
INCREASING FLEXIBILITY AND ABSTRACTING COMPLEXITY
IN SERVICE-BASED GRID AND CLOUD SOFTWARE

Per-Olov Östberg and Erik Elmroth
Department of Computing Science, Umeå University, SE-901 87, Umeå, Sweden

Keywords: Service-oriented architecture, Grid computing, Cloud computing, Service-oriented component model.

Abstract: This work addresses service-based software development in Grid and Cloud computing environments, and
proposes a methodology for Service-Oriented Architecture design. The approach consists of an architecture
design methodology focused on facilitating system flexibility, a service model emphasizing component mod-
ularity and customization, and a development tool designed to abstract service development complexity. The
approach is intended for use in computational eScience environments and is designed to increase flexibility
in system design, development, and deployment, and reduce complexity in system development and admin-
istration. To illustrate the approach we present case studies from two recent Grid infrastructure software
development projects, and evaluate impact of the development approach and the toolset on the projects.

1 INTRODUCTION

In this paper we discuss service-based software devel-
opment, propose a methodology for Service-Oriented
Architecture (SOA) design, and present a toolset de-
signed to abstract service development complexity.
To illustrate the approach we present case studies
from two recent Grid infrastructure software devel-
opment projects, and evaluate impact of the develop-
ment approach and the toolset on the projects.

Grid and Cloud computing alter and intro-
duce new software requirements for computational
eScience applications. Increasingly, eScience soft-
ware now require the ability to be flexible in de-
ployment, dynamically reconfigured, updated through
modules, customized, and have the ability to integrate
non-intrusively in heterogeneous deployment envi-
ronments. At the same time, software size and com-
plexity is growing in multiple dimensions (Kephart
and Chess, 2003), and limitations and complexity in
current service development tools increase develop-
ment overhead. Software development projects in-
clude more developers, require more coordination,
and result in more complex systems. Software ad-
ministration is growing in complexity and new mech-
anisms for software administration are required.

This work addresses an identified need for scala-
bility in more dimensions than just performance, and
builds on prior efforts in service composition-based
software design (Elmroth and Östberg, 2008) and a

model of software sustainability based on the notion
of an ecosystem of software components (Elmroth
et al., 2008). We explore an approach to service-based
software development based on separation of service
functionality blocks, reduction of software complex-
ity, and formulation of architectures as dynamically
reconfigurable, loosely coupled networks of services.
To support the approach, we present a toolset de-
signed to abstract complexity in service description
and development. The approach is illustrated in two
case studies from recent development projects.

The rest of this paper is structured as follows:
Section 2 overviews related and prior work. Section 3
discusses software development in Grid and Cloud
computing environments, and illustrates the need for
flexibility in design, development, and deployment of
eScience software. Section 4 proposes a methodol-
ogy for service-based software design, and Section 5
presents a toolset for service development. To illus-
trate the methodology and use of the toolset, Section 6
presents case studies of two recent software develop-
ment projects, and the paper is concluded in Section 7.

2 RELATED AND PRIOR WORK

This work builds on a service composition model
and a set of architectural design patterns presented
in (Elmroth and Östberg, 2008), and further refines a

240 Östberg P. and Elmroth E..
INCREASING FLEXIBILITY AND ABSTRACTING COMPLEXITY IN SERVICE-BASED GRID AND CLOUD SOFTWARE.
DOI: 10.5220/0003389002400249
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 240-249
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



software design and development model based on the
notion of an ecosystem of software components (Elm-
roth et al., 2008). The approach is designed to facili-
tate software flexibility and adaptability, and promote
software survival in natural selection settings. While
the approach does not define explicit self-* mecha-
nisms, it does adhere to the line of reasoning used
in Autonomic Computing (Kephart and Chess, 2003),
and defines a component model well suited for con-
struction of self-management mechanisms, e.g., self-
healing architectures and self-configuration compo-
nents. Contributions of this paper include refinement
of a software development model for flexible compo-
nents and architectures, and presentation of a toolset
designed to abstract service development complexity.

(Lau and Wang, 2007) provides a taxonomy for
software component models that identifies a set of key
characteristics, e.g., encapsulation and composition-
ality, for service-based component models. In (Lau
et al., 2005), the authors also propose a component
model based on exogenous connectors designed to fa-
cilitate loose coupling in aggregation control flow.

(Curbera et al., 2005) outlines a component-based
programming model for service-oriented computing.
This model focuses on goals similar to our approach
and, e.g., identifies a need for flexibility and cus-
tomization in SOA systems, and employs a view of
Service-Oriented Architectures (SOAs) as distributed,
abstractive architectures built on service-oriented
components. While (Curbera et al., 2005) outlines
requirements and structures for service-oriented com-
ponent models and classifies component composition
models, we propose a development methodology con-
sisting of best practice recommendations for architec-
ture design and component development.

Similar to the Spring Java application de-
velopment framework (Spring Framework, 2011),
iPOJO (Escoffier et al., 2007) provides a service-
oriented component model where logic is imple-
mented as POJOs and service handlers are injected
through byte code modification. iPOJO emphasizes
separation of service logic and interface implemen-
tations and provides a component model built on
OSGi (OSGi, 2011) that provides both component-
and application-level containers. The approach of this
work aims to facilitate service-based application de-
velopment, and presents a toolset to abstract service
development complexity, while iPOJO provides a full
and extensible software component model.

In addition to these component models, a number
of service integration models exist (Peltz, 2003), and
be categorized as, e.g., service composition, service
orchestration, and service interaction models. In this
work, we build architectures based on a model where

we focus on component abstraction, and define com-
ponent interactions in programming language terms
rather than system-level orchestrations. Note that
components developed using our development model
are still compatible with service discovery and or-
chestration techniques, while we aggregate compo-
nents in configuration and programming languages.

The Service-Oriented Modeling and Architecture
(SOMA) (Arsanjani et al., 2010) approach outlines a
development methodology for identification, design,
development, and management of service-oriented
software solutions. SOMA constitutes a complete ser-
vice lifecycle development model that addresses mod-
eling and management of business processes in ad-
dition to software development tasks. Compared to
our approach, SOMA is a mature development model
that provides guidelines for modeling and develop-
ment tasks in large software projects. Our approach
targets smaller development projects and aims to sim-
plify service and component development by abstract-
ing development complexity.

In addition to these efforts, a number of commer-
cial service-based software development tools and en-
vironments, e.g., Microsoft .NET (Lowy, 2005), exist.
In comparison to open source and scientific projects,
commercial development tools are in general mature,
well documented, and more continuously maintained.
Commercial enterprises do however have business in-
centives for restricting development and integration
flexibility in products, and commercial products are
often associated with license cost models that discour-
age use in eScience application environments.

3 GRID AND CLOUD SOFTWARE
DEVELOPMENT

Grid and Cloud eScience systems are distributed and
designed for asynchronicity, parallelism, and decen-
tralization. Grid environments organize users in Vir-
tual Organizations (VOs) mapped onto virtual infras-
tructures built through resource site federations. As
Grids build and provide abstract interfaces to existing
resources through middlewares, Grid infrastructures
focus heavily on integration of existing resources and
systems, and have adapted a number of tools well
suited for system integration. For these reasons, many
Grid architectures are designed as SOAs and imple-
mented using Web Services.

Cloud computing evolved from a number of dis-
tributed system efforts and inherits technology and
methodology from Grid computing. To applications,
Clouds provide the illusion of endless resource ca-
pacity through interface abstraction, and run virtual

INCREASING FLEXIBILITY AND ABSTRACTING COMPLEXITY IN SERVICE-BASED GRID AND CLOUD
SOFTWARE

241



machines on resources employing hardware-enabled
virtualization technologies. As the notion of a ser-
vice (an always-on, network-accessible software) fits
well in the Cloud computing model, many Cloud en-
vironments build on, or provide, service-oriented in-
terfaces. In effect, Grids provide scalability through
federation of resources, while Clouds provide compu-
tational elasticity through abstraction of resources.

In service-based software development, a number
of trade-offs and development issues exist.

Software Reuse. Development of Grid and Cloud
computing infrastructure components and applica-
tions consists, at least in part, of integration of ex-
isting systems. Integration projects tend to produce
software specific to integration environments, and
limit software reuse to component level. To enable
software reuse, components should be kept flexible
and customizable (Elmroth and Östberg, 2008; Elm-
roth et al., 2008), and SOA programming models
should emphasize construction of modules that devel-
opers can customize without source code modifica-
tion (Curbera et al., 2005).

Software Flexibility. In SOA environments, com-
ponent interactions are specified in terms of service
interfaces, orchestrations, and compositions. Ser-
vices define interfaces in terms of service descriptions
(SOAP style Web Services), or via exposure of re-
sources through HTTP mechanisms (REST services).
As SOAs are typically designed to abstract underly-
ing execution environments and dynamically provi-
sion functionality, services may be deployed in dy-
namic and heterogeneous environments. To facili-
tate integration between components, SOAP Web Ser-
vice platforms provide Application Programming In-
terfaces (APIs) and employ code generation tools to
provide boilerplate solutions for component interac-
tion. REST architectures define resource representa-
tions in documentation and often encapsulate compo-
nent invocation in APIs. By providing mechanisms
for dynamic recomposition of architectures and re-
configuration of components, SOAs facilitate system
deployment and administration flexibility.

Multi-dimensional Scalability. There are many
types of scalability in Grid and Cloud Computing.
Within performance, scalability can be categorized
in dimensions such as horizontal or vertical scala-
bility, i.e. ability to efficiently utilize many or large
resources, or in time, e.g., in terms of computation
throughput, makespan, and response time. In Clouds,
hardware virtualization enabled resource elasticity
describes system ability to vary number and size of
hardware resources contributing to Cloud resource
and infrastructure capacity.

While achieving performance scalability is cen-
tral to computational systems (and the explicit focus
of many Grid and Cloud Computing efforts), there
are also other types of scalability likely to impact
software sustainability in Grid and Cloud Comput-
ing environments. Scalability in, e.g., development,
deployment, and administration, are becoming limit-
ing factors as software projects scale up. In devel-
opment, scalability is often limited by system com-
plexity and problem topology. Deployment flexibility
can be measured in terms of adaptability and integra-
bility, and is typically limited by restrictions imposed
by architecture design or implementation choices. In-
creasingly, as software projects grow in size and com-
plexity, configuration and administration scalability is
becoming a factor. Administration scalability can be
measured in terms of automation, configuration com-
plexity, and monitoring transparency. Computational
and storage scalability are often limited by problem
topology, while development and deployment scala-
bility tend to be limited by solution complexity.

Development Complexity. Limitations in current
service engines, frameworks, and development tools
often result in increased component implementa-
tion complexity and reduced developer productiv-
ity (when compared to non-service-based software
development). Service development APIs expose
low level functionality and service engine integration
logic leaving, e.g., parts of message serialization tasks
to service and client developers. For services defined
with explicit service interface descriptions, e.g., Web
Service Description Language (WSDL) documents, a
number of code generation tools exist. These typi-
cally extract type systems and service interface infor-
mation from service interface descriptions, and gener-
ate code to integrate and communicate with services.

Current service APIs and code generators tend to
be service platform specific and tie service and ser-
vice client implementations to specific service en-
gines. Tool complexity often leads to complex in-
teractions with and within service implementations,
resulting in service interface implementations being
mixed with service functionality logic. In addition,
service description and type validation languages are
often complex. WSDL and XML Schema are exam-
ples of widely used languages with great expressive
power and steep learning curves that lower developer
productivity and obstruct component reuse.

Complexity and ambiguity in service description
formats lead to steep learning curves, high develop-
ment overhead, and incompatibilities in service in-
terface and message validation implementations. As
generated code is intended for machine interpreta-
tion, it is typically left undocumented, unindented,

CLOSER 2011 - International Conference on Cloud Computing and Services Science

242



and hard to read, reducing toolset transparency. Tool
complexity results in vendor lock-in, reduced devel-
opment productivity, and decreased software stability.

4 DESIGN METHODOLOGY

To address service software reuse, flexibility, and
scalability issues, we propose a SOA development
methodology consisting of two parts: an architec-
ture design methodology and a service component
model. The methodology emphasizes modularity and
customization on both architecture and component
level. Architectures isolate functionality blocks in
services and define architectures as loosely coupled
networks of services that can be customized through
recomposition mechanisms. Services separate com-
ponent modules and offer customization through ex-
posure of plug-in customization points. To support
this methodology we provide a service development
toolset (presented in Section 5) designed to abstract
service development complexity. The overall goal of
this methodology is to raise service development ab-
straction levels and produce systems that are flexible
in development, deployment, and administration.

4.1 Design Perspective

To design modular and reusable software, we employ
a model of software evolution based on the notion of
an ecosystem of infrastructure and application com-
ponents (Elmroth et al., 2008). Here systems form
niches of functionality and components are selected
for use based on current client or application needs.
Over time, software are subject to evolution based
on natural selection. In conjunction with this model,
we observe the line of reasoning used in autonomic
computing (Kephart and Chess, 2003), and address
scalability through modularity and reduction of soft-
ware complexity. The proposed methodology pro-
vides component and architecture models well suited
for construction of software self-* mechanisms.

In architecture design, we combine the top-down
perspective of structured system design with the mod-
eling of objects and relationships between objects of
object-oriented programming. Similar to the reason-
ing of (Lau and Wang, 2007), we design compo-
nents that expose functionality through well-defined
Web Service interfaces and compose architectures as
SOAs. System composition takes place in the compo-
nent design (through interface, dependency, and com-
munication design) and deployment (through run-
time configuration) phases, and is determined through
a system de- and recomposition approach (Elmroth

and Östberg, 2008). As encapsulation (modular-
ity) counters software complexity (Lau and Wang,
2007), we utilize interface abstraction and late bind-
ing techniques to construct loosely coupled and loca-
tion transparent components.

The design approach defines architectures as flex-
ible, dynamically reconfigurable, and loosely coupled
networks of services. Autonomous blocks of func-
tionality are identified and isolated, and components
are modeled to keep component interactions coarse-
grained and infrequent. Functionality likely to be of
interest to other components or clients is exposed as
services or customization points.

For applications, this approach provides flexibility
in utilization and customization of system functional-
ity, and increases system task parallelization poten-
tial. Construction of software as SOAs emphasizes
composition of new systems from existing compo-
nents, allows a model of software reuse where appli-
cations dynamically select components based on cur-
rent needs, and facilitates replacement and updates of
individual components. On component level, this ap-
proach results in increased modularity and a greater
focus on interface abstraction, benefiting component
and system flexibility, adaptability, and longevity.

While architectures designed as networks of ser-
vices may be distributed, components are likely to
(at least partially) be co-hosted for reasons of perfor-
mance and ease of administration. Co-hosted com-
ponents are able to make use of local call optimiza-
tions, which greatly reduce service container mem-
ory and CPU load, as well as system network band-
width requirements. Use of local call optimizations
results in less network congestion issues, fewer net-
work stack package drops, fewer container message
queue drops, and reduced impact of component com-
munication overhead and errors. Local call opti-
mization mechanisms allows design of systems that
combine the component communication efficiency of
monolithic systems with the deployment flexibility of
distributed service-based systems.

4.2 Architecture Design

Our design approach is summarized in three steps.

Identification of Autonomous Functionality
Blocks. Similar to how objects and object relation-
ships are modeled in object-oriented programming,
autonomous functionality blocks are identified and
block interactions are modeled using coarse-grained
service communication patterns. Key to this ap-
proach is to strike a balance between architecture
fragmentation and the need to keep components
small, single-purpose, and intuitive. Component

INCREASING FLEXIBILITY AND ABSTRACTING COMPLEXITY IN SERVICE-BASED GRID AND CLOUD
SOFTWARE

243



dependency patterns are identified to illuminate
opportunities for parallelization of system tasks.

Identification of Exposure Mechanisms for Func-
tionality Blocks. Functionality of interest to compo-
nents in neighboring ecosystem niches, with clear lev-
els of abstraction, and where well-defined interfaces
can be defined is exposed as services. Functionality
not of interest to other systems, but where compo-
nent customization would increase system flexibility
is exposed as customization points, e.g., through con-
figuration and plug-ins. Service-exposed functional-
ity is generally identified at architecture level, while
customization points are typically identified at com-
ponent level.

Design of Service Interactions and Interfaces. For-
mulation of interfaces and service communication
patterns are essential to performance efficiency in
SOAs. Key to our approach is to design architectures
that allow services to function efficiently as both lo-
cal objects and distributed services. As exposure of
components as services may lead to unexpected in-
vocation patterns, defensive programming techniques
and design patterns are employed to keep service in-
terfaces unambiguous, simple, and lean.

4.3 Component Design

In component design, we adhere to the general prin-
ciples for a service-oriented component model pre-
sented in (Cervantes and Hall, 2004) and organize
service components in a way similar to classic three-
tier architectures. To enable a software development
model facilitating loose coupling of service compo-
nents, we emphasize separation of modules in compo-
nent design (Yang and Papazoglou, 2004). Separation
of service client, interface, logic, and storage compo-
nents facilitates flexibility in distributed system devel-
opment and integration. Separation of service clients
and interface implementations is a key mechanism
in Service-Oriented Computing (SOC) that facilitates
loose coupling in systems, and is here extended to
provide (optional) flexibility in logic implementation.

Use of language and platform independent tech-
niques for data marshaling and transportation allows
service clients to be implemented using application-
specific languages and tools, facilitating system in-
tegrability and adoptability. Development of service
components using this pattern can be used to, e.g.,
create lightweight Web Service integration interfaces
for existing components running in component envi-
ronments such as the Common Object Model (COM)
or Enterprise Java Beans (EJB).

Separation of service interface and logic imple-

mentation enables use of alternative wire protocols
and communication paradigms, and facilitates imple-
mentation and deployment of service logic in compo-
nent model environments. Encapsulation of platform-
specific code, i.e. service client and interface imple-
mentations, facilitates migration and porting of ser-
vice logic to alternative service platforms.

Implementation of local call optimizations allow
logic components to function as local Java objects in
service clients (Elmroth and Östberg, 2008), reduc-
ing component communication overhead to the lev-
els of monolithic architectures (Östberg and Elmroth,
2011). Embedding local call optimizations in com-
ponent APIs allows optimizations to be transparent to
developers and ubiquitous in service implementations
(see Section 5), combining the deployment flexibility
of distributed SOAs with the communication perfor-
mance of monolithic architectures.

Implementation of service logic in component
models introduce additional requirements for soft-
ware development. Best practices for Web Service
and component-based software development overlap
partially. Web Service components should, e.g., be
implemented to be thread safe, communicate asyn-
chronously, consume minimal system resources, and
minimize service response times. Separation of ser-
vice logic from storage layers enables loose cou-
pling between component models and storage mech-
anisms, and facilitates migration of service logic be-
tween component environments.

To provide component-level flexibility, we define
structures for customization points as plug-ins. Com-
ponent interfaces are defined for advisory and func-
tionality provider interfaces, and customization point
implementations are dynamically loaded at runtime.
Through this mechanism, third parties can replace,
update, and provide plug-in components for internal
structures inside services without impacting design of
application architectures.

5 DEVELOPMENT TOOLSET

Software reuse in highly specialized, complex, and
low maturity environments such as emerging Grid
and Cloud computing eScience platforms is limited
and inefficient. Code generation tools target automa-
tion of software development and can facilitate soft-
ware reuse by providing boiler-plate solutions for ser-
vice communication and isolate service logic. To
address software reuse and abstraction of develop-
ment complexity, we present a service development
toolset called the Service Development Abstraction
Toolset (SDAT). SDAT builds on the component de-

CLOSER 2011 - International Conference on Cloud Computing and Services Science

244



Figure 1: SDAT service structure. Manually developed components (application and service logic) decoupled from gener-
ated components (service invocation, configuration management, and state persistence). Transparent local call optimizations
reduce service invocation overhead and container load.

sign model of Section 4.3 and is designed to raise ser-
vice development abstraction levels through a simpli-
fied service description language and a code genera-
tion tool that separates service components and pro-
vides boiler-plate solutions for, e.g., data representa-
tion, validation, and communication.

5.1 Simplified Service Description

To promote loose coupling of service clients and im-
plementations, enable service code generation, and
facilitate service discovery, we define a simplis-
tic XML-based service interface description format
called the Abstractive Service Description Language
(ASDL). The format specifies service interfaces in
terms of tree-based data types and call by value op-
erations on defined types. Data types are defined
in a schema language defined as a subset of XML
Schema. Conceptually, ASDL can be seen as a min-
imalistic subset of the Web Service Description Lan-
guage (WSDL), where the expressive power of XML
Schema and WSDL are reduced in favor of simplicity
in interface interpretation and data representation.

The ASDL type schema language consists of a re-
stricted set of XML and XML Schema tags. Data
field types are defined using simpleType tags, and
organized in hierarchical records using complexType
tags. For message validation schema completeness
element tags are inserted, and service interfaces are
defined using service and operation tags. All
schemas define a target namespace, use explicitly
referenced namespaces, and all tags are qualified.
XML Schema mechanisms for include and import
tags are supported to facilitate type definition reuse.
ASDL is designed to provide a service interface de-
sign model semantically equivalent to Java interfaces
using immutable Java classes.

Through ASDL, SDAT exploits XML Schema
document validation without encumbering interface
designers with the full complexity of XML Schema
and WSDL. For translation to WSDL interface de-

scriptions and generation of SOAP Web Service im-
plementations, the following assumptions are made.
All service communication is kept document-oriented
and use literal encoding of messages. Interfaces are
designed to have single-part messages and define a
single service per service description. Services define
a single type set per service description and all data
fields are encoded in XML elements. Exceptions are
exposed as SOAP faults and serialized as messages
defined in the service type schema.

5.2 Code Generation

To facilitate design of architectures as loosely cou-
pled networks of services, SDAT defines a service
structure (illustrated in Figure 1) that isolates service
functionality blocks and employs a local call opti-
mization mechanism for co-hosted services. Local
call optimizations transparently bypass network se-
rialization and reduce invocation overhead and con-
tainer load (Elmroth and Östberg, 2008). Immutable
data types are exposed in service interfaces and used
for service invocation. Optional message validation is
performed in service client and interface components.
The service structure defines modules for:

� Data type representations. Flat record structures
are extracted from service description schemas
and data type representation components are de-
fined as immutable and serializable Java classes.

� Service interfaces. A service invocation frame-
work abstracting call optimizations is built into
service implementations and client APIs, making
optimizations transparent to service clients.

� Message data validation. XML Schemas are ex-
tracted from service interface descriptions and
used to generate message validation components.

� Service configuration management. A configu-
ration accessor and monitor API is defined for
service components. Configuration modules are
available to service client and logic components.

INCREASING FLEXIBILITY AND ABSTRACTING COMPLEXITY IN SERVICE-BASED GRID AND CLOUD
SOFTWARE

245



� Persistent state storage. A framework for persis-
tent service state storage is defined and accessible
to service logic components. Persistence modules
are customizable and can be extended to support,
e.g., additional databases or serialization formats.

Separation of service interface and logic implementa-
tion allows compartmentalization of service platform
specific code and facilitates abstraction of service in-
terface and invocation implementation.

As illustrated in Figure 1, the SDAT service struc-
ture isolates manually coded components (applica-
tion and service logic) from generated service compo-
nents. Typical service development using SDAT con-
sists of specification of a ASDL interface, generation
of service components and interfaces, and implemen-
tation of a service logic interface. The goal of the tool
is to abstract service development complexity to the
level of implementation of a Java interface while pro-
viding optional customization of service components.

In addition to service components, SDAT gener-
ates deployment information (WSDL service descrip-
tions, deployment descriptors, etc.), security code
(WS-Security implementations, policy files, etc.), and
a (Apache Ant) build environment. By default, SDAT
generates compiled and deployable service packages
where developers only need to add service logic im-
plementations to services. To facilitate transparency,
all source code generated is designed to be well for-
matted, easy to read, and documented.

Configuration of SDAT services is segmented into
separate container and service configuration. As
SDAT services expose customization points in the
form of plug-ins for, e.g., service logic implemen-
tation, some configuration of the generated SDAT
framework must be done on container level. A typ-
ical example of this is service plug-ins, which are
specified in container Java runtime property settings.
Configuration of service logic components is typ-
ically done through service configuration files ac-
cessed through the SDAT configuration API.

To enforce user-level isolation of service capa-
bilities, service interface implementations instantiate
unique service logic components for each invoking
user. User-level isolation is implemented through a
singleton factory that caches service instances based
on invocation credentials, i.e. user certificates. This
mechanism is designed to coexist with native mecha-
nisms for component-level isolation of services.

For platform independence, clear representations
of service interfaces, strong Web Service support, and
in-memory compilation, SDAT is built and produces
services in Java. For separation of service interface
specification and service development, SDAT primar-
ily supports SOAP style Web Services. Currently,

SDAT integrates with the Apache Axis2 SOAP en-
gine, but as service interface components are decou-
pled from service logic components, support for ad-
ditional service engines, client languages, or commu-
nication patterns can be extended without affecting
other service mechanisms. In extension, this model is
expected to be of interest for creating components that
can be hosted in different service engines, or even (si-
multaneously) support multiple types of service com-
munication (e.g., REST, TCP/IP, and SOAP).

The aim of SDAT is to provide a development tool
that abstracts complex and error-prone service com-
munication development and allows service develop-
ers to focus on service logic. The tool is designed
to provide a simplistic service model where service
interfaces are kept simple, but still have expressive
power enough to create efficiently communicating
services. SDAT is designed as a prototype develop-
ment tool that aims to integrate with existing service
containers and development environments. While
current code generators are tied to particular service
environments or languages, SDAT is designed to sup-
port a development methodology rather than a spe-
cific platform or toolset.

6 CASE STUDIES

To illustrate our design approach, we present
case studies from two recent software development
projects. In these projects, which target develop-
ment of Grid infrastructure components, emphasis is
placed on development of flexible architectures ca-
pable of seamless integration into existing Grid and
High-Performance Computing (HPC) environments.

6.1 GJMF

The Grid Job Management Framework
(GJMF) (Östberg and Elmroth, 2010) illustrated
in Figure 2 is a Grid infrastructure component built
as a loosely coupled network of services. Designed
to provide middleware-agnostic and abstractive job
management interfaces, the GJMF offers concurrent
access to multiple Grid middlewares through com-
ponents organized in hierarchical layers. Services
in higher layers aggregate functionality of lower
layers, and form a rich middleware-agnostic Grid job
management interface. Through a set of integration
plug-ins, the framework can be customized to, e.g.,
support additional Grid middlewares, replace job bro-
kering algorithms, and define job failure management
policies. Framework composition, plug-in selec-
tion, and component configuration are configurable

CLOSER 2011 - International Conference on Cloud Computing and Services Science

246



Figure 2: The Grid Job Management Framework (GJMF). A hierarchical framework of services offering abstractive Grid job
management. Illustration from (Östberg and Elmroth, 2010).

through dynamic configuration modules.
The GJMF predates the service development

toolset of Section 5 and has served as a testbed for the
development methodology. The framework is devel-
oped using the Globus Toolkit v4 (Foster, 2005) and
employs WSRF notifications for service monitoring
and coordination. Due to the flexibility of the frame-
work architecture, the GJMF is deployable in multi-
ple concurrent settings as, e.g., a gateway job man-
agement interface, an alternative job brokering mech-
anism, or a personal client-side job monitoring tool.

6.2 FSGrid

FSGrid (Östberg et al., 2011) is a job prioritization
mechanisms for scheduler-based Grid fairshare pol-
icy enforcement. Designed as a distributed architec-
ture consisting of a network of services, FSGrid is
segmentable and can be tailored to resource site de-
ployments. The system virtualizes usage metrics and
resource site capacity, and is capable of collaboration
between different types of FSGrid configurations.

As illustrated in Figure 3, FSGrid deploys com-
ponents to be close to data and computation, and en-
forces VO and resource site allocation policies simul-
taneously. The system mounts VO allocation policies
onto resource site policies, assembles and operates on
global usage data, and injects a fairshare job prioriti-
zation mechanism into local scheduling decisions.

The flexibility of the architecture allows FSGrid
to be deployed in different configurations on differ-
ent sites, to be dynamically reconfigured, and adapt
to dynamic changes in usage data and allocation poli-
cies. FSGrid exposes customization points through
dynamic service configuration modules, and plug-ins
for usage decay functions and fairshare metrics.

In FSGrid, all service interfaces are describe us-
ing ASDL and all service components developed us-
ing SDAT. The code generation tools of SDAT help
to isolate service implementations from service ser-
vice container and communication dependencies. The
system is deployed using Apache Axis2 (Apache Web
Services Project - Axis2, 2011) service containers and
integrates into cluster schedulers using custom ser-
vice clients. As GJMF and FSGrid are designed us-
ing the same methodology but different tools and plat-
forms, they make a suitable platform for evaluation.

6.3 Evaluation

The GJMF and FSGrid are developed using the same
approach to SOA design, and designed with the same
goal: to provide flexible architectures for Grid in-
frastructure. Both systems are designed as loosely
coupled and reconfigurable networks of services, ex-
pose customization points for tailoring of component
functionality, and provide APIs to facilitate integra-
tion into deployment environments.

Experiences from integration of GJMF with the
LUNARC application portal (Lindemann and Sand-
berg, 2005) and a problem-solving environment
in R are documented in (Elmroth et al., 2011)
and (Jayawardena et al., 2010) respectively. These
projects illustrate benefits of construction of infras-
tructure components as flexible networks of service
SOAs. The GJMF exposes a range of job submis-
sion, monitoring, and control interfaces that can be
utilized to integrate in heterogeneous deployment en-
vironments. The deployment flexibility of the frame-
work allows parts of the framework to fulfill different
job management roles and be hosted separately.

A recent performance analysis (Östberg and Elm-

INCREASING FLEXIBILITY AND ABSTRACTING COMPLEXITY IN SERVICE-BASED GRID AND CLOUD
SOFTWARE

247



Figure 3: FSGrid, a scheduler-based fairshare job prioritization framework for Grid environments built as a distributable set
of services. Illustration from (Östberg et al., 2011).

roth, 2011) illustrates that organization of services
in hierarchical layers allows the GJMF to mask ser-
vice communication overhead through parallel task
processing. Local call optimizations significantly re-
duce communication overhead and container load for
inter-service communication. The service structure
abstracts use of local call optimizations and allows
optimizations to be ubiquitous and transparent.

Compared to GJMF development, the FSGrid
project benefits from use of SDAT in reduction of
service interface implementation complexity. FSGrid
development cycles are shorter, and use of ASDL and
SDAT facilitates experimentation in architecture de-
sign. FSGrid benefits from use of SDAT in com-
partmentalization and reduction of complexity in ser-
vice logic implementation. The proposed develop-
ment methodology provides GJMF and FSGrid archi-
tecture and component level reconfigurability, adap-
tivity, and flexibility. The SDAT abstracts service de-
velopment and facilitates porting of core system func-
tionality to alternative service platforms.

Impact of the proposed methodology on the in-
ternal quality of produced software can be evaluated
through, e.g., evaluation of the maintainability and
cohesion of service interfaces (Perepletchikov et al.,
2010). Study of the impact of SDAT on the quality of
GJMF and FSGrid is subject for future work.

7 CONCLUSIONS

In this paper we address software development prac-
tices for eScience applications and infrastructure. We
discuss service-based software development in Grid
and Cloud computing environments and identify a set
of current software development issues, e.g., com-
plexity and lack of flexibility in service development
tools. To address these issues, we propose a SOA-
based software design methodology constituted by a
set of architecture design guidelines, a component de-

sign model, and a toolset designed to abstract service
development complexity. The approach is illustrated
and evaluated in a case study of experiences from two
recent software development projects.

Our design approach aims to produce software
architectures that are flexible in deployment, reduce
need for complex distributed state synchronization,
and facilitate distribution and parallelization of sys-
tem tasks. The component model isolates service
components in standalone modules, exposes function-
ality as services and customizable plug-ins, and com-
partmentalizes platform-specific service interface and
invocation code. The toolset is designed to support
the design methodology through abstraction of de-
velopment complexity and facilitation of flexibility in
service development, deployment, and utilization. A
simplified service description language abstracts ser-
vice interface and type description complexity.

Experiences from recent software development
projects illustrate the need for structured development
models for Service-Oriented Architectures. The hier-
archical structure of the GJMF allows the framework
to dynamically function as several types of job man-
agement interfaces simultaneously as well as mask
service invocation overhead. Building the system as
a network of services allows FSGrid to deploy com-
ponents close to data and computations as well as
provide more flexible interfaces for scheduler integra-
tion. The design approach provides both systems with
increased flexibility in development and deployment.
Use of the SDAT toolset abstracts service develop-
ment complexity and provides FSGrid a component
model that supports dynamic reconfiguration and en-
capsulation of platform-specific service functionality.

ACKNOWLEDGEMENTS

The authors extend their gratitude to the anonymous
reviewers, Deb Agarwal, and Vladimir Vlassov for

CLOSER 2011 - International Conference on Cloud Computing and Services Science

248



valuable feedback that has contributed to the qual-
ity of this paper. This work is funded in part by
the Swedish Research Council (VR) under Contract
621-2005-3667, the Swedish Government’s strategic
research project eSSENCE, and the European Com-
munity’s Seventh Framework Programme (FP7/2001-
2013) under grant agreement 257115 (OPTIMIS).
The authors acknowledge the Lawrence Berkeley Na-
tional Laboratory (LBNL) for supporting the project
under U.S. Department of Energy Contract DE-
AC02-05CH11231.

REFERENCES

Apache Web Services Project - Axis2 (2011). http://
ws.apache.org/axis2, February 2011.

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapa-
thy, S., and Holley, K. (2010). SOMA: A method for
developing service-oriented solutions. IBM Systems
Journal, 47(3):377–396.

Cervantes, H. and Hall, R. (2004). Autonomous adaptation
to dynamic availability using a service-oriented com-
ponent model. In Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on,
pages 614 – 623.

Curbera, F., Ferguson, D., Nally, M., and Stockton, M.
(2005). Toward a programming model for service-
oriented computing. In Benatallah, B., Casati, F., and
Traverso, P., editors, Service-Oriented Computing -
ICSOC 2005, volume 3826 of Lecture Notes in Com-
puter Science, pages 33–47. Springer Berlin / Heidel-
berg.

Elmroth, E., Hernández, F., Tordsson, J., and Östberg, P.-
O. (2008). Designing Service-Based Resource Man-
agement Tools for a Healthy Grid Ecosystem. In
Wyrzykowski, R. et al., editors, Parallel Processing
and Applied Mathematics, Lecture Notes in Computer
Science, vol. 4967, pages 259–270. Springer-Verlag.

Elmroth, E., Holmgren, S., Lindemann, J., Toor, S., and
Östberg, P.-O. (to appear, 2011). Empowering a Flex-
ible Application Portal with a SOA-based Grid Job
Management Framework. In The 9th International
Workshop on State-of-the-Art in Scientific and Paral-
lel Computing.

Elmroth, E. and Östberg, P.-O. (2008). Dynamic and
Transparent Service Compositions Techniques for
Service-Oriented Grid Architectures. In Gorlatch, S.,
Fragopoulou, P., and Priol, T., editors, Integrated Re-
search in Grid Computing, pages 323–334. Crete Uni-
versity Press.

Escoffier, C., Hall, R. S., and Lalanda, P. (2007). iPOJO: an
Extensible Service-Oriented Component Framework.
Services Computing, IEEE International Conference
on, 0:474–481.

Foster, I. (2005). Globus toolkit version 4: Software for
service-oriented systems. In Jin, H., Reed, D., and
Jiang, W., editors, IFIP International Conference on

Network and Parallel Computing, LNCS 3779, pages
2–13. Springer-Verlag.

Jayawardena, M., Nettelblad, C., Toor, S., Östberg, P.-
O., Elmroth, E., and Holmgren, S. (2010). A Grid-
Enabled Problem Solving Environment for QTL Anal-
ysis in R. In In Proceedings of the 2nd International
Conference on Bioinformatics and Computational Bi-
ology (BICoB), pages 202–209. ISCA.

Kephart, J. O. and Chess, D. M. (2003). The Vision of Au-
tonomic Computing. Computer, 36:41–50.

Lau, K.-K., Velasco Elizondo, P., and Wang, Z. (2005).
Exogenous connectors for software components. In
Heineman, G. T., Crnkovic, I., Schmidt, H. W.,
Stafford, J. A., Szyperski, C., and Wallnau, K., ed-
itors, Component-Based Software Engineering, vol-
ume 3489 of Lecture Notes in Computer Science,
pages 90–106. Springer Berlin / Heidelberg.

Lau, K.-K. and Wang, Z. (2007). Software component
models. Software Engineering, IEEE Transactions on,
33(10):709 –724.

Lindemann, J. and Sandberg, G. (2005). An extendable
GRID application portal. In European Grid Confer-
ence (EGC). Springer Verlag.

Lowy, J. (2005). Programming .NET Components, 2nd Edi-
tion. O’Reilly Media, Inc.

OSGi (2011). http://www.osgi.org, February 2011.

Östberg, P.-O. and Elmroth, E. (submitted, 2010).
GJMF - A Composable Service-Oriented Grid Job
Management Framework. Preprint available at
http://www.cs.umu.se/ds.

Östberg, P.-O. and Elmroth, E. (submitted, 2011). Impact of
Service Overhead on Service-Oriented Grid Architec-
tures. Preprint available at http://www.cs.umu.se/ds.

Östberg, P.-O., Henriksson, D., and Elmroth, E. (sub-
mitted, 2011). Decentralized, Scalable, Grid Fair-
share Scheduling (FSGrid). Preprint available at
http://www.cs.umu.se/ds.

Peltz, C. (2003). Web Services Orchestration and Choreog-
raphy. Computer, 36(10):46–52.

Perepletchikov, M., Ryan, C., and Tari, Z. (2010). The
impact of service cohesion on the analyzability of
service-oriented software. IEEE Transactions on Ser-
vices Computing, 3:89–103.

Spring Framework (2011). http://www.springsource.org,
February 2011.

Yang, J. and Papazoglou, M. P. (2004). Service compo-
nents for managing the life-cycle of service compo-
sitions. Information Systems, 29(2):97 – 125. The
14th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE*02).

INCREASING FLEXIBILITY AND ABSTRACTING COMPLEXITY IN SERVICE-BASED GRID AND CLOUD
SOFTWARE

249


