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Abstract: With the prevalence of semantic web, a great deal of RDF data is created and has reached to tens of 
petabytes, which attracts people to pay more attention to processing data with high performance. In recent 
years, Hadoop, building on MapReduce framework, provides us a good way to process massive data in 
parallel. In this paper, we focus on using Hadoop to query RDF data from large data repositories. First, we 
proposed a prototype to process a SPARQL query. Then, we represented several ways to optimize our 
solution. Result shows that a better performance has been achieved, almost 70% improvement due to the 
optimization. 

1 INTRODUCTION 

Nowadays Resource Description Framework (RDF) 
is used to describe semantic data. At the same time, 
SPARQL query language has been developed for 
handling these data. Frameworks such as Jena and 
Sesame are provided to store and achieve semantic 
data, but these frameworks do not scale well for 
large RDF graphs. So distributed parallel processing, 
as a solution, has been explored to resolve the 
scalability problem for semantic web frameworks. 
Georgia, Dimitrios, and Theodore focused on 
designing SPARQL query mechanism for distributed 
RDF repositories (Georgia et al., 2008). Min, 
Martin, Baoshi and Robet paid more attention to 
scalable Peer-to-Peer RDF repositories (Min et al., 
2004). Others did more work on querying RDF data 
with distributed computing technology. Hadoop 
which is mentioned in Tom’s book (Tom, 2009), as 
a cloud computing tool, can process data in parallel, 
achieving a great improvement in performance. Also 
Hadoop provides a high fault tolerance because its 
distributed file system HDFS adopts a file 
replication mechanism. So now people start to focus 
on using Hadoop to process semantic data.  

Mohammad, Pankil and Latifur proposed an 
architecture which includes file generator and query 
processor (Mohammad et al., 2009). In the file 
generator, RDF data file is split by predicates and 
then each file is divided further by objects. In the 

query processor, they proposed an algorithm to 
answer a SPARQL query. The main idea of the 
algorithm is to join several queries in one job. In the 
University of Queensland, scale-out RDF molecule 
store architecture (Andrew et al., 2008) has been 
proposed by Andrew, Jane and Yuan-Fang, in which 
instance data and ontology are converted to RDF in 
pre-processing phase. RDF graph is broken down 
into small sub-graphs which are then added into 
HBase (a Hadoop database). A query engine 
processes user’s queries and returns results. 
Hyunsik, Jihoon, YongHyun, Min and Yon proposed 
a scalable query processing system named SPIDER 
(Hyunsik et al., 2009) which is also based on 
Hadoop. The idea of SPIDER is to store RDF data 
over multiple servers. Then sub queries are put to 
these cluster nodes. At last these sub query results 
are gathered and delivered to user. 

In our work, we design a query engine which 
involves pre-processor and job trigger. The first 
module is responsible for dividing a SPARQL query 
into several sub queries according to its ontology. 
The second module contributes to creating jobs. 
Besides, three optimization tools (job reducing 
handler, query accelerator and file splitting handler) 
are devised to improve its performance. 

The difference between our work and others are 
as follows: First, although we also propose a query 
engine to handle SPARAL query, our work focuses 
on handling ontology which is not considered by 
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Mohammad in his paper (Mohammad et al., 2009). 
Second, we divide a complex query into sub queries 
and handle them using Hadoop while Andrew and 
his colleges focus on dividing RDF graph into small 
sub-graphs (Andrew et al., 2008). The most 
important point is we devise several optimizations 
tools to improve performance.  

The rest sections are organized as follows. 
Section 2 describes our architecture. In section 3 we 
introduce our implementation. Section 4 details three 
optimizations. Section 5 presents some experiments 
and then reports their results. At last, section 6 
reports the conclusions and future extensions. 

2 ARCHITECTURE  

We propose an architecture which includes one 
master node and several slave nodes (Figure 1). 
 

 
Figure 1: Proposed Architecture. 

In master node, query engine consists of three 
modules: pre-processor module, job triggering 
module and result combining module. Pre-processor 
module is responsible for generating sub query 
groups. Job triggering module takes charge of 
triggering jobs (query and join). Result combining 
module is used to combine results of each group. 
After getting a job, master node assigns tasks to 
slave nodes in which tasks are executed in parallel. 

Figure 2 shows us a query workflow with four 
stages: pre-processor stage, query stage, join stage, 
and result combining stage. Input is a SPARQL 
query. Output is a set of triples which meet the 
requirement of the SPARQL query. The pre-
processor parses a SPARQL query into sub queries. 
After getting the results of these sub queries, we join 
them in the join stage. At last, the joining results 
from each group are combined into one file which is 
the final result of the SPARQL query. 

 
Figure 2: Workflow of a SPARQL query. 

3 IMPLEMENTATION 

A RDF file includes three columns: Subject, 
Predicate and Object. Before executing our query 
workflow, we store sorted RDF files in file system. 
Three sorted files which are sorted separately by 
Subject, Predicate and Object are generated from 
one original unsorted file. In our implementation, we 
firstly parse a SPARQL query in pre-process stage 
according to its Univ-Bench ontology. In the 
ontology there is a ‘subClassOf’ relationship among 
some classes. We create sub query jobs according to 
the relationship. For example, if ‘Professor’ has two 
subclasses ‘FullProfessor’ and ‘AssociatedProfessor’, 
then for a query like <?x type Professor>, three sub 
queries are generated--<?x type Professor>, <?x type 
FullProfessor> and <?x type AssociatedProfessor>. 
From each sub query, some parameters such as type, 
input file name, primary keyword, and secondary 
keyword can be gotten. At last, we use Hadoop to 
execute query job and then use Pig (a sub product of 
Hadoop) to execute join job. 

4 OPTIMIZATION 

4.1 File Splitting Handle 

Before executing a map function, Hadoop splits 
input file into many small files and then creates 
Map-Reduce task for each split file. In our work we 
use File Splitting Handle to filter these split files. 
Since data has been sorted in each split file, the File 
Splitting Handle can select out files which may 
contain a certain keyword we need. So the 
performance will be improved since fewer tasks are 
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created. In our implementation, the first line record 
of each split file is compared with the certain word 
to determinate whether the file should be selected or 
not. If the first line record is larger than the certain 
keyword, then we discard the file, otherwise we 
choose it. The same strategy is used when reading a 
selected split file to avoiding a whole file searching. 

4.2 Query Accelerator 

Without using our accelerator, in each group, sub 
query jobs are executed sequentially. By using our 
accelerator, these jobs can be executed in parallel 
because we take advantage of multiple threads. Also 
in our accelerator, a join job is triggered as soon as 
at least two jobs are ready to be joined. 

4.3 Job Reducing Handle 

The job reducing handle is designed to reduce the 
number of jobs. In our implementation, when 
dividing SPARQL query into different groups, some 
identical sub queries maybe generated. So we use 
job reducing handle to detect these identical queries 
so that Hadoop can create only one job for them. 
Besides, in each group, if there is at least one query 
result is empty or an intermediate join result is 
empty, job reducing handle can find it and then stop 
creating jobs in this group, since the final result of 
the group must be empty. 

5 EXPERIMENT AND RESULT 

In our experiments, we investigate the performance 
of queries and the impact of optimizations from 
following aspects: 
 Impact of job reducing handler optimization 
 Impact of query accelerator optimization 
 Impact of file splitting handler optimization 

For these experiments we use a cluster with 14 
nodes, each equipped with two dual core processors 
with 4GB of main memory and 72GB hard disk. The 
software we developed is written in Java 1.6 and 
based on Hadoop version 0.20.2. We use the LUBM 
benchmark (Yuanbo et al., 2005) designed by 
Yuanbo, Zhengxiang and Jeff to test query 
performance. In the benchmark, the number of RDF 
triples increases with increasing number of 
universities.  

We use a simple query to test its query 
answering time varying sizes of datasets. Result 
shows it almost has a sublinear speed up. 

5.1 Impact of Job Reducing Handler 

We use the fourteen queries provided by the 
benchmark which includes 1000 university to 
investigate the relation between query answering 
time and the number of jobs. Result shows that 
query answering time has a linear speedup with the 
increasing number of jobs. Table 1 reports the 
impact of job reducing handler. Apparently the 
performance improved after using the handler. In 
order to know how much it is improved, we 
calculate the percentage of job decreasing and its 
performance improvement as shown in Table 2.  

Table 1: Job numbers before and after job handling. 

 
 

From the Table, we can see that, for query 2, 10, 
even they have the same percentage of total jobs 
decreasing, they still get a different improvement in 
performance. The reason is that their percentages of 
join jobs and query jobs are different. And according 
to our test, the more decreasing of join jobs, the 
better performance improvement we can get. So the 
query 10 has a better performance. Besides, from the 
table, we know that even there is no job decreasing 
like query 1, 6, 11 and 14, they still can get some 
performance improvement. It is because the impact 
of query accelerator. Some detail discussion will be 
given in the part 5.2. 

Table 2: Percentage of performance improvement. 
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5.2 Impact of Query Accelerator 

In our query accelerator, multiple threads are used to 
make sub query jobs executed in parallel. After 
testing its impact, we found that performance has 
been improved by almost 30% in average. In 
addition, the numbers of jobs have directly influence 
on the performance improvement. So the four query 
mentioned in 5.1 have different improvement. Query 
11 and query 6 which both have 4 sub query jobs 
should have a same improvement of performance 
and higher than query 1, 14. However the impact of 
join jobs cannot be ignored, which will reduce the 
performance. So the query 11 has a worse 
performance improvement than query 6 because the 
number of join jobs in query 11 is more than in 
query 6.  

5.3 Impact of File Splitting Handler 

We investigate the performance without and with 
file splitting handler using a dataset which includes 
500 universities. In the experiments, we choose a 
certain data which are located at different positions 
of the dataset. Result shows that the closer to the end 
position the data is located, the lower performance 
we get, because more split files need to be read. The 
average improvement rate reaches to 74.53%. 

6 CONCLUSIONS 
AND FUTURE EXTENSIONS 

In this paper we address the problem of querying 
RDF data from large repositories and then 
investigate its performance. In order to improve the 
performance, several optimizations such as file 
splitting handler, query accelerator and job reducing 
handler have been explored. 

As a conclusion, the work has returned 
encouraging results, almost 70% improvement 
according to the results of our experiments. Also due 
to these optimizations, the query time has a sublinear 
speedup with the increasing number of datasets. 
However, the performance of queries is not yet 
competitive because too many jobs are created, 
especially for the SPARQL query which has a wide 
hierarchy information or inference. 

So in our future work, we will put more focus on 
the pre-processor module to reduce the number of 
jobs as much as possible. One interesting way could 
be to analyse each sub query before starting a job. 
The sub queries which read the same input file 

should to be combined as one job. However in this 
way, we should take care of the output and find a 
way to divide the output into different files. 
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