
IMPLEMENTATION AND OPTIMIZATION
OF RDF QUERY USING HADOOP

YanWen Chen1, Fabrice Huet2 and YiXiang Chen1
1Software Engineering Institute, East China Normal University, Shanghai, China

2INRIA, Sophia-Antipolis, Le Chesnay, France

Keywords: Cloud Computing, MapReduce, RDF, Hadoop, Distributed Computing.

Abstract: With the prevalence of semantic web, a great deal of RDF data is created and has reached to tens of
petabytes, which attracts people to pay more attention to processing data with high performance. In recent
years, Hadoop, building on MapReduce framework, provides us a good way to process massive data in
parallel. In this paper, we focus on using Hadoop to query RDF data from large data repositories. First, we
proposed a prototype to process a SPARQL query. Then, we represented several ways to optimize our
solution. Result shows that a better performance has been achieved, almost 70% improvement due to the
optimization.

1 INTRODUCTION

Nowadays Resource Description Framework (RDF)
is used to describe semantic data. At the same time,
SPARQL query language has been developed for
handling these data. Frameworks such as Jena and
Sesame are provided to store and achieve semantic
data, but these frameworks do not scale well for
large RDF graphs. So distributed parallel processing,
as a solution, has been explored to resolve the
scalability problem for semantic web frameworks.
Georgia, Dimitrios, and Theodore focused on
designing SPARQL query mechanism for distributed
RDF repositories (Georgia et al., 2008). Min,
Martin, Baoshi and Robet paid more attention to
scalable Peer-to-Peer RDF repositories (Min et al.,
2004). Others did more work on querying RDF data
with distributed computing technology. Hadoop
which is mentioned in Tom’s book (Tom, 2009), as
a cloud computing tool, can process data in parallel,
achieving a great improvement in performance. Also
Hadoop provides a high fault tolerance because its
distributed file system HDFS adopts a file
replication mechanism. So now people start to focus
on using Hadoop to process semantic data.

Mohammad, Pankil and Latifur proposed an
architecture which includes file generator and query
processor (Mohammad et al., 2009). In the file
generator, RDF data file is split by predicates and
then each file is divided further by objects. In the

query processor, they proposed an algorithm to
answer a SPARQL query. The main idea of the
algorithm is to join several queries in one job. In the
University of Queensland, scale-out RDF molecule
store architecture (Andrew et al., 2008) has been
proposed by Andrew, Jane and Yuan-Fang, in which
instance data and ontology are converted to RDF in
pre-processing phase. RDF graph is broken down
into small sub-graphs which are then added into
HBase (a Hadoop database). A query engine
processes user’s queries and returns results.
Hyunsik, Jihoon, YongHyun, Min and Yon proposed
a scalable query processing system named SPIDER
(Hyunsik et al., 2009) which is also based on
Hadoop. The idea of SPIDER is to store RDF data
over multiple servers. Then sub queries are put to
these cluster nodes. At last these sub query results
are gathered and delivered to user.

In our work, we design a query engine which
involves pre-processor and job trigger. The first
module is responsible for dividing a SPARQL query
into several sub queries according to its ontology.
The second module contributes to creating jobs.
Besides, three optimization tools (job reducing
handler, query accelerator and file splitting handler)
are devised to improve its performance.

The difference between our work and others are
as follows: First, although we also propose a query
engine to handle SPARAL query, our work focuses
on handling ontology which is not considered by

512 Chen Y., Huet F. and Chen Y..
IMPLEMENTATION AND OPTIMIZATION OF RDF QUERY USING HADOOP.
DOI: 10.5220/0003387805120515
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 512-515
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Mohammad in his paper (Mohammad et al., 2009).
Second, we divide a complex query into sub queries
and handle them using Hadoop while Andrew and
his colleges focus on dividing RDF graph into small
sub-graphs (Andrew et al., 2008). The most
important point is we devise several optimizations
tools to improve performance.

The rest sections are organized as follows.
Section 2 describes our architecture. In section 3 we
introduce our implementation. Section 4 details three
optimizations. Section 5 presents some experiments
and then reports their results. At last, section 6
reports the conclusions and future extensions.

2 ARCHITECTURE

We propose an architecture which includes one
master node and several slave nodes (Figure 1).

Figure 1: Proposed Architecture.

In master node, query engine consists of three
modules: pre-processor module, job triggering
module and result combining module. Pre-processor
module is responsible for generating sub query
groups. Job triggering module takes charge of
triggering jobs (query and join). Result combining
module is used to combine results of each group.
After getting a job, master node assigns tasks to
slave nodes in which tasks are executed in parallel.

Figure 2 shows us a query workflow with four
stages: pre-processor stage, query stage, join stage,
and result combining stage. Input is a SPARQL
query. Output is a set of triples which meet the
requirement of the SPARQL query. The pre-
processor parses a SPARQL query into sub queries.
After getting the results of these sub queries, we join
them in the join stage. At last, the joining results
from each group are combined into one file which is
the final result of the SPARQL query.

Figure 2: Workflow of a SPARQL query.

3 IMPLEMENTATION

A RDF file includes three columns: Subject,
Predicate and Object. Before executing our query
workflow, we store sorted RDF files in file system.
Three sorted files which are sorted separately by
Subject, Predicate and Object are generated from
one original unsorted file. In our implementation, we
firstly parse a SPARQL query in pre-process stage
according to its Univ-Bench ontology. In the
ontology there is a ‘subClassOf’ relationship among
some classes. We create sub query jobs according to
the relationship. For example, if ‘Professor’ has two
subclasses ‘FullProfessor’ and ‘AssociatedProfessor’,
then for a query like <?x type Professor>, three sub
queries are generated--<?x type Professor>, <?x type
FullProfessor> and <?x type AssociatedProfessor>.
From each sub query, some parameters such as type,
input file name, primary keyword, and secondary
keyword can be gotten. At last, we use Hadoop to
execute query job and then use Pig (a sub product of
Hadoop) to execute join job.

4 OPTIMIZATION

4.1 File Splitting Handle

Before executing a map function, Hadoop splits
input file into many small files and then creates
Map-Reduce task for each split file. In our work we
use File Splitting Handle to filter these split files.
Since data has been sorted in each split file, the File
Splitting Handle can select out files which may
contain a certain keyword we need. So the
performance will be improved since fewer tasks are

IMPLEMENTATION AND OPTIMIZATION OF RDF QUERY USING HADOOP

513

created. In our implementation, the first line record
of each split file is compared with the certain word
to determinate whether the file should be selected or
not. If the first line record is larger than the certain
keyword, then we discard the file, otherwise we
choose it. The same strategy is used when reading a
selected split file to avoiding a whole file searching.

4.2 Query Accelerator

Without using our accelerator, in each group, sub
query jobs are executed sequentially. By using our
accelerator, these jobs can be executed in parallel
because we take advantage of multiple threads. Also
in our accelerator, a join job is triggered as soon as
at least two jobs are ready to be joined.

4.3 Job Reducing Handle

The job reducing handle is designed to reduce the
number of jobs. In our implementation, when
dividing SPARQL query into different groups, some
identical sub queries maybe generated. So we use
job reducing handle to detect these identical queries
so that Hadoop can create only one job for them.
Besides, in each group, if there is at least one query
result is empty or an intermediate join result is
empty, job reducing handle can find it and then stop
creating jobs in this group, since the final result of
the group must be empty.

5 EXPERIMENT AND RESULT

In our experiments, we investigate the performance
of queries and the impact of optimizations from
following aspects:
 Impact of job reducing handler optimization
 Impact of query accelerator optimization
 Impact of file splitting handler optimization

For these experiments we use a cluster with 14
nodes, each equipped with two dual core processors
with 4GB of main memory and 72GB hard disk. The
software we developed is written in Java 1.6 and
based on Hadoop version 0.20.2. We use the LUBM
benchmark (Yuanbo et al., 2005) designed by
Yuanbo, Zhengxiang and Jeff to test query
performance. In the benchmark, the number of RDF
triples increases with increasing number of
universities.

We use a simple query to test its query
answering time varying sizes of datasets. Result
shows it almost has a sublinear speed up.

5.1 Impact of Job Reducing Handler

We use the fourteen queries provided by the
benchmark which includes 1000 university to
investigate the relation between query answering
time and the number of jobs. Result shows that
query answering time has a linear speedup with the
increasing number of jobs. Table 1 reports the
impact of job reducing handler. Apparently the
performance improved after using the handler. In
order to know how much it is improved, we
calculate the percentage of job decreasing and its
performance improvement as shown in Table 2.

Table 1: Job numbers before and after job handling.

From the Table, we can see that, for query 2, 10,
even they have the same percentage of total jobs
decreasing, they still get a different improvement in
performance. The reason is that their percentages of
join jobs and query jobs are different. And according
to our test, the more decreasing of join jobs, the
better performance improvement we can get. So the
query 10 has a better performance. Besides, from the
table, we know that even there is no job decreasing
like query 1, 6, 11 and 14, they still can get some
performance improvement. It is because the impact
of query accelerator. Some detail discussion will be
given in the part 5.2.

Table 2: Percentage of performance improvement.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

514

5.2 Impact of Query Accelerator

In our query accelerator, multiple threads are used to
make sub query jobs executed in parallel. After
testing its impact, we found that performance has
been improved by almost 30% in average. In
addition, the numbers of jobs have directly influence
on the performance improvement. So the four query
mentioned in 5.1 have different improvement. Query
11 and query 6 which both have 4 sub query jobs
should have a same improvement of performance
and higher than query 1, 14. However the impact of
join jobs cannot be ignored, which will reduce the
performance. So the query 11 has a worse
performance improvement than query 6 because the
number of join jobs in query 11 is more than in
query 6.

5.3 Impact of File Splitting Handler

We investigate the performance without and with
file splitting handler using a dataset which includes
500 universities. In the experiments, we choose a
certain data which are located at different positions
of the dataset. Result shows that the closer to the end
position the data is located, the lower performance
we get, because more split files need to be read. The
average improvement rate reaches to 74.53%.

6 CONCLUSIONS
AND FUTURE EXTENSIONS

In this paper we address the problem of querying
RDF data from large repositories and then
investigate its performance. In order to improve the
performance, several optimizations such as file
splitting handler, query accelerator and job reducing
handler have been explored.

As a conclusion, the work has returned
encouraging results, almost 70% improvement
according to the results of our experiments. Also due
to these optimizations, the query time has a sublinear
speedup with the increasing number of datasets.
However, the performance of queries is not yet
competitive because too many jobs are created,
especially for the SPARQL query which has a wide
hierarchy information or inference.

So in our future work, we will put more focus on
the pre-processor module to reduce the number of
jobs as much as possible. One interesting way could
be to analyse each sub query before starting a job.
The sub queries which read the same input file

should to be combined as one job. However in this
way, we should take care of the output and find a
way to divide the output into different files.

REFERENCES

Andrew, N. and Jane, H. and Yuan-Fang, Li. (2008). A
Scale-Out RDF Molecule Store for Distributed
Processing of Biomedical Data. In Semantic Web for
Health Care and Life Sciences Workshop, Beijing,
China.

Georgia, D. S. and Dimitrios, A. K. and Theodore, S.P.
(2008). Semantics-Aware Querying of Web-
Distributed RDF(S) Repositories. In SIEDL2008,
Proceedings of 1st Workshop on Semantic
Interoperability in the European Digital Library, pp.
39-50, 2008.

Hyunsik, C. and Jihoon, S. and YongHyun, C. and Min, K.
S. and Yon, D C. (2009). SPIDER: A System for
Scalable, Parallel/Distributed Evaluation of large-
scale RDF Data. In CIKM’09, November 2-6, 2009,
Hong Kong, China, ACM 978-1-60558-512-3/09/11.

Min, C. and Martin, F. and Baoshi, Y. and Robet, M.
(2004). A Subscribable Peer-to-Peer RDF Repository
for Distributed Metadata Management. Journal of
Web Semantics: Science, Services and Agents on the
World Wide Web 2(2004) 109-130.

Mohammad, F. H. and Pankil, D. and Latifur, K. (2009).
Storage and Retrieval of Large RDF Graph Using
Hadoop and MapReduce. In CloudCom 2009, LNCS
5931, pp. 680-686. 2009.

Tom, W. (2009). Hadoop: The Definitive Guide. O’Reilly
Media, Yahoo!Press.

Yuanbo, G. and Zhengxiang, P. and Jeff, H. (2005).
LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics, 3(2), pp.158-182.

IMPLEMENTATION AND OPTIMIZATION OF RDF QUERY USING HADOOP

515

