terasawa, Toshio Kawashima
Department of Media Architecture, Future University Hakodate, Hakodate, Japan

Yuzuru Tanaka
Meme Media Laboratory, Hokkaido University, Sapporo, Japan

Keywords: Information retrieval, String matching, Document image indexing.

Abstract: Boyer-Moore-Horspool (BMH) algorithm is known as a very efficient algorithm that finds a place where a
certain string specified by the user appears within a longer text string. In this study, we propose the Extended
Boyer-Moore-Horspool algorithm that can retrieve a pattern in the sequence of real vectors, rather than in the
sequence of the characters. We reproduced the BMH algorithm to the sequence of real vectors by transforming
the vectors into pseudo-code expression that consists of multiple integers and by introducing a novel binary
relation called ‘semiequivalent.’ We confirmed the practical utility of our algorithm by applying it to the string
matching problem of the images from “Minutes of the Imperial Diet,” to which optical character recognition
does not work well.

1 INTRODUCTION

Large and increasing amounts of information are ac-
cumulating on the internet. In tandem with this,
the importance of information retrieval technology,
which enables users to extract necessary information
efficiently from the available information, is also in-
creasing. String matching problem is one such ba-
sic technology that is intensively studied. In partic-
ular, the Boyer-Moore (BM) algorithm (Boyer and
Moore, 1977) and Boyer-Moore-Horspool (BMH) al-
gorithm (Horspool, 1980) are extremely efficient al-
gorithms that run in sublinear time, i.e. it is possible
to retrieve the keyword string without accessing the
whole text string.

The purpose of this study is to broaden the re-
trieval target from a sequence of characters to a se-
quence of real vectors. This technology can pro-
vide a platform where it is feasible to conduct high-
speed similarity searches on a variety of time-series
or pseudo- time-series data.

The main element of the technology in this exten-
sion addresses two points. One is LSPC (Locality-
Sensitive Pseudo-Code) (Terasawa and Tanaka,
2007a), which is a kind of discretization of real vec-
tors. The LSPC discretize vectors into a set of in-
tegers with less loss of information compared with

usual vector quantization. However, because a bi-
nary relation ‘semiequivalent’ used in LSPC is not an
equivalence relation and does not satisfy the transi-
tive law, existing string matching algorithms are not
always applicable to LSPC. Therefore, this study also
introduces a second element, i.e. we arranges BMH
algorithms to be applicable to LSPC. As stated in the
title of the paper, this is termed an Extended Boyer-
Moore-Horspool Algorithm.

2 OUTLINE OF LSPC

Locality-Sensitive Pseudo-Code (LSPC) is a technol-
ogy where real vectors can be converted into pseudo-
code expressions without significant loss of their in-
formation. In this section we introduce the outline
of LSPC. A more detailed description can be found
in (Terasawa and Tanaka, 2007a).

Figure 1 illustrates an example of LSPC. The
black circles represent vectors distributed in theR

d

space, and the three-tuples of integers in brackets,
like (8,1,4), represent the pseudo-codes that are the
result of the discretization of the vectors. In this man-
ner, allocating multiple integers to one vector is the
main characteristic of LSPC. Another characteristic

437Terasawa K., Kawashima T. and Tanaka Y..
THE EXTENDED BOYER-MOORE-HORSPOOL ALGORITHM FOR LOCALITY-SENSITIVE PSEUDO-CODE.
DOI: 10.5220/0003369004370441
In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP-2011), pages 437-441
ISBN: 978-989-8425-47-8
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

���������������������������� �	��������� ������������������	��������	��� ��������������������� �	������	��������� ��� �������
��
�� ���� ���������������
� �� �	��������	�	��������
��
�� ���� ���������������
� �� �������
Figure 1: An example of LSPC.

of LSPC is a binary relation termed ‘semiequivalent.’
Two pseudo-codes are regarded to be semiequivalent
if at least one of their elements takes the same value.

The above allows the following summary of the
definitions of LSPC.

Definition 1. For a d-dimensional vector p, LSPC
C(p) is given as d′-tuples of integers:

p∈ R
d 7→C(p) = (c1(p) c2(p) · · · cd′(p))T ∈ N

d′
.

Definition 2. Two LSPC C(p)={ci(p)} and C(q)=
{ci(q)} are regarded to be semiequivalent iff∃i s.t.
ci(p) = ci(q).

In composing the LSPC, we used the hash
value obtained from the Locality-Sensitive Hashing
(LSH) (Gionis et al., 1999; Datar et al., 2004; Andoni
and Indyk, 2006; Terasawa and Tanaka, 2007b) as an
element of LSPC.

LSPC has richer descriptive power compared with
usual vector quantization. In usual vector quanti-
zation, there may be cases where different codes
are allocated to similar vectors in the vicinity of
boundaries. However, with LSPC, a range which is
semiequivalent to a specific pseudo-code may over-
lap with a range which is semiequivalent to another
pseudo-code (as shown in Fig. 1). As a result, the
probability of two pseudo-codes to be semiequivalent
is highly sensitive to the distance between two vectors
(an example is shown in Fig. 2). Therefore, it is possi-
ble to estimate whether the distance between the two
vectors is large or small by examining only whether
the two pseudo-codes are semiequivalent.

Here it must be noted that the computational costs
to examine whether pseudo-codesC(p) andC(q) sat-
isfy semiequivalent relations is smaller than the cost
to compute the distance between the two vectorsp
andq. This difference is significant especially when
the vector space is of higher dimensions. Vectors used
in pattern recognition often have a very high number
of dimensions, making it very likely that using LSPC
will reduce the computational costs.

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.50 1.00 1.50 2.00

Distance

P
r
o
b
a
b
i
l
i
t
y

o
f

b
e
i
n
g

s
e
m

i
e
q
u
i
v
a
l
e
n
t

Figure 2: An example of the probability of two pseudo-
codes to be semiequivalent with respect to the distance be-
tween two vectors.

3 THE
BOYER-MOORE-HORSPOOL
(BMH) ALGORITHM

This section will overview the BMH algorithm which
is the basis for the Extended BMH algorithm.

First, let us accurately formulate the problem. The
string matching problem is formulated as follows.

Definition 3 (The String Matching Problem). Given
string P of length n (referred to as the pattern or key-
word) and string T of length m(> n) (referred to as
text). The string matching problem is to search for
all starting position i of a keyword in a text such that
P(ξ) = T(i + ξ−1) for all ξ = 1,2, ...,n

HereP(ξ) represents theξ-th character ofP. For
example, withP = ababandT = abxabababxababx,
the solution to the string marching problem is
{4,6,11}. In the following,S[i : j] (j ≥ i) represents
the substring ofS that starts fromi-th character and
ends atj-th character ofS.

The naive method of string matching is a method
in which matching is conducted on every substring of
T with lengthn to patternP. The computational cost
with this method (frequency of character comparison)
is O(mn) at maximum.

Now, let us look at the BMH algorithm. The naive
method conducts matching of strings by shifting the
starting point of the substringT by one place for ev-
ery trial. Compared with this, the BMH algorithm
reduces computational cost by attempting to shift the
starting point by more than one place.

Figure 3 illustrates an example of an execution of
the BMH algorithm. SupposeT = abcbaxabacabbc
andP = abac. First, the BMH algorithm matchesP
andT[1 : 4]. The matching proceeds from right to left.
In this example, the 4th character ofT[1 : 4] and the
4th character ofP is compared, and the result is “not
match.” Then the next substring to be examined is
T[3 : 6], i.e., the starting point of the substring to be

VISAPP 2011 - International Conference on Computer Vision Theory and Applications

438

�������������� �������������� ���� ���� �� !" # $�%&'���� ���� �� !" ($�%&'���� ���� �� !" ($�%&'���� ����)*+* ,-./0123-24 ,-./0154 6-./0174 8-./0194 ,-./0123-24 ,-./0154 6-./0174 8-./0194
Figure 3: An example of BMH algorithm.

examined shifts two place because the last character
of T[1 : 4] is already known asb, it leads the fact that
we do not need to examineT[2 : 5].

The important point here is how many places we
should shift the starting point of the substring ofT. It
only depends on 4th character ofT[i : i +3]. Here, the
value of “how many places to shift” will be expressed
as “skip function.” The function skip(x) is then de-
fined as the number of places to shift when the last
character of substringT[i : i +3] is x, where the min-
imum value is 1 and the maximum value isn (= 4, in
this example).

The skip function is formed as follows. The skip
function includes all the possible characters (referred
to as alphabetΣ) as the domain and integer[1,n]
as its range. First, skip(x) is initialized to n for all
x ∈ Σ. Next, if the (n− i)-th character ofP is x,
then skip(x) is updated toi. The skip function is
obtained by iterating this procedure in the order of
i = n−1,n−2, · · · ,1.

4 THE EXTENDED
BOYER-MOORE-HORSPOOL
(BMH) ALGORITHM

The objective of this study is to extend the BMH algo-
rithm to LSPC, and in the following the definition of
the problem identified in Definition 3 above is reorga-
nized as a problem that has been extended to LSPC.

Definition 4 (The String Matching Problem Extended
to LSPC). Given LSPC string P of length n and LSPC
string T of length m(> n). The extended string match-
ing problem is to search for all starting position i of a
keyword in a text such that P(ξ) ∼ T(i +ξ−1) for all
ξ = 1,2, ...,n,

HereS(i) ∼ T(j) implies thatS(i) andT(j) are
semiequivalent.

The Extended BMH algorithm, generally, is the
same as the BMH algorithm. Namely:

[Extended BMH Algorithm]
First, i is set to one and examine whether
P(ξ) ∼ T(i + ξ− 1) for all ξ = 1,2, ...,n can
be satisfied. Similar to the original BMH al-
gorithm, the matching proceeds from right to

:;;<;= :;;<;> :::::; :;;<;< :;;<;: =>;<:?@ :;;<;= :;;<;> :::::; :;;<;< :;;<;: =>;<:?@ABCDEFGHFIJK LMNOPN Q RSTUV RWTSV RWTWV RXTYV RWTYV RSTWV RSTXVZ[NNO\] QRSTYV RSTUV RYTXV ^_`abcdecfghi`jb ^_`adbcdge ^_`afbcfggekl kklk^_`adbcdg mnkocd kl kklk^_`adbcdg mnkocd kl lkko^_`afbcfg mnkocf kl lkko^_`afbcfg mnkocf
(a) (b)

Figure 4: skip function in LSPC, (a): Array sizeM d′
, (b):

Array sizeM d′.

left. Next, to conduct matching for a new
substring, the starting positioni is moved by
skip(T(i + n− 1)). The algorithm will finish
at i +n−1> m.

The difference between the Extended BMH algo-
rithm and the BMH algorithm is the composition of
the skip function. In theory, the skip function for the
Extended BMH algorithm is formed by the following
process. The domain of the skip function includes all
the values that could be obtained by the pseudo-code
(following the example of the text string, we refer to
this as alphabetΣ). First, skip(x) is initialized ton for
all x∈ Σ. Next, skip(x) is updated toi concerning all
pseudo-codex∈ Σ s.t.x∼ P(n− i). The skip function
is obtained by iterating this procedure in the order of
i = n−1,n−2, ...,1 (Fig. 4(a)).

This process is theoretically possible but practi-
cally not. To utilize this method it requires array size
that is proportional to the size ofΣ to store the skip
function; however, LSPC hasd′ integers as its ele-
ment. If we assume the value of each element to be
from 1 to M , the array size will beM d′ ; therefore,
when we utilize values ofd′ larger than tens or hun-
dreds, huge memory requirement poses a problem.
Thus, the following theorem becomes significant.

Theorem 1. The skip function of the pseudo-code
C(p) = (c1(p)c2(p)...cd′(p)) can be expressed as fol-
lows:

skip(C(p))

= min(skip1(c1(p)),skip2(c2(p)), . . . ,skipd′(cd′(p)))

where skipi(ci(p)) is the skip function that is formed
by the same method as the traditional BMH algo-
rithm.

iProofj. When λ < mini=1,...,d′(skipi(ci(p))), then
P(n−λ) andC(p) will never be semiequivalent. This
is because, whenP(n− λ) ∼ C(p), there existsδ ∈
{1, ...,d′} s.t. theδ-th element ofP(n− λ) and the
δ-th element ofC(p) are equal; however, this con-
tradictsλ < skipδ(cδ(p)). On the other hand, when
λ = mini=1,...,d′(skipi(ci(p)), then there existsδ s.t.
λ = skipδ(cδ(p)), which means that theδ-th ele-
ment of P(n− λ) and theδ-th element ofC(p) are

THE EXTENDED BOYER-MOORE-HORSPOOL ALGORITHM FOR LOCALITY-SENSITIVE PSEUDO-CODE

439

Figure 5: Images from the “Minutes of the Imperial Diet.”

(a) (b)

Figure 6: Keywords used in the experiment. (a): Prime
Minister (length=6, frequency=15), (b): Potsdam Declara-
tion (length=8, frequency=11).

equal, i.e.,P(n− λ) ∼ C(p). Thus, skip(C(p)) =
mini=1,...,d′(skipi(ci(p))). �

By this theorem, the memory requirement is re-
duced fromM d′ to M d′, and the implementation be-
comes practically possible (Fig. 4(b)).

5 EXPERIMENT USING
LOW-QUALITY DOCUMENT
IMAGES

As an application of the Extended BMH algorithm,
an experiment in string matching was executed using
low-quality document images which are difficult to
convert to text by OCR. We compared the computa-
tional costs with the extended BMH algorithm and the
naive method. Note that the naive method is currently
the only method that is applicable to LSPC, except for
the proposed method.

5.1 Materials and Experimental Setup

The material used in our experiment was the “Min-
utes of the Imperial Diet” from National Diet Library,
Japan1. This database contains the image data of the
28th (1911) – 92nd (1947) Imperial Diet sessions. For
88th (1945) – 92nd (1947), text data is also available.
We used 32 images from 88th session. Sample page
is displayed in Fig. 5. The resolution per character is

1http://teikokugikai-i.ndl.go.jp/

approximately 50 pixels.
First, the document images are segmented to char-

acters. Character segmentation was conducted by
proprietary OCR software “MDTOCR v.6.0.” Note
that character segmentation is easier problem than
character recognition problem. The accuracy of char-
acter segmentation was over 99% for the material im-
ages, while accuracy of character recognition is less
than 85%.

Each segmented character image is converted to
feature vector. As a feature vector, we utilized the
gradient distribution feature (GDF) (Terasawa et al.,
2006). The segmented image was divided into smaller
4×4 domains, which were used to form feature vec-
tors of 128 dimensions, just similar to the method uti-
lized in SIFT (Lowe, 2004).

Next, each feature vector was converted into
LSPC. The LSH family used was the SLSH-
orthoplex (Terasawa and Tanaka, 2007b) because the
feature vectors of GDF is always normalized to a unit
length. The parameters used in LSPC conversion was
determined by preliminary experiment.

Thus, the document images were converted to the
sequence of LSPC and were ready to be conducted the
string matching based on Extended BMH algorithm.

5.2 Experiment

The total number of characters of the document im-
ages used in this experiment was 64900. For this
experiment, we had selected two keywords from the
whole document, as shown in Fig. 6. Keyword (a)
means “Prime Minister” in Japanese, having six char-
acter length and appearing 15 times in the docu-
ment. Keyword (b) means “Potsdam Declaration” in
Japanese, having eight character length and appearing
11 times in the document. For both keyword, each
occurrences was used as a query, using both the naive
method and the Extended BMH algorithm.

5.3 Experimental Results

The result is summarized in Table 1. In the table,
(#comp) represents how many times the character to
character comparison were executed and (#skip) rep-
resents how many times the skip function were eval-
uated. Displayed digits are mean values over each
occurrences was used as a query. Note that non-
perfect recall and precision ratio comes from two rea-
sons. One reason is that there exists deformation of
the characters in the image, and another reason is the
nature of randomized algorithm. Since the transfor-
mation of feature vectors into LSPC is a randomized
algorithm, the accuracy of the LSPC-based retrieval

VISAPP 2011 - International Conference on Computer Vision Theory and Applications

440

Table 1: Experimental Results.

Keyword Naive Extended BMH Recall Precision
(#comp) (#comp) (#skip) (%) (%)

Prime Minister 79127.8 21973.2 17649.6 88.57 80.87
Potsdam Declaration 78833.6 16850.2 13488.0 61.82 100.00

(number of characters = 64900)

is not assured to be perfect. Although it is possible
to improve the accuracy by increasing the trial fre-
quency or adjusting other parameters, this will involve
a trade-off with the computational complexity. Those
are the nature of randomized algorithms.

As illustrated by the tables, the number of times
of character to character comparison of the Extended
BMH algorithm is lower than the naive method for
both keywords. Moreover, it is lower than the total
number of characters (64900), which means that re-
trieval in sublinear time was accomplished.

However, the number of times of evaluation of
the skip function must be considered as an additional
cost for the naive method with the Extended BMH al-
gorithm. Even though one ‘comp’ process and one
‘skip’ process is not exactly equal — the former is a
process that evaluates the match/non-match ofd′ in-
tegers, while the latter is a process that obtains the
minimum amongd′ integers — we can roughly es-
timate the cost of the Extended BMH algorithm just
adding (#skip) and (#comp). In this case, also, we can
conclude that the computational costs of the Extended
BMH is reduced to below that of the naive method.

6 CONCLUSIONS

In this paper we have proposed an Extended BMH
algorithm, which was developed from the BM and
BMH algorithm, to allow searching for specific
strings based on a sequence of real vectors. As an
example of its application, an experiment with string
matching using low-quality document images where
optical character recognition does not work well was
performed. The results showed that the algorithm can
contribute to reducing the computational cost com-
pared with the naive method.

Our future work will focus on developing an ef-
ficient algorithm to realize Inexact Matching rather
than Exact Matching. With such an advanced algo-
rithm, it would be possible to develop a fast algo-
rithm using LSPC, which is applicable to more diffi-
cult problems such as string matching of handwritten
documents.

REFERENCES

Andoni, A. and Indyk, P. (2006). Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. InProc. Symposium on Foundations of
Computer Science, FOCS’06, pp. 459–468.

Boyer, R. S. and Moore, J. S. (1977). A fast string searching
algorithm. InCommunications of the ACM, vol. 20,
pp. 762–772.

Datar, M., Indyk, P., Immorlica, N., and Mirrokni, V.
(2004). Locality-sensitive hashing scheme based on p-
stable distributions. InProc. 20th ACM Symposium on
Computational Geometry, SoCG2004, pp. 253–262.

Gionis, A., Indyk, P., and Motwani, R. (1999). Similar-
ity search in high dimensions via hashing. InProc.
25th Int. Conf. on Very Large Data Base, VLDB1999,
pp. 518–529.

Horspool, R. N. (1980). Practical fast searching in strings.
In Software – Practice & Experience, vol. 10, issue 6,
pp. 501–506.

Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. InInternational Journal of Com-
puter Vision, vol. 60, no. 2, pp. 91–110.

Terasawa, K., Nagasaki, T., and Kawashima, T. (2006). Im-
proved handwritten text retrieval using gradient dis-
tribution features (written in japanese). InProc.
Meeting on Image Recognition and Understanding,
MIRU2006, pp.1325–1330.

Terasawa, K. and Tanaka, Y. (2007a). Locality sensitive
pseudo-code for document images. InProc. 9th Int.
Conf. on Document Analysis and Recognition, IC-
DAR2007, vol. 1, pp. 73–77.

Terasawa, K. and Tanaka, Y. (2007b). Spherical lsh for
approximate nearest neighbor search on unit hyper-
sphere. InProc. 10th Workshop on Algorithms and
Data Structures, WADS2007, LNCS4619, pp. 27–38.

THE EXTENDED BOYER-MOORE-HORSPOOL ALGORITHM FOR LOCALITY-SENSITIVE PSEUDO-CODE

441

