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Abstract: High-resolution computed tomography (HRCT) became an essential tool in detection, characterization and 
follow -up of lung diseases. In this paper we focus on lung emphysema, a long-term and progressive disease 
characterized by the destruction of lung tissue. The lung patterns are represented by different features 
vectors, extracted from statistical texture analysis methods (spatial gray level dependence, gray level run-
length method and gray level difference method). Support vector machine (SVM) was trained to 
discriminate regions of healthy lung tissue from emphysematous regions. The SVM model optimization was 
performed in the training dataset through a cross validation methodology, along a grid search. Three usual 
kernel functions were tested in each of the features sets. This study highlights the importance of the kernel 
choice and parameters tuning to obtain models that allow high level performance of the SVM classifier. 

1 INTRODUCTION 

HRCT scans are very accurate in diagnosis of lung 
diseases. However, the interpretation of HRCT 
images, in the presence of patterns associated with 
lung diseases is a time-consuming task and requires 
experience. The latest generations of CT scanners 
allow the acquisition of a large number of images 
per patient examination. The use of computerized 
image analysis methods can be of great help in 

radiologist services improving precision, consistence 
and earlier diagnosis.  

Emphysema is a chronic lung disease that affects 
severely person’s everyday life. The principal factor 
risk is cigarette smoking, although genetic 
conditions, air pollution, chemical fumes or dust also 
can cause emphysema. This disease is defined as “a 
permanent, abnormal enlargement of airspaces distal 
to the terminal bronchiole, accompanied by the 
destruction of the walls of the involved airspaces” 
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(Verschakelen, 2007). The diagnosis of emphysema 
in HRCT images is based on the detection of regions 
of very low attenuation that contrast with healthy 
lung. Figure 1 shows examples of a region of a 
healthy lung and a region of emphysema. 

 

a) b) 

Figure 1: Visual aspects of lung tissue pattern in CT 
images: a) Healthy and b) emphysema. 

In this work feature extraction is based on 
statistical approach to describe lung tissue texture. 
Classification of each region of interest (ROI) in 
classes of lung pattern disease was performed using 
SVM algorithm. 

SVM has emerged as an efficient technique for 
solving classification problems. SVM has it origin 
on statistic learning theory and structural risk 
minimization (Vapnick, 1995) (Burges, 1998). A 
comparative study was performed by Meyer (Meyer, 
2005) between SVM and other popular classifiers. 
The results showed that SVM classifiers are among 
the best. In Depeursinge et al. (Depeursinge, 2010b) 
five common classifiers were compared in their 
ability to discriminate six lung tissue patterns in 
HRCT. The results of this study showed that SVM 
constitutes the best trade-off between the error rate 
and the capability of generalization. However 
performance of SVM strongly depends on user 
kernel choice and parameters selection. In training 
phase the SVM model optimization must be 
carefully done. No optimal parameter selection can 
lead to significant reduction in classification 
performance. This fact constitutes the main 
limitation of the use of SVM. In this work we 
carried out a comparative performance analysis of 
different kernel functions in classification ROIs of 
normal lung and ROIs of emphysema, under SVM 
model parameters variations, using features vectors 
extracted from three different methods. 

The remainder of the paper is organized as 
follows. Section 2 briefly describes the feature 
extraction methods. Section 3 presents the theory of 
SVM classification algorithm. The dataset used and 
optimization methodology of the classifier is 
described in section 4. In section 5 results are 
presented and discussed and final conclusions are 
drawn in section 6. 

2 FEATURES EXTRACTION 

Texture analysis is fundamental in medical images 
interpretation. In this study each texture pattern is 
described by their statistical properties, organized in 
a n-dimensional feature vector. The next paragraphs 
briefly reviews the principles of the methods used to 
describe ROIs texture.  

In Spatial Gray Level Dependence Method 
(SGLDM) the second-order distribution of pixels 
gray levels are explored. Each entry of the co-
occurrence matrix C(i,j|d,θ) represents the number 
of times a pair of gray level values (i,j) occur at 
distance d, in the direction θ. For each distance and 
orientation (d, θ) a matrix is computed and a set of 
six textural measures was extracted. In Gray Level 
Run-Length Method (GLRLM) texture is based on 
run-length primitives, which corresponds to a set of 
consecutive pixels with the same gray level in a 
given direction. These primitives can be 
characterized by their length, direction and gray 
level. The run-length descriptors are extracted from 
the run-length matrix, where each element of 
M(a,r|θ) represents the number of runs with pixels 
of gray level intensity a and length r along the 
orientation θ. The Gray Level Difference Method 
(GLDM) is a technique of texture analysis based on 
the occurrence of absolute difference in gray levels 
of pairs of pixels, in a certain distance and direction. 
The result is a histogram H(k|d,θ) which gives the 
probability of the occurrence of the difference gray 
level value k between two pixels distant (d,θ). The 
features extracted from the methods used are listed 
in Appendix. A brief description can be found in 
(Vasconcelos, 2010). 

3 SUPPORT VECTOR MACHINE 
CLASSIFICATION 

In this section we outline the basic theory of SVM 
and their application on lung data classification. 

3.1 Linear SVM 

Consider the training data represented by the 
pairs ሼܠ, , ሽݕ ݅ = 1, … ݊, , є  ܠ  , є  ሼ+1ݕ −1ሽ, 
where the vector xi is the texture descriptors 
extracted from lung parenchyma regions and yi the 
class label associated by the radiologist to the 
training case i. The label +1 is associated with 
emphysema class and -1 with normal class. When 
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data is linearly separable exists a vector  ܟ є   
and a scalar b є , that satisfy the conditions  

.ܟ)ݕ  ܠ + ܾ) − 1 ≥ 0 , ∀݅ = 1 … ݊ (1)
 

The objective of the SVM classifier is to build an 
optimal hyperplane that separates the two classes in 
such a way that the distance (also called margin) 
from the hyperplane H to the nearest training data 
points, in each of the classes, is as large as possible, 
see Figure 2. 

 

Figure 2: Optimal separating hyperplane in SVM linearly 
separable case. 

The distance between the hyperplanes H1 e H2 is 
2/||w||. The maximization of this margin leads to  

12    ݁ݖ݅݉݅݊݅݉  ଶ (2)‖ܟ‖
 

subject to the equality constrains of Equation (1). A 
convenient way to solve constrained minimization 
problems is using a Lagrangian formulation, which 
leads to the following optimization problem: 
ܮ  = 12 – ଶ‖ܟ‖  α (ݕ(ܟ. ܠ + ܾ) − 1)

ୀଵ  (3)

 

This equation should be minimized with respect to 
primal variables w and b and maximized with 
respect to dual variables હ to obtain the dual 
formulation: 

 

Ld=  αi 

n

i=1

1

2
  αi αjyiyj൫xi.xj൯n

j=1

n

i=1

 (4)

Subject to    αݕ
ୀଵ   α ≥ 0, ∀݅ = 1 … ݊ 

In dual formulation the problem optimization is done 
using only the dot product of data training and 
respective classes. The training of SVM now 
involves the maximization of Equation (4) in respect 

to α. The points with α୧0 are called Support 
Vectors (SVs) and lie on one of the parallel 
hyperplane H1 or H2 (Figure 2). In the case of a two 
class classification problem, the decision rule 
becomes 

(ܠ)݂  = )݊݃ݏ αݕ(ܠ. (ܠ + ܾ
ୀଵ ) (5)

 

This SVM formulation is called hard margin, since 
no training errors are allowed. All the training 
samples satisfy the inequality  ݕ݂(ܠ) ≥ 1. 

3.2 The NonLinear Case 

In some cases, a linear hyperplane is unable to 
separate the classes appropriately. The SVM strategy 
is to map the input data into a high dimensional 
feature space by a mapping Ф:   → H, in order to 
improve the separability between classes. This 
method is known as nonlinear SVM. In the feature 
space the decision function becomes: 

(ܠ)݂  = )݊݃ݏ αݕܠ)ܭ, (ܠ + ܾ
ୀଵ ) (6)

 

There are several kernels functions  ܠ)ܭ, (ܠ =  Ф(ܠ).Ф(ܠ) that can be used to solve 
nonlinear problems. Some of the most common 
choices are: 

• Linear: ܠ)ܭ, (ܠ = . ܠ  (7)ܠ

• Gaussian Radial Basis Function (RBF): ܠ)ܭ, (ܠ = exp(−‖ܠ − ଶ) (8)ߪ‖ଶ/2ܠ

• Polynomial: ܠ)ܭ, (ܠ = ܠ)ߛ) . (ܠ + ߛ ௗ (9)with(ߜ > 0, ߜ > 0, ݀ > 0 

3.3 The Inseparable Case 

When information classes, obtained from CT data 
are not totally separable by linear boundaries, the 
SVM formulation is called soft margin. In this case 
slack variables are introduced to relax the constraints 
of Equation (1) that becomes: ݕ(ܟ. ܠ + ܾ) ≥ 1 − ߦ       (10)subject toߦ ≥ 0, ∀݅ = 1 … ݊ 
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The optimization problem is formulated in this 
situation as ݉݅݊݅݉݅12    ݁ݖ ଶ‖ܟ‖ + C  ߦ

ୀଵ  (11)

The regularization parameter C is a trade-off 
between the maximization of de margin (first part of 
Equation 11) and minimization of training errors. 
The optimization process is similar to the separable 
case except the constraints that become 0 ≤ α ≤ C. 

4 METHODOLOGY 

4.1 Dataset and Features Definitions 

In this study part of a dataset that is being organized 
in collaboration with Radiology Department of 
Coimbra University Hospital. The dataset contain 
examples of representative patterns associated with 
normal and lung disease tissue. The visualization of 
CT images, selection and characterization of the 
ROIs by radiologists, is done with a user friendly 
software, developed by the authors for this propose 
(Vasconcelos, 2009). HRCT images were acquired 
using multidetector row scanner from General 
Electric Healthcare (LightSpeed VCT 64), with a 
slice thickness of 1.3 mm. Each image is stored in 
512x512 pixels with 16-bit gray level, using 
DICOM (Digital Imaging and COmmunications in 
Medicine) standard. Each image was displayed using 
a lung window with a centre of -700 Hounsfield 
Units (HU) and a width of 1500 HU.  

From 290 scans of 82 patients (#55 male and #27 
female) with an average age of 65±15 years, 
radiologists outlined #185 ROIs of emphysema, 
including different types and severities of 
emphysema and #105 of normal ROIs. From each 
scan only one ROI was obtained.  

In a previous study we evaluated the importance 
of a set of parameters in the classification accuracy 
of lung CT images, such the size of the ROIs, the 
quantization level and features used to characterize 
each texture ROI (Vasconcelos, 2010). These results 
are the starting point for some options taken in the 
study described in this paper.  

Each ROI is characterized as an n-dimensional 
feature vector obtained from SGLDM, GLRLM and 
GLDM. The four directions {0º, 45º, 90º, 135º} are 
considered for the three methods. In GLDM the six 
features are obtained over an intersample of 1 to 4 
pixels, resulting in a 96-dimensional feature vector. 
Using SGLDM the intersample used was 1 and 2 

resulting in a set of 48 features. The 44-dimensional 
feature vector obtained with GLRLM results from 
the eleven features extracted over the four 
directions. For standardization reasons all ROIs were 
quantified to 32 gray levels, despite the fact the best 
performance for GLDM’s features were obtained for 
a quantization levels of 64 gray levels (only 0.7% 
better). The minimum and maximum HU value is 
calculated for all ROIs of the dataset and each ROI 
is quantized according to this value. All features 
were independently normalized to zero mean and 
unit variation.  

4.2 Classifier Evaluation 

The dataset (#290 ROIs) was divided in train and 
test set, 70% for training and 30% for testing. Then, 
ROIs of train and test sets are split in smaller ROIs 
of 40x40 pixels (#980 in train set and #331 in test 
set). 

The search for the optimal parameters is carried 
out using a grid search methodology. Initially a 
coarse search is done. For every point of the search 
space a k-fold cross validation (CV) is performed. 
The parameters that allow the best mean CV 
accuracy were selected and a fine grid search is 
carried out around the selected parameters, for 
refinement. The final classifier model is built using 
all training data and the optimal parameters 
previously obtained. Model is evaluated in test 
patterns. The accuracy (the number of correctly 
classified samples divided by the total samples in the 
test set); sensibility (the number of samples correctly 
classified as positive divided by the total number of 
positive samples in the test set) and specificity (the 
number of samples correctly classified as negative 
divided by the total number of negative samples in 
the test set) are computed. 

5 EXPERIMENTS AND RESULTS 

The SVM kernel functions tested were linear 
(equation 7), RBF (equation 8), and polynomial 
(equation 9, considering  ߛ = 1, ߜ = 1 and ݀ = 3). 
The classification was performed using SVM 
classifier available in bioinformatics toolbox of 
MATLAB (MATLAB, 2009). 

The parameter adjustment methodology was 
performed for the regularization parameter C for 
linear and polynomial kernels and (C, σ) for RBF 
kernel. First, we evaluate the parameters values 
using a coarse grid in C=2-5, 2-4.5, 215 and σ=2-2, 2-

1.5,…, 27 and then focus the search in a finer grid. If 

COMPARATIVE PERFORMANCE ANALYSIS OF SUPPORT VECTOR MACHINES CLASSIFICATION APPLIED
TO LUNG EMPHYSEMA IN HRCT IMAGES

137



 

the pair (2c, 2s) generates the lowest cross validation 
error, a finer search is performed around them with a 
step of 0.25 upward and downward. Figure 3 and 4 
depicts graphics contours of CV accuracy and 
number of SV, after a 10-fold cross validation, for 
RBF Kernel and features extracted with GLDM. 

 

Figure 3: CV accuracy (%) obtained along the search 
space for finding (C, σ) parameters. GLDM features and 
RBF kernel were considered. 

A heuristic analysis of the curves of Figure 3 
allows a good understanding of the parameters space 
and a way of reduce search space. Variations in 
accuracy results are of the order of 45%. The worst 
accuracy was 41.5%, obtained in grid coordinates 
(C=2-4, σ=27) and the best accuracy was 92.8% 
obtained at (C=25, σ=22.5). The number of SV varied 
between 152 and 785. A similar methodology was 
performed for all the kernels and features sets. 

 

Figure 4: Number of SV obtained along the search space 
for finding (C, σ) parameters. GLDM features and RBF 
kernel were considered. 

Table 1 illustrates the results obtained for the 
parameters  that  best  handled the classification pro- 
blem. The highest classification accuracy (Acc), 
sensibility (Sen) and specificity (Sp) was achieved 
with RBF kernel, for all the features extraction 

methods. However, the parameter tuning must be 
carefully done to obtain the optimal parameters. 
According to the experiments, the polynomial kernel 
originated the SVM models that achieved the worst 
metrics. The large values of the regularization 
parameter C, that correspond to a high penalization 
to misclassified samples, can compromise the 
performance of the model because correspond to an 
overfitting situation. However, more experiments are 
necessary since this kernel function was used with 
the parameters γ, δ and d fixed. The adjustment of 
these parameters might lead to better results. 

Table 1: Results obtained for the three sets of features and 
kernels. 

 

An interesting characteristic of SVM is that the 
optimization problem leads to a sparse solution, in 
the sense that only SV points of the feature space 
have αi≠0 (in Equation 6). This fact is very attractive 
from the computational point of view, specially for 
large datasets. Analyzing Table 1, we can conclude 
that GLRLM features led to the best results in all the 
metrics, with the less number of SV. With this 
feature set, linear kernel is also a good option, 
allowing results very similar to RBF kernel. 

6 CONCLUSIONS 

In this paper a comparative performance analysis in 
discrimination of lung emphysema pattern in HRCT 
images from healthy pattern was presented. Three 
common kernel functions were tested with different 
statistical features sets. A grid search was carried out 
in order to get the optimal parameters which 
influence the model performance. From presented 
study, it’s clear that the kernel choice and 
parameters tuning is crucial to maximize the SVM 
performance. In the three features sets tested, the 
RBF kernel achieved the highest performances. The 
polynomial kernel was not the ideal function for 
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these classifications propose. However, more tests 
will be done with the adjustment of the kernel 
parameters. 
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APPENDIX 

Table 2: Textural Features extracted from each method. 

Spatial Gray Level 
Dependence Method 
(SGLDM) 

Gray Level Run-Length Method 
(GLRLM) 

Gray Level Difference 
Method (GLDM) 

 
 
Angular Second Moment 
Entropy 
Inverse Difference Moment 
Correlation 
Variance 
Contrast 

Short Run Emphasis 
Long Run Emphasis 
Gray Level Non-Uniformity 
Run Length Non-Uniformity 
Run Percentage 
Low Gray Level Run Emphasis 
High Gray Level Run Emphasis 
Short Run Low Gray Level Emphasis 
Short Run High Gray Level 
Emphasis 
Long Run Low Gray Level Emphasis 
Long Run High Gray Level 
Emphasis 

 
 
Angular Second Moment 
Entropy 
Inverse Difference 
Moment 
Correlation 
Variance 
Contrast 
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