
AN EFFICIENT GOOGLE DATASTORE ADAPTER
FOR RICH INTERNET APPLICATIONS

Johan Selänniemi and Ivan Porres
Department of Information Technologies, Åbo Akademi University, Joukahaisenkatu 3 A, Turku, Finland

Keywords: Platform as a service, Google App Engine, Databases, NoSQL, Rich internet applications.

Abstract: In this article we present the design of a database adapter for the Google Datastore and the Vaadin Rich Internet
Application Framework. The adapter allows us to develop Vaadin applications that can use different database
systems and can be deployed in a private infrastructure as well as in the Google App Engine platform. The
adapter uses a two-level cache schema to improve performance and reduce operation costs. Experimental
results show that the use of the adapter does not hinder the ability of the Google App Engine platform to scale
web applications on-demand to high loads.

1 INTRODUCTION

Cloud computing has emerged as a flexible and scal-
able approach to deploy internet applications (Dika-
iakos et al., 2009). Deploying applications to a cloud
may bring important benefits such as overall lower
operation costs and increased scalability on-demand.
As a consequence, there is a rise in the number of
cloud providers offering a wide range of virtualized
hardware infrastructure (Infrastructure as a Service)
and software platform services (Platform as a Service
or PaaS).

Platform as a service providers introduce an at-
tractive solution for the rapid development of web ap-
plications since they offer the main middleware and
database components necessary to develop scalable
applications readily available. A popular PaaS is the
Google App Engine (GAE), Google’s platform to de-
ploy web applications to the cloud. There exists many
other popular offerings such as Microsoft Azure and
Heroku.

Usually, a PaaS offering supports only one or just
a few selected programming languages and requires
the use of a number of platform APIs that are spe-
cific for that PaaS offering. Currently, GAE requires
that applications are written in the Java or Python
programming languages. As persistent storage, GAE
uses the Google Datastore, a non-relational database,
which is built on top of BigTable (Chang et al., 2008).
Access to the Datastore is provided through a low-
level API that is specific for the Google platform

(Sanderson, 2009). Other platforms require the use
other languages and APIs.

From the point of view of the developer, this
means that an application needs to use the specific
features and APIs of the target deployment platform.
As a consequence, porting an existing application to
a platform may require a considerable effort. Also,
it can be difficult to switch provider or even to delay
the choice of provider to the later stages of develop-
ment. The problem is accentuated if we take into ac-
count that the numerous offerings can make it hard for
the developers to evaluate and choose the right plat-
form (Bunch et al., 2010).

A solution to this problem follows a well-known
pattern in software engineering: to introduce a new
layer of abstraction. Instead of developing an appli-
cation using the features of a specific cloud platform
we can use a framework for web applications that has
support for different cloud providers. Applications
are then built on the abstractions and features used
by the framework and they can be deployed in all the
platforms supported by the framework with little or
no changes. The challenge is to develop such a frame-
work in a way that still provides the expected benefits
of a cloud computing platform: on-demand scalabil-
ity, simplified and flexible deployment and lower op-
eration costs.

Concretely, in this article we present a database
abstraction layer for the Vaadin (Vaadin, 2010b) web
application framework. Vaadin is a java-based server-
side rich internet application (RIA) framework that

410 Selänniemi J. and Porres I..
AN EFFICIENT GOOGLE DATASTORE ADAPTER FOR RICH INTERNET APPLICATIONS.
DOI: 10.5220/0003389104100417
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), pages 410-417
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

provides many advanced GUI components as well as
support for different data backend solutions. Each
data backend is supported as a different implementa-
tion of the same interface: the data Container. In this
article, we present the main design decisions behind
the development of a Vaadin Container for the Google
Datastore and how performance and costs issues are
taken into account using a two-level cache schema.

We proceed as follows. In Section 2 we discuss
the main issues related to the database abstraction
layer in rich internet applications. Section 3 presents
the functional properties of the Datastore adapter for
Vaadin while Section 4 presents a two-level cache
proxy. The performance and scalability of the solu-
tion is demonstrated in the experiments described in
Section 5. Section 6 contains our conclusions and fi-
nal remarks.

2 DATABASE-DRIVEN RICH
INTERNET APPLICATIONS

In this section we introduce two of the most important
challenges in developing rich internet applications in
a cloud environment such as GAE: database abstrac-
tion, performance and costs issues.

Although the work presented here is specific to
the Vaadin framework, we believe that a similar ap-
proach can be also applied to other RIA frameworks.
RIA frameworks often have well-defined interfaces to
the underlying data sources. As an example, Fig-
ure 1 shows the main methods in the Vaadin Con-
tainer interface with the corresponding interfaces of
the ZK (Zk, 2010) and the Echo (Echo, 2010) frame-
works.

addItem
getIdByIndex
size
indexOfId
getItemIds
removeItem

Vaadin Container

appendItem
getItemAtIndex
getItemCount
getIndexOfItem
getItems
removeItemAtApi

ZK ListBox

add
get
size
indexOf
remove

Echo DefaultListModel

Figure 1: Comparison of important methods in the compo-
nent interfaces of Vaadin, ZK and Echo3.

2.1 Database Abstraction

The Vaadin framework has a data model with a con-
tainer interface that already has implementations for
other back-ends such as in-memory, Lucence, JDBC
and JPA. These different implementations indicates
widespread support for the container interface within
the Vaadin framework. Our addition of the Datastore,

to the already implemented technologies, demon-
strates the transparency of switching between a non
relational and relational database.

The structure of the Vaadin data model is simi-
lar to a table in a relational database; items being
rows and properties being columns. In GAE terms,
a Vaadin item is analogue to an entity and a Vaadin
property to a GAE property. Each instance of a con-
tainer is bound to a certain textitkind of entity, which
in relational terms could be thought of as the table.

The main concepts of the container interface such
as adding, removing, ordering, filtering and counting,
are supported by the Datastore low level API. There
are, however, incompatibilities between the Vaadin
Container interface and the Datastore. The data struc-
ture imposed by the container interface, i.e. a table
model, cannot be enforced within the Datastore.

The Vaadin interface enables filtering on partial
strings, comparable to the SQL LIKE command,
whilst the Datastore does not. The Vaadin interface
introduces the notion of java-like positional indexes
for items, while the Datastore operates on a key-value
basis.

2.2 Performance and Cost

Users can take advantage of Googles own high per-
forming infrastructure by running their applications
on App Engine and its Datastore. The Datastore uti-
lizes the same technology as Googles in-house ap-
plications, for example GFS and BigTable (Chang
et al., 2008). Some examples of advantages include
automatic fault tolerance, data replication and scal-
ing (Sanderson, 2009; Google, 2010). On top of all
this users only have to pay for the data they actually
store and query.

Despite all these advantages the Datastore poses
some challenges to RIAs. A RIA tries to simulate a
desktop like experience by extensive use of UI com-
ponents that may produce more database requests
than traditional web applications. A recent study has
shown that the Datastore has a considerable variance
in read performance (Iosup et al., 2010). As the UI
components are highly dependent on low and even la-
tency to deliver their user experience, the direct use of
the Datastore could lead to a slow or even an unusable
application.

Although offering a global view of data, Mem-
cache offers latencies lower and with less variance
than the Datastore (Iosup et al., 2010). Additionally,
data can be stored in local memory on server instances
between requests. Combining the local memory and
Memcache to a multi-level cache could give signifi-
cant performance benefits.

AN EFFICIENT GOOGLE DATASTORE ADAPTER FOR RICH INTERNET APPLICATIONS

411

The Vaadin Container interface splits fetching of
keys by positional indexes and items by keys in sep-
arate methods. This is apart from data abstraction a
challenge in performance since it would require two
round-trips to the Datastore. Additionally counting
the amount of entities in the container is time con-
suming.

Moreover, due to the billing model of GAE, an ap-
plication is billed on a per query basis. This raises
questions about cost efficiency and optimization to
larger extent than that of traditional setups where the
client already owns or rents whole pieces of hardware.
As accessing data from Memcache is cheaper than
from the Datastore and accesses to local memory be-
ing virtually free, another factor, i.e. cost is added to
performance.

3 DATABASE ADAPTER

In the following section we further explain our de-
sign, its challenges and solutions. We have designed
and implemented an adapter between the Vaadin Con-
tainer interface and the GAE low level API.

To a large extent, the challenges of designing
the adapter derive from incompatibilities between
the Datastore’s non-relational model and Vaadin data
model and interface. Below we explain our approach
to solving these problems.

3.1 Enforcing a Schema in Google
Datastore

The Vaadin data model assumes that each item in a
container has a fixed number of properties and each
property has a fixed type. On the contrary, Google
datastore does not impose such restrictions.

As a consequence our adapter maintains the data
schema and implements the necessary checks to en-
sure that data, which is written and read from the
database, conforms to the schema. In order to de-
fine the data model, the programmer calls the method
addContainerProperty, specifying the type and de-
fault value of each property.

The adapter allows any serializable class to be
used as a property type. The Java Date and String are
stored as such in the Datastore while the Long, Short,
Integer, Float, Double types are stored as Long. This
enables us to sort and filter using these properties. All
other types are serialized and stored as blobs. When
reading an entity, the adapter automatically converts
the data to the right type using the information about
the property type in the data model.

When adding a new entity, our adapter does not
explicitly store properties containing a default value.
Instead the null value is used. This may reduce the
amount of data stored per entity, while still allowing
us to filter and sort by these properties.

When an entity is read, the null values are replaced
by the default property values described in the data
model. Since we do not allow null values for prop-
erties, it is not possible to mistake a null value for a
default value.

3.2 Example: Address Book

We illustrate the functionality of our solution and the
simplicity of moving a basic Vaadin Application to
GAE with a Vaadin Tutorial Application originally
designed to use an in-memory container implementa-
tion. The Address Book application (Vaadin, 2010a)
lets users view addresses in a table. The browsing can
be customized by sorting on different fields such as
first name and further by applying filters to the fields.
Entries can be added, removed or changed. Listing 1
shows the change in code needed to use our Adapter
instead of the in-memory container.

Listing 1: Creating the Adapter.

private GAEContainer addressBookData
= new GAEContainer

("People", true, false, CacheFactory
.getCache(localCacheConfig),
CacheFactory.getCache(
memCacheConfig));

The native table component used to display the
entries can, as with the in-memory container, conve-
niently interact with the data automatically by defin-
ing the adapter as a data source as shown in Listing
2.

Listing 2: Binding the data source.

contactList.setContainerDataSource(
addressBookData);

Listing 3 shows how to define the data model of
our address book. All properties are of type string
and have an empty string as default value. We should
note that this example only uses the standard Vaadin
interface. The responsibility of enforcing the data
model in the Google Datastore is implemented in our
adapter.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

412

Listing 3: Defining the data model.

private static String[] fields = {
"firstname", "lastname", "Company",

"Mobile Phone"};
for (String p : fields) {

addressBookData.
addContainerProperty(p, String
.class, "");

}

3.3 Sorting and Filtering

Users can customize the adapter by adding sort orders
and filters to properties. Both the Vaadin interface and
the Datastore API enables sorting in both ascending
and descending order for individual properties.

Sorting is done in the Container interface by call-
ing the sort method with an arbitrary amount of
property names and desired sort orders as arrays.
Once sorted, all methods that relies on the order of
items are affected. The Datastore only supports sort-
ing on the property types listed in Section 3.1. Thus
on sorting the Adapter validates that each supplied
property can be sorted.

The Vaadin Container interface supports filtering
on substrings with the option of partial matching and
ignoring case. The Datastore only supports matching
on exact values, so supporting this functionality is not
be possible.

Therefore we created a customized interface for
filtering as shown in Listing 4. Filters are added to
properties using the addFilter method. The Adapter
supports the following filters: less than, less than or
equal to, equal to, greater than, greater than or equal
to and not equal. The Datastore has constraints on
possible filter combinations, for example, inequality
filters are only allowed on one property. The Adapter
validates each new filter to the existing ones, throw-
ing an exception if the filter combination is not pos-
sible. Additionally the Adapter checks if the property
is supported for filtering and if the supplied value is
of the type corresponding to that property in the data
model.

Listing 4: Adapter filtering interface.

void addFilter(Object propertyId ,
FilterOperator filter , Object
value)

throws IncompatibleFilterException;

void removeFilters();

void removeFilters(Object propertyId
);

Listing 5 shows a code snippet from using filters in
the Address Book example. The code allows the user
to add filters to entries in the address book through a
text field. As the customized interface is used, minor
changes to the code were needed.

Listing 5: Add possibility to filter through text field.

final TextField sf= new TextField();
sf.addListener(new Property.

ValueChangeListener() {
public void valueChange(

ValueChangeEvent event) {
...
addressBookData.addFilter(

propertyName , FilterOperator
.EQUAL , sf.toString());

getMainWindow().showNotification
(

"" + addressBookData.size() + "
matches found");

...

The methods in the Adapter are affected by the
applied sort orders and filters, e.g. the size method
should return different results depending on which fil-
ters are applied. Hence, the adapter stores the sort
orders and filters, and applies them to every relevant
query to the Datastore.

3.4 Positional Indexes

Given a set of sort orders and filters, each matched
item in the container will have its own positional in-
dex. The getIdByIndex method returns the id of an
item, given a positional index. The id can be used by
the getItembyId method to fetch the actual item.

Given that one entry in the address book exam-
ple has the first name Aaron and there are no other
persons with the first name starting with ”A”. If the
firstname property is sorted in an ascending order, the
item with Aaron would be first in the Adapter. Thus
calling getIdByindex with 0 would return the id for
that item. Sorting the same property in a descend-
ing order would place the item last in the Adapter.
Furthermore, adding filters to properties reduces the
visibility of items. For example adding an equal fil-
ter with the value ”Aaron” to the firstname property
would mean that only items having the first name
”Aaron” are visible to the getIdByIndex method.

To support positional indexes, the Adapter must
take each filter and sort order into consideration. The
Datastore supports offsets on queries with a maxi-
mum size of 1000. The offset indicates how many
entities the Datastore will skip in the matched query

AN EFFICIENT GOOGLE DATASTORE ADAPTER FOR RICH INTERNET APPLICATIONS

413

prior to returning results.
The adapter uses offsets to enable positional in-

dexes. To find the id corresponding to a positional
index, the adapter performs a query with all filters,
sort orders and an offset equal to that of the positional
index. Due to the limitations on the maximum size
of the offset, the Adapter cannot determine the key
corresponding to a positional index in one query for
indexes larger than 1000. In these cases, the Adapter
uses cursors to step trough each chiliad until a cursor
is obtained for the chiliad in which the index resides.
For example the positional index 1200 would require
the Adapter to first perform a query to find the cur-
sor for the 1000th entity, and subsequently perform a
query with an offset of 200 using that cursor.

3.5 Counting

Vaadin Containers can be queried for the number of
contained items. The size method returns the num-
ber of items. If no filters are applied, the size method
returns the full amount. If filters are applied, the
amount of items matched by the combination of fil-
ters is returned.

Counting the amount of entities matched by a
query is supported by the Datastore, but grows lin-
early in time and is therefore not scalable to large
quantities.

To avoid counting items using queries to the Data-
store when no filters are applied, we store the amount
of items as metadata in the Datastore. This enables
us to determine the size merely by fetching the en-
tity containing the metadata. The metadata is transac-
tionally updated for each add and remove of an item.
This introduces additional overhead to adds and re-
moves but was deemed justifiable in extent to GAE’s
methodology of prioritizing fast reads over writes.

As each combination of filters has its own amount
of items, we do not store the size as metadata when
filters are applied.

4 CACHING PROXY

Our attempted solution to improving latency is a
proxy which a cache consisting of two levels: local
memory and Memcache, with a modular design al-
lowing for more levels to be added.

4.1 Memcache and Local Memory

The GAE platform provides an implementation of
Memcache for caching data. The implementation
uses the standard Memcache API and stored data is

global to the entire application. We use Memcache as
the middle level in our cache hierarchy.

Furthermore, static variables are stored in mem-
ory on server instances between sessions in GAE. The
top level uses this to cache data with a very fast access
speed. The stored data is local to each server. There
is no guarantee to which server instance a particu-
lar request will go (Sanderson, 2009), however in a
cache application context, a request arriving at a new
instance can simply be thought of as a cache miss.

The adapter fetches data in chunks from the Data-
store, enabling preloading. There are performance
benefits from preloading data to UI components, such
as a table, since data is accessed spatially. The chunk
size and life time of data can be specified for each of
the cache levels.

The slower but global Memcache can be config-
ured to bring in larger chunks of data with longer life
time while the local memory level works on smaller
pieces that are refreshed at a higher pace. Since there
could be an arbitrary amount of combinations of ap-
plied filters, we allow the users to decide if positional
indexes should cached when filters are applied.

The implementation for the local memory level
essentially consists of customized linked hash maps.
The size method is extensively used by Vaadin com-
ponents such as Table. To further reduce the latency
of this method, we allow sizes to be cached in the
local memory level. As the conceptual size varies
depending on which filters are applied, the user can
choose whether to cache sizes when filters are ap-
plied. If specified, one size will be cached for each
filter combination. To ensure thread safety, each oper-
ation that changes data in the hash maps uses a Reen-
trant lock for read and write operations.

To customize the memory usage of the local mem-
ory level, maximum capacity for positional indexes,
items and sizes can be specified separately. An up-
date strategy can be chosen for discarding data once
the maximum capacity is reached. We support Least
Recently Used and First In First Out.

4.2 Caching Indexes

One of the biggest challenges for the cache is that the
Vaadin interface does not simply work on key-value
basis but relies on positional indexes to retrieve the
keys. Only caching keys-items would give little per-
formance benefit as querying the Datastore would still
be necessary to determine the positional indexes.

In our implementation we cache both key-item
pairs and positional index-key pairs. Each set of posi-
tional indexes is uniquely identified by its sort orders
and filters. Since the positional indexes vary depend-

CLOSER 2011 - International Conference on Cloud Computing and Services Science

414

ing on sort orders and filters, there exists many sets of
positional indexes-keys per set of keys-items. Hence,
these are stored separately. This allows the user to set
different life time for positional indexes and key-item
data.

In order to obtain the item that corresponds to
a given positional index, the Vaadin container in-
terface requires us to invoke two different methods:
getIdByIndex and getItemById. This may require
two different queries to the Datastore API, consum-
ing more time and money. Since we have observed
that these two methods often are called in sequence,
we instead perform a single query in the method
getIdByIndex that returns all the necessary infor-
mation and store it in the cache. When the method
getItemById is invoked, the necessary information is
often already in the cache so we save one call to the
Datastore.

4.3 Consistency

Our take on data consistency is that key-item pairs are
updated and discarded on updates and removes while
positional indexes are not updated in the cache. Ulti-
mately this means that positional indexes temporarily
can point to wrong items. To optimize the effects of
invalid positional indexes, users can adjust life time
and caching options of positional indexes with ap-
plied filters.

Due to the high demands on availability, a com-
mon approach to data consistency in web applications
is optimistic locking (Herlihy, 1990). We enable op-
timistic locking on a per item basis. To allow this
functionality, each entity in the Datastore is provided
with a version number. When retrieving an item, the
Adapter equips the item with the version number. A
comparison of the item’s version and the entity ver-
sion is performed in a transaction on write-backs. If
the versions correspond, the item is updated, if not, an
exception is thrown. The exception allows the user to
take appropriate means.

4.4 Buffering

The Vaadin interface enables individual properties to
be brought out from the container. Whole entities are
the smallest units that can be fetched from the Datas-
tore. This means that it will be as time consuming to
fetch a property as a whole entity.

It is likely that two properties that belong to the
same item will be accessed together. By caching the
item to which the property belongs, performance ben-
efits can be gained from subsequent requests for other
properties from the same item.

Likewise the Vaadin Container interface expects
that properties are updated each time their values are
changed, which would mean a write operation to the
Datastore each time a property is changed. Although
we support write-trough, the user can toggle the func-
tionality and buffer property changes and then commit
them in groups per item.

5 EXPERIMENTAL RESULTS

To get an indication of the scalability of the adapter
in the GAE we carried out a series of performance
experiments using the different cache levels.

5.1 How the Cache Affects Response
Time

Figure 2 shows a graph depicting the 5th percentile,
quartiles, and 95th percentile latencies for one of the
most common use-cases: fetching a key by positional
index and subsequently the corresponding item. The
figure in the right side represents latency if there is
a miss in local memory, a miss in Memcache and a
read in Datastore. The figure in the left side represents
latency if there is a miss in local memory and a hit in
Memcache. The time unit is milliseconds. The tests
where performed at a varying load from 10 to 400
requests per second. No filters or sort orders were
applied. The time to retrive data from the local cache
is below 1ms and therefore is not shown.

The tests display approximately the same latencies
regardless of requests per second, indicating that the
functionality used in these tests scales at least to the
tested load.

No significant reduction in average latency is sus-
tained by using Memcache. This is in partly due to the
fact that we need to perform two queries to Memcache
to retrieve one item: one query for the postional index
and one query for the actual item. The latency from
the Datastore increases with higher positional indexes
and therefore also the benefits from Memcache.

We also observed that there is more variability
on the latency when accessing the Datastore. There-
fore we consider that the performance of Memcache
is more predictable.

5.2 How the Cache Affects Operation
Cost

To adress the question of possible costs benefits that
could be gained from the proxy, in addition to perfor-
mance benefits, we created a model to compare the

AN EFFICIENT GOOGLE DATASTORE ADAPTER FOR RICH INTERNET APPLICATIONS

415

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450

Hits to Memcache

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450

Memcache miss + Datastore read

Figure 2: Read latencies for fetching a key and subsequently the item using the key; (Left) Latency when data is fetched from
Memcache. (Right) Latency when data is read in Datastore after a miss in Memcache.

prices at different hit ratios. Figure 4 illustrates the
cost for fetching 100,000 items, each at a time, with
the same parameters as in Figure 2. The solid line
indicates fetching without the adapter as a reference
value using the low level API. The dashed lines show
the cost results using the container for different hit ra-
tios for misses going to Memcache and Datastore re-
spectively. A hit comes from the local memory cache
in both scenarios.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 20 40 60 80 100

P
ri
c
e

 $

Hit ratio %

No container (low level api)
Miss to Datastore

Miss to Memcache

Figure 3: Comparison over cost of different level of the
cache.

The values were calculated using the formulae
shown in in Fig. 4, where pl is the probability of a
hit in the local cache, while pm is the probability of
a hit in the memcache cache, assuming a miss in the
local cache. Thl and Tml are the average CPU times
in megacycles for a hit and miss in the local cache.
Similarly Thm and Tmm are the average API and CPU
times in megacycles for a hit and miss in the mem-
cache cache. Finally Td is the average time for a data-
store access. The times in megacycles are divided by
1200 to convert them to CPU seconds and multiplied
by the cost of a CPU second to obtain the cost of a

read operation.
The graph shows the cost benefits of the different

levels of the container. In our adapter, a hit to the local
memory level is the order of 200 times cheaper than
to a hit to Memcache, which is still 5 times cheaper
than the Datastore. As the graph indicates and which
could be expected, the use of the adapter will be more
expensive than the direct use of the low level API for
low hit ratios. The explanation to this being the addi-
tional cost of keeping the cache up to date. The actual
cost benefit to be gained from real usage depends on
the hit ratio of the data in the application.

6 CONCLUSIONS

In this article we have presented the main design de-
cisions behind the development of a database abstrac-
tion layer of the Google Datastore for the Vaadin rich
internet application and experimental performance
and costs results. Our implementation is released as
open source and is available to download (Selänniemi,
2010).

The solution presented here follows a well-known
approach in software engineering: to add a new layer
of abstraction over an existing component. Such kind
of solution is not successful if the new layer is consid-
ered more complex or less efficient than the existing
component. We tackle the first challenge by ensuring
that the new container exhibits the same interface as
the existing Vaadin containers. The second challenge
is addressed by a two-level cache. We believe that
this cache approach may improve the efficiency and
reduce the deployment costs when compared to direct
access to the Datastore.

The challenge in our work resides in offering a
solution that can fully utilize the scalability of a non-
relational database, while at the same time deliver-

CLOSER 2011 - International Conference on Cloud Computing and Services Science

416

Tc(pl ; pm) =
plThl +(1� pl)(Tml + pmThm +(1� pm)(Tmm +Td))

1200
(1)

cost(pl ; pm) = Tc(pl ; pm)� costcpus (2)

Figure 4: Calculation of computation costs.

ing the low latency needed by a RIA. The latency re-
quirements can be achieved by introducing a multi-
level cache that offers both benefits in performance
and cost. There is a definite weighing between read
speed, write speed and data consistency. Applications
can gain a increase in performance by reducing global
data consistency to a per server instance consistency.
Also, by momentarily reducing the consistency of po-
sitional indexes in the cache, the adapter can better
deliver a latency acceptable to that of UI-components
in a RIA.

Experimental results show that the use of the
adapter does not hinder the ability of the Google App
Engine platform to scale web applications on-demand
to really high loads. To fully evaluate the performance
of the solution in a production environment more ex-
tensive testing should be performed, especially test-
ing with practical RIAs. It would also be interesting
to compare the performance of our implementation to
that of native middleware in GAE such as JPA or JDO.

ACKNOWLEDGEMENTS

We want to thank Joonas Lehtinen and Arthur Signell
for their help and support during the whole develop-
ment of this work. This work has been supported by
the Cloud Software Project by Tivit, funded by Tekes,
the Finnish Funding Agency for Technology and In-
novation.

REFERENCES

Bunch, C., Kupferman, J., and Krintz, C. (2010). Active
cloud db: A database-agnostic http api to key-value
datastores. Technical report, Computer Science De-
partment University of California, Santa Barbara.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gru-
ber, R. E. (2008). Bigtable: A distributed storage sys-
tem for structured data. ACM Trans. Comput. Syst.,
26(2):1–26.

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., and
Vakali, A. (2009). Cloud computing: Distributed in-
ternet computing for it and scientific research. IEEE
Internet Computing, 13:10–13.

Echo (2010). Echo framework homepage.
http://echo.nextapp.com/site/.

Google (2010). Why app engine. http://code.google.com/
appengine/whyappengine.html.

Herlihy, M. (1990). Apologizing versus asking per-
mission: optimistic concurrency control for abstract
data types. ACM Trans. Database Syst., 15:96–124.
http://doi.acm.org/10.1145/77643.77647.

Iosup, A., Yigitbasi, N., and Epema, D. (2010). On the
performance variability of production cloud services.
Technical report, Faculty of Information Technology
and Systems Department of Technical Mathematics
and Informatics Delft University of Technology.

Sanderson, D. (2009). Programming Google App Engine.
O’Reilly Media.

Selänniemi, J. (2010). Gaecontainer download page.
http://vaadin.com/directory#addon/gaecontainer.

Vaadin (2010a). Tutorial. http://vaadin.com/tutorial.

Vaadin (2010b). Vaadin framework homepage.
http://vaadin.com.

Zk (2010). Zk framework homepage. http://www.zkoss.
org/.

AN EFFICIENT GOOGLE DATASTORE ADAPTER FOR RICH INTERNET APPLICATIONS

417

